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ABSTRACT 
 
This study aims to calculate exact natural frequencies of piles partially embedded in 
elastic soil by using transfer matrix method (TMM). The elastic soil is considered as 
Winkler foundation model using linear springs. The piles are modelled as Timoshenko 
beam-columns. The transfer matrices of piles are constructed after obtaining end forces 
and end displacements of piles using governing equation of motion of Timoshenko beam-
columns. Different soil conditions are used to show their effects on natural frequencies of 
piles partially embedded in Winkler foundation. Moreover, the results are tabulated 
comparatively with finite element solutions that obtained from structural analysis software 
SAP2000. 
 
Keywords: Natural frequency, partially embedded pile, transfer matrix method, winkler 
foundation. 
 
 
INTRODUCTION 
 
Free vibration analysis of piles embedded in elastic soil plays an important role in civil 
engineering applications. Therefore, the calculation of exact natural frequencies of partially 
embedded piles becomes an interesting research area. Free vibration analysis of partially 
embedded piles is performed in limited number of literature. Catal (2006) investigated free 
vibrations of semi-rigid connected and partially embedded piles considering the effects of 
bending moment, axial force and shear force. Yesilce and Catal (2008a) calculated natural 
frequencies of partially embedded piles using shear theory via TMM. Yesilce and Catal 
(2008b) performed free vibration analysis of semi-rigid connected piles embedded in soil by 
using Reddy-Bickford beam theory and Winkler foundation model. Lu and Yuan (2014) 
investigated free vibrations of a periodic viaduct supported by pile foundations using 
boundary element method (BEM). Ai et al. (2016) researched vibrations of a partially 
embedded pile group in transversly isotropic soils. Hu et al. (2016) obtained lateral dynamic 
response of a partially embedded pile subjected to combined loads in saturated soil. 
  
The TMM provides exact results for vibration analysis of beams and beam assembly 
structures. The TMM uses end forces and end displacement of members that obtained 
analytically. In open literature, several studies about application of TMM are found for 
continous beams (Lin and Chang, 2005; Ceaşu et al., 2010; Attar, 2012; Wu and Chang, 2015; 
Lee and Lee 2016; Lee and Lee, 2017; Lee and Lee, 2018). 
 
In this study, first five exact natural frequencies of partially embedded piles are obtained by 
using TMM. The Winkler foundation model is used via linear springs along the embedded 
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region of pile. The pile segments are considered as Timoshenko beam-columns. Different 
Winkler spring stiffness values are used to observe the effects on the free vibrations of 
partially embedded piles. The exact TMM results are presented with finite element results of 
SAP2000. 
 
 
MODEL AND FORMULATION 
 
The mathematical models of partially embedded piles considered in the study are presented in 
Figure 1 where ks is Winkler spring stiffness, d is diameter of pile cross-section, 1,2 and 3 are 
node numbers, L1 and L2 are length of the free region and embedded region, respectively. The 
boundary conditions of Model-a and Model-b are fixed-free and fixed-simply supported, 
respectively.  
 

 
(a)                                                          (b) 

   
Figure 1. Partially embedded pile with free cap (a) and partially embedded pile with simply 
supported cap (b) 

 
Some assumptions are considered to clarify and simplificate the analysis procedure as 
follows: 
1. The material of the pile is isotropic and homogenous. 
2. The cross-section of the pile is uniform. 
3. The pile behaves linear and elastic. 
4. The damping is neglected. 
5. The linear springs are distributed along the embedded pile length. 
 
The governing equations of motion of vibrating Timoshenko beam-column embedded in 
elastic soil can be written as: 
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where x is axis of beam-column , t is time, A is cross-sectional area, I is area moment of 
inertia, G is shear modulus, E is Young’s modulus, k  is shear coefficient, m  is mass per unit 
length, L is beam-column lenght, y(x,t) and θ(x,t) are transverse deflection function and 
rotation function, respectively.  
 
Eq.(2) is obtained by assuming the motion is harmonic and applying separation of variables 
method: 
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where z=x/L and ω is angular natural frequency. 
 
The solution is assumed as: 
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By substituting Eq.(3) into Eq.(2), y(z) and θ(z) are written as Eq.(4) and Eq.(5), respectively. 
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; p=1,2,3,4; j=1,2,3,4. 

The bending moment function and shear force function are given in Eq.(6) and Eq.(7), 
respectively. 
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The displacement functions written in Eqs. (4)-(5) and force functions written in Eqs.(6)-(7) 
are used to obtain transfer matrix formulations of embedded Timoshenko element pile. For 
the free part of the pile that is denominated as 1st Region, ks is equated to zero. 
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TRANSFER MATRIX METHOD (TMM) 
 
For the 1st Region: 
 
The state vector of node 1 can be can be written as Eq.(8): 
                 { } [ ]{ }1 1Z H B=                                                                                      (8) 
where 

{ } { }T

1 (z 1) (z 1) (z 1) (z 1)Z y Q M= = = == θ  and  [ ]1H  is 4x4 coefficient matrix that constructed by 
using end displacements and end forces of Timoshenko beam-column. 
 
The state vector of node 2 can be can be written as Eqs.(9): 
                { } [ ]{ }21 2Z H B=                                                                                     (9) 
where 

 { } { }T

21 (z 0) (z 0) (z 0) (z 0)Z y Q M= = = == θ  and  [ ]2H  is 4x4 coefficient matrix of Timoshenko 
beam-column. 
 
By using the relation between Eqs.(8)-(9), the following equation can be obtained. 
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where [ ]1T  is transfer matrix of 1st Region. 
 
For the 2nd Region: 
 
The state vector of node 3 is given in Eq.(11): 
 
               { } [ ]{ }3 3Z H C=                                                                                   (11) 
where 

 { } { }T

3 (z 0) (z 0) (z 0) (z 0)Z y Q M= = = == θ  and  [ ]4H  is 4x4 coefficient matrix that constructed 
by using end displacements and end forces of embedded Timoshenko beam-column. 
 
The state vector of node 2 can be can be written as Eqs.(12): 
              { } [ ]{ }22 4Z H C=                                                                                   (12) 
where 

 { } { }T

22 (z 1) (z 1) (z 1) (z 1)Z y Q M= = = == θ  and  [ ]4H  is 4x4 coefficient matrix of embedded 
Timoshenko beam-column. 
 
By using the relation between Eqs.(11)-(12), the fequation below is obtained: 
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where [ ]2T  is transfer matrix of 1st Region. 
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The global transfer matrix of the system is constructed as follows: 
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where [ ]GT  is global transfer matrix of the partially embedded Timoshenko element pile. 
 
The natural frequencies can be calculated by equating the determinant of the global transfer 
matrix to zero. It should be noted that the global transfer matrix of the system is reduced due 
to boundary conditions of Model-a and Model-b. 
 
 
NUMERICAL ANALYSIS AND DISCUSSION 
 
The numerical analysis is performed according to following material and geometrical 
properties: L1 = 4 m, L2 = 10 m, d = 0.8 m, unit weight of pile = 24.5 kN/m3,  E = 2.94x107 
kN/m2, G = 1.23x 107 kN/m2, k = 1.18.  
 
The natural frequencies that obtained via TMM and finite element method (FEM) from 
SAP2000 commercial software are presented in Table 1 and Table 2 for Model-a and Model-
b, respectively. It should be noted that the partially embedded pile is meshed using 0.1 m long 
segments in SAP2000.  
 
Table 1. First five natural frequencies of Model-a 

    ks (kN/m) 

Method 
Natural  

Frequency 
(Hz) 

5000 10000 15000 20000 25000 

TMM 1st 4.6876 5.7228 6.3591 6.8216 7.1876 
FEM(SAP2000) 4.6913 5.7292 6.3677 6.8319 7.1994 

TMM 2nd 14.9895 17.5638 19.8533 21.9133 23.7899 
FEM(SAP2000) 15.0352 17.6128 19.9065 21.9712 23.8530 

TMM 3rd 34.4394 35.4633 36.4642 37.4438 38.4040 
FEM(SAP2000) 34.7205 35.7488 36.7538 37.7373 38.7010 

TMM 4th 64.4551 64.9734 65.4910 66.0079 66.5242 
FEM(SAP2000) 65.3907 65.9121 66.4325 66.9522 67.4711 

TMM 
5th 

103.1076 103.4536 103.7996 104.1456 104.4915 
FEM(SAP2000) 105.3402 105.6890 106.0377 106.3863 106.7349 

 
 
Table 2. First five natural frequencies of Model-b 

    ks (kN/m) 

Method 
Natural  

Frequency 
(Hz) 

5000 10000 15000 20000 25000 

TMM 1st 12.3231 15.1213 17.3972 19.3316 21.0158 
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FEM(SAP2000) 12.3379 15.1392 17.4186 19.3568 21.0454 
TMM 2nd 28.3796 29.5583 30.7180 31.8639 32.9998 

FEM(SAP2000) 28.5193 29.7002 30.8617 32.0090 33.1457 
TMM 3rd 56.1067 56.7276 57.3513 57.9745 58.5981 

FEM(SAP2000) 56.6801 57.3052 57.9309 58.5571 59.1834 
TMM 4th 92.7637 93.1687 93.5612 93.9588 94.3555 

FEM(SAP2000) 94.2953 94.6981 95.1001 95.5014 95.9017 
TMM 

5th 
136.8811 137.1361 137.3907 137.6649 137.8986 

FEM(SAP2000) 140.0654 140.3239 140.5819 140.8396 141.0968 
 
Tables 1-2 show that TMM results are in very good aggreement with FEM. According to 
results, the natural frequencies are increased by augmentation of ks for both models. Tables 1-
2 also reveal that Model-b provides higher natural frequencies in accordance with Model-a 
because of simpy supported end. Variation of fundamental frequencies of Model-a and 
Model-b is plotted in Figure 2 for different ks values. 
 

 
Figure 2. Variation of fundamental frequencies of partially embedded pile models for 
different ks values 

 
According to Figure 3, use of simple support instead of free end significantly effects the 
dynamic characteristics of partially embedded pile.  Increasing ks values decreases the effect 
of boundary conditions for 2nd mode and does not effect the 3rd, 4th and 5th mode significantly. 
In discordance with higher modes, increment of ks increases the effect of boundary condition 
on fundamental frequency significantly.  
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Figure 3. Increment of frequencies of partially embedded piles by using simply supported end 
instead of free end 
 
 
CONCLUSION 
 
This study reveals the effects of Winkler spring stiffness on natural frequencies of partially 
embedded Timoshenko element piles using TMM and FEM comparatively. Different support 
conditions are used to reflect the influences on free vibration characteristics of partially 
embedded piles. The results show that TMM which provides exact results can be used 
effectively for vibrations of partially embedded Timoshenko beam-columns. The computer 
programs that prepared for analyses are working fast. 
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