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On classes of C3 and D3 modules
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Abstract

This paper aims to study the notions of A-C3 and A-D3 modules for
some class A of right modules. Several characterizations of these mod-
ules are provided and used to describe some well-known classes of rings
and modules. For example, a regular right R-module F is a V -module
if and only if every F -cyclic module is an A-C3 module, where A is
the class of all simple right R-modules. Moreover, let R be a right
artinian ring and A, a class of right R-modules with a local ring of en-
domorphisms, containing all simple right R-modules and closed under
isomorphisms. If all right R-modules are A-injective, then R is a serial
artinian ring with J2(R) = 0 if and only if every A-C3 right R-module
is quasi-injective, if and only if every A-C3 right R-module is C3.
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1. Introduction and notation.

The study of modules with summand intersection property was motivated by the
following result of Kaplansky: every free module over a commutative principal ideal ring
has the summand intersection property (see [14, Exercise 51(b)]). A moduleM is said to
have the summand intersection property if the intersection of any two direct summands
of M is a direct summand of M . This de�nition is introduced by Wilson [18]. Dually,
Garcia [10] considered the summand sum property. A module M is said to have the
summand sum property if the sum of any two direct summands is a direct summand
of M . These properties have been studied by several authors (see [1, 3, 11, 12, 17],...).
Moreover, the classes of C3-modules and D3-modules have recently studied by Yousif et
al. in [4, 20]. Some characterizations of semisimple rings and regular rings and other
classes of rings are studied via C3-modules and D3-modules. On the other hand, several
authors investigated some properties of generalizations of C3-modules and D3-modules in
[6, 13]; namely, simple-direct-injective modules and simple-direct-projective modules. A
right R-moduleM is called a C3-module if, whenever A and B are submodules ofM with
A ⊂d M , B ⊂d M and A∩B = 0, then A⊕B ⊂d M . M is called simple-direct-injective

in [6] if the submodules A and B in the above de�nition are simple. Dually, M is called
a D3-module if, whenever M1 and M2 are direct summands of M and M = M1 +M2,
then M1 ∩M2 is a direct summand of M . M is called simple-direct-projective in [13] if
the submodules M1 and M2 in the above de�nition are maximal.

In Sect. 2, we study some properties of A-C3 modules and A-D3 modules. Let A be
a class of right modules over a ring R and closed under isomorphisms. We call that a
right R-module M is an A-C3 module if, whenever A ∈ A and B ∈ A are submodules of
M with A ⊂d M , B ⊂d M and A ∩ B = 0, then A ⊕ B ⊂d M . Dually, M is an A-D3
module if, whenever M1 and M2 are direct summands of M with M/M1,M/M2 ∈ A and
M =M1 +M2, then M1 ∩M2 is a direct summand of M . It is shown that if each factor
module of M is A-injective, then M is an A-D3 module if and only if M satis�es D2 for
the class A, if and only if M have the summand intersection property for the class A in
Proposition 2.7. On the other hand, if every submodule of M is A-projective, then M is
an A-C3 module if and only if M satis�es C2 for the class A, if and only if M have the
summand sum property for the class A in Proposition 2.14. These results are applied
to the class A of all simple right R-modules, and to the class A of all semisimple right
R-modules. In the case when A is the class of all simple right R-modules, we obtained
the known properties of the simple-direct-injective modules and simple-direct-projective
modules [6, 13].

In Sect. 3, we provide some characterizations of serial artinian rings and semisimple
artinian rings. The Theorem 3.2 and Theorem 3.3 are indicated that let R be a right
artinian ring and A, a class of right R-modules with a local ring of endomorphisms,
containing all simple right R-modules and closed under isomorphisms:

(1) If all right R-modules are A-injective, the following conditions are equivalent for
a ring R:
(i) R is a serial artinian ring with J2(R) = 0.
(ii) Every A-C3 right R-module is quasi-injective.
(iii) Every A-C3 right R-module is C3.

(2) If all right R-modules are A-projective, then the following conditions are equiv-
alent for a ring R:
(i) R is a serial artinian ring with J2(R) = 0.
(ii) Every A-D3 right R-module is quasi-projective.
(iii) Every A-D3 right R-module is D3.
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Moreover, we give an equivalent condition for a regular V -module. It is shown that a
regular right R-module F is a V -module if and only if every F -cyclic module is simple-
direct-injective in Theorem 3.9. It is an extension the result of rings to modules.

Throughout this paper R denotes an associative ring with identity, and modules will
be unitary right R-modules. The Jacobson radical ideal in R is denoted by J(R). The
notationsN ≤M , N ≤e M , N�M , orN ⊂d M mean thatN is a submodule, an essential
submodule, a fully invariant submodule, and a direct summand of M , respectively. Let
M and N be right R-modules. M is called N -injective if for any right R-module K and
any monomorphism f : K → N , the induced homomorphism Hom(N,M)→ Hom(K,M)
by f is an epimorphism. M is called N -projective if for any right R-module K and any
epimorphism f : N → K, the induced homomorphism Hom(M,N) → Hom(M,K) by
f is an epimorphism. Let A be a class of right modules over the ring R. M is called
A-injective (A-projective) if M is N -injective (resp., N -projective) for all N ∈ A. We
refer to [5], [7], [16], and [19] for all the unde�ned notions in this paper.

2. On A-C3 modules and A-D3 modules

In this section, we give some basic properties of A-C3 modules and A-D3 modules.
They will be used for the next section. We �rst have the following remark.

2.1. Remark. Let M be a right R-module and A, a class of right R-modules.

(1) If M is a C3 (D3) module, then M is an A-C3 (resp., A-D3) module.
(2) If A = Mod−R, then A-C3 modules (A-D3 modules) modules are precisely the

C3 modules (resp., D3) modules.
(3) If A is the class of simple right R-modules, then A-C3 modules (A-D3 modules)

modules are precisely the simple-direct-injective (resp., simple-direct-projective)
modules that studied in [6, 13].

(4) If A is the class of injective right R-modules, thenM is always an A-C3 module.
(5) If A is the class of projective right R-modules, thenM is always an A-D3 module.

2.2. Lemma. Let A be a class of right R-modules and closed under isomorphisms. Then
every direct summand of an A-C3 module (A-D3 module) is also an A-C3 module (resp.,
A-D3 module).

Proof. The proof is straightforward. �

2.3. Proposition. Let A be a class of right R-modules and closed under direct sum-
mands. Then the following conditions are equivalent for a module M :

(1) M is an A-C3 module.
(2) If A ∈ A and B ∈ A are submodules ofM with A ⊂d M , B ⊂d M and A∩B = 0,

there exist submodules A1 and B1 of M such that M = A⊕B1 = A1 ⊕B with
A ≤ A1 and B ≤ B1.

(3) If A ∈ A and B ∈ A are submodules of M with A ⊂d M , B ⊂d M and
A ∩B ⊂d M , then A+B ⊂d M .

Proof. It is similar to the proof of Proposition 2.2 in [4]. �

Dually Proposition 2.4, we have the following proposition.

2.4. Proposition. Let A be a class of right R-modules and closed under isomorphisms.
Then the following conditions are equivalent for a module M :

(1) M is an A-D3 module.
(2) IfM/A,M/B ∈ A with A ⊂d M , B ⊂d M andM = A+B, thenM = A⊕B1 =

A1 ⊕B with A1 ≤ A and B1 ≤ B.
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(3) If M/A,M/B ∈ A with A ⊂d M , B ⊂d M and A+B ⊂d M , then A∩B ⊂d M .

Let f : A → B be a homomorphism. We denote by 〈f〉 the submodule of A ⊕ B as
follows:

〈f〉 = {a+ f(a) | a ∈ A}.

The following result is proved in Lemma 2.6 of [15].

2.5. Lemma. Let M = X ⊕ Y and f : A → Y , a homomorphism with A ≤ X. Then
the following conditions hold

(1) A⊕ Y = 〈f〉 ⊕ Y .
(2) Ker(f) = X ∩ 〈f〉.

2.6. Proposition. Let M be an A-D3 module with A a class of right R-modules and
closed under isomorphisms and direct summands. If M =M1 ⊕M2 and f :M1 →M2 is
a homomorphism with Im(f) ⊂d M2 and Im(f) ∈ A, then Ker(f) is a direct summand
of M1.

Proof. Assume thatM =M1⊕M2 and f :M1 →M2 is a homomorphism with Im(f) ⊂d

M2 and Im(f) ∈ A. Call M ′ :=M1⊕ Im(f). Then M ′ is a direct summand of M and so
it is an A-D3 module. It follows that M ′ =M1⊕ Im(f) = 〈f〉⊕ Im(f) by Lemma 2.5. It
is easily to check M ′/M1,M

′/〈f〉 ∈ A and M ′ = M1 + 〈f〉. As M ′ is an A-D3 module
and again by Lemma 2.5, 〈f〉 ∩M1 = Ker(f) is a direct summand of M ′. Thus Ker(f)
is a direct summand of M1. �

2.7. Proposition. Let M be a right R-module and A, a class of right R-modules and
closed under isomorphisms and direct summands. If each factor module of M is A-
injective, then the following conditions are equivalent:

(1) IfM1 andM2 are direct summands ofM withM/M1,M/M2 ∈ A, thenM1∩M2

is a direct summand of M .
(2) M is an A-D3 module.
(3) If N ≤ M such that M/N ∈ A is isomorphic to a direct summand of M , then

N is a direct summand of M .
(4) For any decomposition M = M1 ⊕ M2 with M2 ∈ A, every homomorphism

f :M1 →M2 has the kernel a direct summand of M1.
(5) Whenever X1, . . . , Xn are direct summands of M and M/X1, . . . ,M/Xn ∈ A,

then ∩n
i=1Xi is a direct summand of M .

Proof. (2)⇒ (1). Let M1,M2 be direct summands of M with M/M1,M/M2 ∈ A. Then
M =M1⊕M ′1. Without loss of generality we can assume thatM2 *M1,M2 *M ′1. From
our assumption, π(M2) is a direct summand ofM ′1. Then we can writeM

′
1 = π(M2)⊕M ′′1

for some M ′′1 ≤ M ′1. Since the class A is closed under direct summands, M ′′1 ∈ A. It is
easy to see that M1 +M ′′1 is a direct summand of M . We have M/(M1 +M ′′1 ) ∈ A and
M1 +M ′′1 +M2 =M . It follows that M1 ∩M2 = (M1 +M ′′1 ) ∩M2 is a direct summand
of M .

(3)⇒ (2). It is obvious.
(1) ⇒ (4). Assume that M = M1 ⊕ M2 with M2 ∈ A and a homomorphism f :

M1 → M2. It follows that M = M1 ⊕ M2 = 〈f〉 ⊕ M2 by Lemma 2.5. Note that
M/M1,M/〈f〉 ∈ A. By (1) and Lemma 2.5, 〈f〉 ∩M1 = Ker(f) is a direct summand of
M . Thus Ker(f) is a direct summand of M1.

(4)⇒ (3). Let M1,M2 be submodules of M such that M =M1 ⊕A, M/M2
∼= A and

A ∈ A. Call π1 :M →M1 and π2 :M → A the canonical projections. By the hypothesis,
π2(M2) is a direct summand of A and hence A = π2(M2)⊕B for some submodule B of
A. Call p :M →M/M2 the canonical projection and isomorphism φ :M/M2 → A. Take
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the homomorphism f = φ ◦ (p|M1) : M1 → A. It follows that Ker(f) = M1 ∩M2. By
(4), Ker(f) = M1 ∩M2 is a direct summand of M1. Take N1 a submodule of M1 with
M1 = N1 ⊕ (M1 ∩M2). Note that M1 +M2 = M1 ⊕ π2(M2) and N1 ∩M2 = 0. This
gives that

M =M1 ⊕ π2(M2)⊕B
= (M1 +M2)⊕B
= [N1 ⊕ (M1 ∩M2) +M2]⊕B = (N1 +M2)⊕B
= (N1 ⊕M2)⊕B.

(1) ⇒ (5). We prove this by induction on n. When n = 2, the assertion is true
from (1). Suppose that the assertion is true for n = k. Let X1, X2, . . . , Xk+1 be direct
summands ofM andM/X1,M/X2, . . . ,M/Xk+1 ∈ A.We can writeM = ∩k

i=1Xi⊕N for
some submodule N ofM . Without loss of generality we can assume that ∩k

i=1Xi * Xk+1.

Let f : M → M/Xk+1 be the natural projection. Then (∩k
i=1Xi)/[(∩k

i=1Xi) ∩Xk+1] is
A-injective, and therefore, it is isomorphic to a direct summand of M/Xk+1 ∈ A. This

gives that ∩k
i=1Xi/ ∩k+1

i=1 Xi is isomorphic to a direct summand of M and

M/(∩k+1
i=1Xi ⊕N) = (∩k

i=1Xi ⊕N)/(∩k+1
i=1Xi ⊕N) ∈ A.

Since the equivalence of (1) and (3), (
k+1⋂
i=1

Xi) ⊕ N is a direct summand of M . Thus

k+1⋂
i=1

Xi is a direct summand of M . �

A right R-module M is called a D2-module if, for every submodule A of M with M/A
isomorphic to a direct summand ofM , then A is a direct summand ofM . Assume thatM
is an injective right R-module over a right hereditary ring R. Then every factor module
of M is injective. From Proposition 2.7, we have the following corollary.

2.8. Corollary. Let M be an injective right R-module over a right hereditary ring R.
The following conditions are equivalent:

(1) M is a D3-module.
(2) M is a D2-module.
(3) M has the summand intersection property.

2.9. Corollary. The following conditions are equivalent for a module M :

(1) IfM/A is a semisimple module and B, a submodule ofM withM/A ∼= B ⊂d M ,
then A ⊂d M .

(2) If A and B are any two direct summands of M such that M/A and M/B are
semisimple modules, then A ∩B ⊂d M .

(3) If A and B are any two direct summands ofM such thatM/A,M/B are semisim-
ple modules and A+B =M , then A ∩B is a direct summand of M .

(4) WheneverX1, X2, . . . , Xn are direct summands ofM andM/X1,M/X2, . . . ,M/Xn

are semisimple modules, then ∩n
i=1Xi is a direct summand of M .

2.10. Corollary. Let P be a quasi-projective module. If X1, . . . , Xn are direct sum-
mands of P and P/X1, . . . , P/Xn are semisimple modules, then ∩n

i=1Xi is a direct sum-
mand of P .

2.11. Corollary. The following conditions are equivalent for a module M :

(1) For any maximal submodule A of M and any submodule B of M such that
M/A ∼= B ⊂d M, A ⊂d M .

(2) For any two maximal direct summands A,B of M, A ∩B ⊂d M .
(3) If M/A is a �nitely generated semisimple module with M/A ∼= B ⊂d M , then

A ⊂d M .
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(4) Whenever X1, X2, . . . , Xn are maximal direct summands of M , then ∩n
i=1Xi is

a direct summand of M .

Proof. (1)⇔ (2)⇔ (4). Follow from Proposition 2.7.
(3)⇒ (1). Clearly.
(1)⇒ (3). Assume thatM/A is a �nitely generated semisimple module and isomorphic

to a direct summand of M . Write M/A =M1/A⊕ · · · ⊕Mn/A with simple submodules
Mi/A of M/A. Then Mi ∩ (

∑
j 6=iMj) = A for all i = 1, 2 . . . , n. For any subset

{i1, i2, . . . , in−1} of the set I := {1, 2, . . . , n}, it is easily to see that

M/(Mi1 +Mi2 + · · ·+Min−1) 'Mk/A

for some k ∈ I \ {i1, i2, . . . , in−1}. It follows that M/(Mi1 + Mi2 + · · · + Min−1) is
isomorphic to a simple direct summand of M . By (1), Mi1 +Mi2 + · · · +Min−1 is a
maximal direct summand of M . On the other hand, we can check that

A =
⋂

{i1,i2,...,in−1}⊂I

(Mi1 +Mi2 + · · ·+Min−1).

So, by (4), A is a direct summand of M . �

2.12. Proposition. Let M be an A-C3 module with A a class of right R-modules and
closed under isomorphisms and direct summands. If M = A1 ⊕A2 and f : A1 → A2 is a
homomorphism with Ker(f) ∈ A and Ker(f) ⊂d A1, then Im(f) is a direct summand of
A2.

Proof. Let f : A1 → A2 be an R-homomorphism with Ker(f) ∈ A. By the hypothesis,
there exists a decomposition A1 = Ker(f)⊕B for some submodule B of A1. Then B⊕A2

is a direct summand of M . Note that every direct summand of an A-C3 module is also
an A-C3 module. Hence B ⊕A2 is an A-C3 module. Let g = f |B : B → A2. Then g is a
monomorphism and Im(g) = Im(f). It is easy to see that B⊕A2 = 〈g〉⊕A2, 〈g〉∩B = 0
and 〈g〉 ' B. Note that B, 〈g〉 ∈ A. As B ⊕ A2 is an A-C3 module, B ⊕ 〈g〉 is a direct
summand of B ⊕A2. Thus B ⊕ 〈g〉 = B ⊕ Im(g), which implies that Im(g) or Im(f) is a
direct summand of A2. �

2.13. Proposition. Let M be a right R-module and A, a class of right R-modules
and closed under isomorphisms and direct summands. If every submodule of M is A-
projective, the following conditions are equivalent:

(1) For any two direct summands M1,M2 of M such that M1,M2 ∈ A, M1 +M2 is
a direct summand of M .

(2) M is an A-C3 module.
(3) For any decomposition M = A1 ⊕ A2 with A1 ∈ A, then every homomorphism

f : A1 → A2 has the image a direct summand of A2.

Proof. (1)⇒ (2) is obvious.
(2)⇒ (3) Let f : A1 → A2 be an R-homomorphism with A1 ∈ A. By the hypothesis,

Ker(f) is a direct summand of A1. The rest of proof is followed from Proposition 2.12.
(3) ⇒ (1) Let N and K be direct summands of M such that N,K ∈ A. Write

M = N ⊕ N ′ and M = K ⊕ K′ for some submodules N ′,K′ of M . Consider the
canonical projections πK : M → K and πN′ : M → N ′. Let A = πN′(πK(N)). Then
A = (N +K) ∩ (N +K′) ∩N ′ is a direct summand of M by (3). Write M = A⊕ L for
some submodule L of M . Clearly,

(N +K) ∩ [(N +K′) ∩ (N ′ ∩ L)] = 0.



323

Hence, N ′ = A ⊕ (N ′ ∩ L) and M = (N ⊕ A) ⊕ (N ′ ∩ L). Since A ≤ N + K and
A ≤ N +K′, we get

N +K = (N ⊕A) ∩ [(N +K) ∩ (N ′ ∩ L)]

and

N +K′ = (N ⊕A) ∩ [(N +K′) ∩ (N ′ ∩ L)].
They imply

M = N +K′ +K
= (N ⊕A) + [(N +K) ∩ (N ′ ∩ L)] + [(N +K′) ∩ (N ′ ∩ L)]
≤ (N +K) + [(N +K′) ∩ (N ′ ∩ L)].

Thus M = (N +K)⊕ [(N +K′) ∩ (N ′ ∩ L). �

2.14. Proposition. Let M be a right R-module and A, a class of artinian right R-
modules and closed under isomorphisms and direct summands. If every submodule of M
is A-projective, then the following conditions are equivalent:

(1) M is an A-C3 module.
(2) If a submodule N ∈ A of M is isomorphic to a direct summand of M , then N

is a direct summand of M .
(3) Whenever X1, X2, . . . , Xn are direct summands of M and X1, X2, . . . , Xn ∈ A,

then
∑n

i=1Xi is a direct summand of M .

Proof. (1) ⇒ (2). Let M1 be a submodule of M and isomorphic to a direct summand
M2 of M and M1 ∈ A. Then M = M2 ⊕M ′2. Suppose that M1 ⊂ M2. Since M2 is
artinian and M1

∼= M2, then M1 = M2. If M1 * M2 and denote π : M2 ⊕M ′2 → M ′2
the canonical projection, then by the hypothesis we have Ker(π|M1

) is a direct summand
of M1. It follows that M1 = (M1 ∩M2) ⊕ N1. Since N1

∼= π(M1) and M1
∼= M2, then

there is an isomorphism φ : N ′ → π(M1), where N
′ is a direct summand of M1. Since

〈φ〉 ∈ A and 〈φ〉 ∩M2 = 0, M2 + 〈φ〉 = M2 ⊕N1 is a direct summand of M . Therefore,
N1 is a non-zero direct summand of M . It is clear that M1 ∩M2 ∈ A and M1 ∩M2 is
isomorphic to a direct summand of M . If M1 ∩M2 is not a direct summand of M , by
using an argument that are similar to the argument presented above, we can show that
M1 ∩M2 = N2 ⊕ N ′2, where N2 ∈ A is a non-zero direct summand of M and N ′2 ∈ A

is a submodule of M isomorphic to a direct summand of M . Since each module of the
class A is artinian, by conducting similar constructions continue for some k, we obtain a
decomposition M1 = N1 ⊕ . . .⊕Nk, where Ni is a direct summand of M and Ni ∈ A for
each i. Since M is an A-C3 module, N1 ⊕N2 ⊕ . . .⊕Nk is a direct summand of M .

(2)⇒ (1). It is obvious.
(1)⇒ (3). We prove this by induction on n. When n = 2, the assertion follows from

Proposition 2.13. Suppose that the assertion is true for n = k. Let X1, X2, . . . , Xk+1

be direct summands of M and X1, X2, . . . , Xk+1 ∈ A. Then there exists a submodule

N of M such that M = (
∑k

i=1Xi) ⊕ N . Let π : (
∑k

i=1Xi) ⊕ N → N be the canonical

projection. As π(Xk+1) is A-projective, then Xk+1 = ((
∑k

i=1Xi) ∩Xk+1)⊕ S for some
submodule S ofM . Since the equivalence of (1) and (2), π(Xk+1) is a direct summand of

M and, therefore, N = π(Xk+1)⊕ T with T a submodule M. It follows that
∑k+1

i=1 Xi =

(
∑k

i=1Xi) ⊕ π(Xk+1) and M = (
∑k

i=1Xi) ⊕ π(Xk+1) ⊕ T. Thus,
∑k+1

i=1 Xi is a direct
summand of M. �

2.15. Remark. Let F be a nonzero free module over Z and A, a class of all free Z-
modules. It is well known that F is a quasi-continuous module and not a continuous
module. Thus, F is an A-C3 module and satis�es the following property: there exists a
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submodule N ∈ A of F such that N is isomorphic to a direct summand of F and not a
direct summand of F .

A right R-module M is said to be a C2-module if, whenever A and B are submodules
of M with A ∼= B and B ⊂d M, then A ⊂d M . If M is a hereditary module, then all
submodules of M is projective. Then we get the following result.

2.16. Corollary. Let M be a hereditary artinian module. The following conditions are
equivalent:

(1) M is a C3-module.
(2) M is a C2-module.
(3) M has the summand sum property.

2.17. Proposition. Let M be a right R-module and A, a class of right R-modules
and closed under isomorphisms and direct summands. If every factor module of M is
A-projective, then the following conditions are equivalent:

(1) For any two direct summands M1,M2 of M such that M1,M2 ∈ A, M1 +M2 is
a direct summand of M .

(2) M is an A-C3 module.
(3) For any decomposition M = A1 ⊕ A2 with A1 ∈ A, then every homomorphism

f : A1 → A2 has the image a direct summand of A2.
(4) Every submodule N ∈ A of M that is isomorphic to a direct summand of M is

itself a direct summand.
(5) Whenever X1, X2, . . . , Xn are direct summands of M and X1, X2, . . . , Xn ∈ A,

then
∑n

i=1Xi is a direct summand of M .

Proof. (1)⇒ (2) is obvious.
(2)⇒ (3)⇒ (1) are proved similarly to the argument proof of Proposition 2.13.
(4)⇒ (2) is obvious.
(3) ⇒ (4). Let σ : A → B be an isomorphism with A ∈ A a direct summand of M

and B ≤M . We need to show that B is a direct summand of M . Write M = A⊕ T for
some submodule T of M . We have A/A ∩ B is an image of M and obtain that A ∩ B
is a direct summand of A. Take A = (A ∩ B) ⊕ C for some submodule C of A. Now
M = (A∩B)⊕ (C⊕T ). Clearly, A∩ [(C⊕T )∩B] = 0 and B = (A∩B)⊕ [(C⊕T )∩B].
Let H := σ−1((C ⊕ T ) ∩ B). Then H is a submodule of A, H ∩ [(C ⊕ T ) ∩ B] = 0 and
A = H ⊕H ′ for some submodule H ′ of H. Note that M = H ⊕ (H ′ ⊕ T ). Consider the
projection π :M → H ′ ⊕ T . Then

H ⊕ [(C ⊕ T ) ∩B] = H ⊕ π((C ⊕ T ) ∩B).

By (3), the image of the homomorphism π|(C⊕T )∩B ◦ σ|H : H → H ′ ⊕ T is a direct
summand of H ′ ⊕ T since H is contained in A. Write H ′ ⊕ T = π|(C⊕T )∩Bσ(H)⊕K for
some submodule K of H ′ ⊕ T . Then H ′ ⊕ T = π((C ⊕ T ) ∩B)⊕K. It follows that

M = H ⊕ π((C ⊕ T ) ∩B)⊕K = H ⊕ [(C ⊕ T ) ∩B]⊕K.

By the modular law, C ⊕ T = [(C ⊕ T ) ∩B]⊕ [(H ⊕K) ∩ (C ⊕ T )]. Thus

M = (A ∩B)⊕ [(C ⊕ T ) ∩B]⊕ [(H ⊕K) ∩ (C ⊕ T )]
= B ⊕ [(H ⊕K) ∩ (C ⊕ T )].

The implication (1) ⇒ (5) is proved similarly to the argument proof of Proposition
2.14. �

Call A the class of all semisimple right R-modules. Then by Proposition 2.17, we have
the following result:
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2.18. Corollary. The following conditions are equivalent for a module M :

(1) If A, B are semisimple submodules of M such that A ∼= B ⊂d M , then A ⊂d M .
(2) If A, B are semisimple summands of M , then A+B ⊂d M .
(3) If A, B are semisimple summands of M with A ∩B = 0, then A+B ⊂d M .
(4) Whenever X1, . . . , Xn are semisimple direct summands of M and X1, . . . , Xn ∈

A, then
∑n

i=1Xi is a direct summand of M .

2.19. Corollary. Let Q be a quasi-injective module. If X1, . . . , Xn are semisimple direct
summands of Q, then

∑n
i=1Xi is a direct summand of Q.

2.20. Corollary ([6, Proposition 2.1]). The following conditions are equivalent for a
module M :

(1) For any simple submodules A, B of M with A ∼= B ⊂d M , A ⊂d M .
(2) For any simple direct summands A,B of M with A ∩B = 0, A⊕B ⊂d M .
(3) For any �nitely generated semisimple submodules A, B ofM with A ∼= B ⊂d M ,

A ⊂d M .
(4) For any �nitely generated semisimple direct summands A,B of M with A∩B =

0, A⊕B ⊂d M .

3. Characterizations of rings

In this section, we will characterize some classes of rings and modules via A-C3 mod-
ules and A-D3 modules. We �rst get the following lemma.

3.1. Lemma. Let A be a class of right R-modules with a local ring of endomorphisms
and closed under isomorphisms. Assume that K and M are indecomposable right R-
modules and not contained in A. Then

(1) N =M ⊕ P is an A-D3 module for all projective modules P .
(2) N =M ⊕ E is an A-C3 module for all injective modules E.
(3) N =M ⊕K is an A-D3 module and an A-C3 module.

Proof. (1) Let N/A ∼= S ⊂d N with S ∈ A. By [5, Lemma 26.4], there exist a direct
summand M1 of M and a direct summand P1 of P such that N = S ⊕M1 ⊕ P1. Write
P = P1 ⊕ P2 for some submodule P2 of P . Since M is an indecomposable module, we
have either M1 = 0 or M = M1. If M1 = 0, then N = S ⊕ P1 = (M ⊕ P2) ⊕ P1

and it follows that M ⊕ P2
∼= S, and hence M ∈ A contradicting. So M1 = M . Then

N = S ⊕ (M ⊕ P1) = (M ⊕ P1)⊕ P2. This gives S ∼= P2, and consequently N/A ∼= S is
projective. Hence, A is a direct summand of N and (1) holds.

(2) Suppose that A is a submodule of N such that A ' S with S a submodule of
N and S ∈ A . As in (1), we see that N = S ⊕M1 ⊕ E1 with M = M1 ⊕M2 and
E = E1 ⊕ E2. Also, as in (1), M1 =M . Therefore,

N = S ⊕M ⊕ E1 =M ⊕ E = (M ⊕ E1)⊕ E2.

It follows that S ' E2 is an injective module. Thus A is a direct summand of N .
(3) We show that N has no a nonzero direct summand S with S ∈ A. Assume on the

contrary that there exists a non-zero direct summand S ⊂d N with S ∈ A. As, in (1),
N = S ⊕M1 ⊕K1 with M = M1 ⊕M2 and K = K1 ⊕K2. Also, as in (1), M1 = M .
Therefore,

N = S ⊕M ⊕K1 =M ⊕K.

Since K is indecomposable, K = K1 or K = K2. If K = K1, then S ⊕M ⊕K =M ⊕K
and consequently S = 0, a contradiction. IfK = K2, thenK1 = 0 and so S⊕M =M⊕K.
Therefore, K ∼= S and hence K ∈ A, a contradiction. �
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Recall that a module is uniserial if the lattice of its submodules is totally ordered
under inclusion. A ring R is called right uniserial if RR is a uniserial module. A ring R
is called serial if both modules RR and RR are direct sums of uniserial modules.

3.2. Theorem. Let R be a right artinian ring and A, a class of right R-modules with
a local ring of endomorphisms, containing all right simple right R-modules and closed
under isomorphisms. If all right R-modules are A-injective, then the following conditions
are equivalent for a ring R:

(1) R is a serial artinian ring with J2(R) = 0.
(2) Every A-C3 module is quasi-injective.
(3) Every A-C3 module is C3.

Proof. (1) ⇒ (2) Assume that R is an artinian serial ring with J2(R) = 0. Then
every right R-module is a direct sum of a semisimple module and an injective module.
Furthermore, every injective module is a direct sum of cyclic uniserial modules. Let M
be an A-C3 module. We can write M = (⊕ISi)⊕ (⊕JEj) where each Si is simple if i ∈ I

and ⊕JEj is injective where each Ej is cyclic uniserial non-simple if j ∈ J . Note that
any Ej has length at 2 by [7, 13.3]. We show that M is a quasi-injective module. To
show that M is quasi-injective, by [16, Proposition 1.17] it su�ces to show that ⊕ISi is
⊕JEj-injective. By [16, Theorem 1.7], ⊕ISi is ⊕JEj-injective if and only if Si is ⊕JEj-
injective for all i ∈ I. Furthermore, for any i ∈ I, if Si is Ej-injective for all j ∈ J, then Si

is ⊕JEj-injective by [16, Proposition 1.5]. So, it su�ces to show that Si is Ej-injective
for each i ∈ I and j ∈ J. Suppose that Ej has a series 0 ⊂ X ⊂ Ej . Let f : A→ Si be a
homomorphism with A ≤ Ej . If A = 0 or A = Ej then it is obvious that f is extended
to a homomorphism from Ej to Si. Assume that A = X. If f is non-zero, then X ' Si.
As M is an A-C3 module, X is a direct summand of M . It follows that X = Ej , a
contradiction. Hence Si is Ej-injective and so M is quasi-injective.

(2)⇒ (3) This is clear.
(3)⇒ (1) Let M be an indecomposable module. If M ∈ A, then it is quasi-injective.

Now, suppose thatM 6∈ A and let ι :M → E(M) be the inclusion. Then, by Lemma 3.1,
M ⊕E(M) is A-C3 and by assumption, M ⊕E(M) is a C3-module. It follows that Im(ι)
is a direct summand of E(M) by [4, Proposition 2.3]. Hence M is injective. Inasmuch as
every indecomposable right R-module is quasi-injective, we infer from [9, Theorem 5.3]
that R is an artinian serial ring. By [8, Theorem 25.4.2], every right R-module is a direct
sum of uniserial modules. Now, by [7, 13.3], we only need to show that each uniserial
module, say M , has length at most 2. Suppose that M has a series 0 ⊂ X ⊂ Y ⊂ M of
length 3. Assume that Y ∈ A. Then X is Y -injective and hence X is a direct summand of
Y , a contradiction. It follows that Y 6∈ A. By Lemma 3.1, M⊕Y is an A-C3 module and
then, by hypothesis, is a C3-module. Consequently, the natural inclusion, η : Y −→ M
splits; i.e. Y ⊂d M and so Y = M, a contradiction. Hence, R is an artinian ring with
J2(R) = 0. �

3.3. Theorem. Let R be a right artinian ring and A, a class of right R-modules with a
local ring of endomorphisms, containing all right simple right R-modules and closed under
isomorphisms. If all right R-modules are A-projective, then the following conditions are
equivalent for a ring R:

(1) R is a serial artinian ring with J2(R) = 0.
(2) Every A-D3 module is quasi-projective.
(3) Every A-D3 module is D3.

Proof. By Lemma 3.1 and [13, Theorem 4.4]. �
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3.4. Proposition. Let A be a class of right R-modules and closed under isomorphisms
and direct summands. Then the following conditions are equivalent:

(1) All modules A ∈ A are injective.
(2) Every right R-module is A-C3.

Proof. (1)⇒ (2) is obvious.

(2) ⇒ (1). Suppose that A ∈ A. Then by (2), A ⊕ E(A) is an A-C3 module. Call
ι : A → E(A) the inclusion map. By Proposition 2.12, Im(ι) = A is a direct summand
of E(A). Thus A = E(A) is an injective module. �

3.5. Corollary ([6]). The following conditions are equivalent for a ring R:

(1) R is a right V-ring.
(2) Every right R-module is simple-direct-injective.

3.6. Proposition. Let A be a class of right R-modules and closed under isomorphisms
and direct summands. Then the following conditions are equivalent:

(1) All modules A ∈ A are projective.
(2) Every right R-module is A-D3.

Proof. (1) ⇒ (2). Assume that M is a right R-module. Let M1,M2 be submodules of
M with M/M1,M/M2 ∈ A and M = M1 + M2. It follows that M/M1,M/M2N are
projective modules and the following isomorphism

M/(M1 ∩M2) = (M1 +M2)/(M1 ∩M2) 'M/M1 ×M/M2.

Then M/(M1 ∩ M2) is a projective module. We deduce that M1 ∩ M2 is a direct
summand of M . It shown that M is an A-D3 module.

(2) ⇒ (1). Suppose that A ∈ A. Call ϕ : R(I) → A an epimorphism. Then R(I) ⊕ A
is an A-D3 module. By Proposition 2.6, A is isomorphic to a direct summand of R(I).
Thus A is a projective module. �

3.7. Corollary ([13]). The following conditions are equivalent for a ring R:

(1) R is a semisimple artinian ring.
(2) Every right R-module is simple-direct-projective.

Let M be a right R-module. M is called regular if every cyclic submodule of M is
a direct summand. A right R-module is called M-cyclic if it is isomorphic to a factor
module of M .

3.8. Lemma. Let F be a regular module. Assume that A 6= 0 is a small �nitely generated
submodule of the factor module F/F0 for some submodule F0 of F . Then there exists a
F -cyclic module M and satis�es the property: there is a submodule N of M such that
N is isomorphic to a direct summand of M , not a direct summand of M and N ' A.

Proof. By the hypothesis we have ((x1R + x2R + · · · + xmR) + F0)/F0 = A for some
x1, x2, . . . , xm of F . Since F is a regular module, x1R+ x2R+ · · ·+ xmR = π(F ), where
π ∈ End(F ) and π2 = π. Since A is a small submodule of F/F0, we have F/F0 = ((1−
π)F +F0)/F0. It follows that there exist epimorphisms f1 : π(F )→ A, f2 : (1−π)(F )→
F/F0. It is easy to check A⊕ (F/F0) is a F -cyclic module. Call M = A⊕ (F/F0). Thus,
the module N := 0 ⊕ A ' A is not a direct summand of M and isomorphic to a direct
summand A⊕ 0 of M . �

A module M is called a V-module if every simple module in σ[M ] is M -injective (see
[19]). R is called a right V-ring if the right module RR is a V-module.

3.9. Theorem. The following conditions are equivalent for a regular module F :



328

(1) F is a V -module.
(2) Every F -cyclic module M is an A-C3 module, where A is the class of all simple

right R-modules (i.e., M is a simple-direct-injective module).

Proof. The implication (1)⇒ (2) is obvious.
(2) ⇒ (1). Let S ∈ σ[F ] is a simple module and EF (S) is the injective hull of S in

the category σ[F ]. Assume that EF (S) 6= S. As EF (S) is generated by F , there exists
a homomorphism f : F → EF (S) such that f(F ) 6= S. Then S is a small submodule
of f(F ). Take ϕ : f(F ) → F/Ker(f) the isomorphism. By Lemma 3.8, there exists a
F -cyclic module M and satis�es the property: there is a submodule N of M such that
N is isomorphic to a direct summand of M , not a direct summand of M and N ' ϕ(S).
Note that N is a simple submodule of M . We infer from Proposition 2.17 that M is not
an A-C3 module, where A is the class of all simple right R-modules. This contradicts
the condition of (2). �

3.10. Corollary ([6, Theorem 4.4.]). A regular ring R is a right V-ring if and only if
every cyclic right R-module is simple-direct-injective.
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