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On classes of C3 and D3 modules
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Abstract

This paper aims to study the notions of A-C3 and A-D3 modules for
some class A of right modules. Several characterizations of these mod-
ules are provided and used to describe some well-known classes of rings
and modules. For example, a regular right R-module F' is a V-module
if and only if every F-cyclic module is an A-C3 module, where A is
the class of all simple right R-modules. Moreover, let R be a right
artinian ring and A, a class of right R-modules with a local ring of en-
domorphisms, containing all simple right R-modules and closed under
isomorphisms. If all right R-modules are A-injective, then R is a serial
artinian ring with J?(R) = 0 if and only if every A-C3 right R-module
is quasi-injective, if and only if every A-C3 right R-module is C3.
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1. Introduction and notation.

The study of modules with summand intersection property was motivated by the
following result of Kaplansky: every free module over a commutative principal ideal ring
has the summand intersection property (see [14, Exercise 51(b)]). A module M is said to
have the summand intersection property if the intersection of any two direct summands
of M is a direct summand of M. This definition is introduced by Wilson [18]. Dually,
Garcia [10] considered the summand sum property. A module M is said to have the
summand sum property if the sum of any two direct summands is a direct summand
of M. These properties have been studied by several authors (see [1, 3, 11, 12, 17],...).
Moreover, the classes of C3-modules and D3-modules have recently studied by Yousif et
al. in [4, 20]. Some characterizations of semisimple rings and regular rings and other
classes of rings are studied via C3-modules and D3-modules. On the other hand, several
authors investigated some properties of generalizations of C3-modules and D3-modules in
[6, 13]; namely, simple-direct-injective modules and simple-direct-projective modules. A
right R-module M is called a C'3-module if, whenever A and B are submodules of M with
ACqgM,BCqMand ANB =0, then A® B Cq M. M is called simple-direct-injective
in [6] if the submodules A and B in the above definition are simple. Dually, M is called
a D3-module if, whenever M; and M are direct summands of M and M = M; + Mo,
then M; N M, is a direct summand of M. M is called simple-direct-projective in [13] if
the submodules M; and M5 in the above definition are maximal.

In Sect. 2, we study some properties of A-C3 modules and A-D3 modules. Let A be
a class of right modules over a ring R and closed under isomorphisms. We call that a
right R-module M is an A-C3 module if, whenever A € A and B € A are submodules of
M with A Cq M, B Cq M and AN B =0, then A® B Cq M. Dually, M is an A-D3
module if, whenever M; and M> are direct summands of M with M /M, M/M, € A and
M = M; + M, then M; N Ms is a direct summand of M. It is shown that if each factor
module of M is A-injective, then M is an A-D3 module if and only if M satisfies D2 for
the class A, if and only if M have the summand intersection property for the class A in
Proposition 2.7. On the other hand, if every submodule of M is A-projective, then M is
an A-C3 module if and only if M satisfies C2 for the class A, if and only if M have the
summand sum property for the class A in Proposition 2.14. These results are applied
to the class A of all simple right R-modules, and to the class A of all semisimple right
R-modules. In the case when A is the class of all simple right R-modules, we obtained
the known properties of the simple-direct-injective modules and simple-direct-projective
modules [6, 13].

In Sect. 3, we provide some characterizations of serial artinian rings and semisimple
artinian rings. The Theorem 3.2 and Theorem 3.3 are indicated that let R be a right
artinian ring and A, a class of right R-modules with a local ring of endomorphisms,
containing all simple right R-modules and closed under isomorphisms:

(1) If all right R-modules are A-injective, the following conditions are equivalent for
a ring R:
(i) R is a serial artinian ring with J?(R) = 0.
(ii) Every A-C3 right R-module is quasi-injective.
(iii) Every A-C3 right R-module is C'3.
(2) If all right R-modules are A-projective, then the following conditions are equiv-
alent for a ring R:
(i) R is a serial artinian ring with J?(R) = 0.
(ii) Every A-D3 right R-module is quasi-projective.
(iii) Every A-D3 right R-module is D3.
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Moreover, we give an equivalent condition for a regular V-module. It is shown that a
regular right R-module F' is a V-module if and only if every F-cyclic module is simple-
direct-injective in Theorem 3.9. It is an extension the result of rings to modules.

Throughout this paper R denotes an associative ring with identity, and modules will
be unitary right R-modules. The Jacobson radical ideal in R is denoted by J(R). The
notations N < M, N <. M, N<IM, or N Cq M mean that N is a submodule, an essential
submodule, a fully invariant submodule, and a direct summand of M, respectively. Let
M and N be right R-modules. M is called N-injective if for any right R-module K and
any monomorphism f : K — N, the induced homomorphism Hom (N, M) — Hom(K, M)
by f is an epimorphism. M is called N-projective if for any right R-module K and any
epimorphism f : N — K, the induced homomorphism Hom(M, N) — Hom(M, K) by
f is an epimorphism. Let A be a class of right modules over the ring R. M is called
A-injective (A-projective) if M is N-injective (resp., N-projective) for all N € A. We
refer to [5], [7], [16], and [19] for all the undefined notions in this paper.

2. On A-C3 modules and A-D3 modules

In this section, we give some basic properties of A-C3 modules and A-D3 modules.
They will be used for the next section. We first have the following remark.

2.1. Remark. Let M be a right R-module and A, a class of right R-modules.

(1) If M is a C3 (D3) module, then M is an A-C3 (resp., A-D3) module.

(2) If A= Mod — R, then A-C3 modules (A-D3 modules) modules are precisely the
C3 modules (resp., D3) modules.

(3) If A is the class of simple right R-modules, then A-C3 modules (A-D3 modules)
modules are precisely the simple-direct-injective (resp., simple-direct-projective)
modules that studied in [6, 13].

(4) If A is the class of injective right R-modules, then M is always an A-C3 module.

(5) If Ais the class of projective right R-modules, then M is always an A-D3 module.

2.2. Lemma. Let A be a class of right R-modules and closed under isomorphisms. Then
every direct summand of an A-C3 module (A-D3 module) is also an A-C3 module (resp.,
A-D3 module).

Proof. The proof is straightforward. O

2.3. Proposition. Let A be a class of right R-modules and closed under direct sum-
mands. Then the following conditions are equivalent for a module M:

(1) M is an A-C3 module.

(2) If A € A and B € A are submodules of M with A Cq M, B C4 M and ANB =0,
there exist submodules A; and B; of M such that M = A® B; = A1 @ B with
ASAl a,nngBl.

(3) If A € A and B € A are submodules of M with A C4 M, B Cq4 M and
ANBCy M, then A+ B Cq M.

Proof. It is similar to the proof of Proposition 2.2 in [4]. O
Dually Proposition 2.4, we have the following proposition.

2.4. Proposition. Let A be a class of right R-modules and closed under isomorphisms.
Then the following conditions are equivalent for a module M:
(1) M is an A-D3 module.
(2) fM/A,M/B e AwithACqgM,BCqMand M =A+B,then M =A@ B, =
Al@BWIth A1 §Aand B1 SB



(3) If M/A,M/B € Awith ACy M, B Cyq M and A+ B Cq M, then ANB Cq4 M.

Let f: A — B be a homomorphism. We denote by (f) the submodule of A ® B as
follows:

(f) ={a+fla) | a € A}.
The following result is proved in Lemma 2.6 of [15].

2.5. Lemma. Let M = XY and f : A — Y, a homomorphism with A < X. Then
the following conditions hold

(1) AsY=(fidY.
(2) Ker(f) = X N (/).

2.6. Proposition. Let M be an A-D3 module with A a class of right R-modules and
closed under isomorphisms and direct summands. If M = M; @ M» and f : My — M is
a homomorphism with Im(f) Cq M2 and Im(f) € A, then Ker(f) is a direct summand
of Ml.

Proof. Assume that M = My & Ms and f : M1 — Mo is a homomorphism with Im(f) Cq4
M and Im(f) € A. Call M’ := My ®Im(f). Then M’ is a direct summand of M and so
it is an A-D3 module. It follows that M’ = M; & Im(f) = (f) ® Im(f) by Lemma 2.5. It
is easily to check M'/Mi,M'/{f) € A and M’ = My + (f). As M’ is an A-D3 module
and again by Lemma 2.5, (f) N M; = Ker(f) is a direct summand of M’. Thus Ker(f)
is a direct summand of M;. O

2.7. Proposition. Let M be a right R-module and A, a class of right R-modules and
closed under isomorphisms and direct summands. If each factor module of M is A-
injective, then the following conditions are equivalent:

(1) If M, and M> are direct summands of M with M /M, M /M, € A, then M;N M,
is a direct summand of M.

(2) M is an A-D3 module.

(3) If N < M such that M/N € A is isomorphic to a direct summand of M, then
N is a direct summand of M.

(4) For any decomposition M = M; @ M, with My € A, every homomorphism
f : M1 — My has the kernel a direct summand of M;.

(5) Whenever Xi,...,X, are direct summands of M and M/X1,...,M/X, € A,
then N, X; is a direct summand of M.

Proof. (2) = (1). Let M1, M be direct summands of M with M /M, M /M, € A. Then
M = My®Mj. Without loss of generality we can assume that Ma ¢ M1, M> ¢ Mj. From
our assumption, 7(M>) is a direct summand of M{. Then we can write M| = w(M2)® M/
for some M < Mj. Since the class A is closed under direct summands, M; € A. It is
easy to see that M + M/ is a direct summand of M. We have M /(M + M]') € A and
My + M{ + My = M. It follows that M; N My = (M1 + M{') N Ms is a direct summand
of M.

(3) = (2). It is obvious.

(1) = (4). Assume that M = M; @ M with M> € A and a homomorphism f :
M, — M. It follows that M = M, @ My = (f) ® M2 by Lemma 2.5. Note that
M/M,,M/(f) € A. By (1) and Lemma 2.5, (f) N M1 = Ker(f) is a direct summand of
M. Thus Ker(f) is a direct summand of M.

(4) = (3). Let My, M be submodules of M such that M = M, @ A, M/M; =2 A and
Ae€eA. Callmy : M — My and 72 : M — A the canonical projections. By the hypothesis,
m2(Mz) is a direct summand of A and hence A = 72 (M2) @ B for some submodule B of
A. Call p: M — M /M- the canonical projection and isomorphism ¢ : M /M, — A. Take
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the homomorphism f = ¢ o (p|ar,) : M1 — A. It follows that Ker(f) = M; N M,. By
(4), Ker(f) = M1 N M is a direct summand of M;. Take N; a submodule of M; with
M1 = N1 D (Ml n M2) Note that M1 + M2 = M1 D 7'1'2(M2) and N1 n M2 = 0. This
gives that
M :M1 @WQ(MQ)@B

=M1+ Mz2)® B

=[N1® (MiN M)+ M) ®B=(N1+ M) DB

= (N1 @ M) ® B.

(1) = (5). We prove this by induction on n. When n = 2, the assertion is true
from (1). Suppose that the assertion is true for n = k. Let X1, Xa,..., Xxy1 be direct
summands of M and M/ X1, M/Xa,...,M/X1 € A. We can write M = ﬁ,’f:lXi@N for
some submodule N of M. Without loss of generality we can assume that Nf_; X; ¢ Xit1-
Let f : M — M/Xy4+1 be the natural projection. Then (N, X;)/[(NE, X;) N Xyp44] is
A-injective, and therefore, it is isomorphic to a direct summand of M/Xk4+1 € A. This
gives that ne_, Xi/ ﬁf;rll X is isomorphic to a direct summand of M and

M/(NEX @ N) = (N1 Xs @ N) /(N X, @ N) € A.

=1
k41
Since the equivalence of (1) and (3), ([ Xi) @ N is a direct summand of M. Thus
i=1

k+1
N X; is a direct summand of M. O
i=1

A right R-module M is called a D2-module if, for every submodule A of M with M/A
isomorphic to a direct summand of M, then A is a direct summand of M. Assume that M
is an injective right R-module over a right hereditary ring R. Then every factor module
of M is injective. From Proposition 2.7, we have the following corollary.

2.8. Corollary. Let M be an injective right R-module over a right hereditary ring R.
The following conditions are equivalent:

(1) M is a D3-module.

(2) M is a D2-module.

(3) M has the summand intersection property.

2.9. Corollary. The following conditions are equivalent for a module M:

(1) If M/A is a semisimple module and B, a submodule of M with M/A = B Cq M,
then A Cq M.

(2) If A and B are any two direct summands of M such that M/A and M/B are
semisimple modules, then AN B Cy4 M.

(3) If Aand B are any two direct summands of M such that M /A, M/B are semisim-
ple modules and A + B = M, then AN B is a direct summand of M.

(4) Whenever X1, Xo,..., X, are direct summands of M and M /X1, M/Xs,... . M/X,
are semisimple modules, then N;; X; is a direct summand of M.

2.10. Corollary. Let P be a quasi-projective module. If X;,..., X, are direct sum-
mands of P and P/X,..., P/ X, are semisimple modules, then N;_, X; is a direct sum-
mand of P.

2.11. Corollary. The following conditions are equivalent for a module M:

(1) For any maximal submodule A of M and any submodule B of M such that
M/A%BCdM, ACyq M.

(2) For any two maximal direct summands A, B of M, ANB Cq M.

(3) If M/A is a finitely generated semisimple module with M/A = B C4q M, then
ACqg M.
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(4) Whenever X1, Xo, ..., X, are maximal direct summands of M, then Nj_; X; is
a direct summand of M.

Proof. (1) < (2) < (4). Follow from Proposition 2.7.

(3) = (1). Clearly.

(1) = (3). Assume that M /A is a finitely generated semisimple module and isomorphic
to a direct summand of M. Write M/A = M,/A & --- & M, /A with simple submodules
M;/A of M/A. Then M; N (3, M;) = A for all i = 1,2...,n. For any subset
{i1,%2,...,in—1} of the set I :={1,2,...,n}, it is easily to see that

M/(Miy + Miy + -+ M, ;) ~ My /A

for some k € I\ {i1,42,...,9n—1}. It follows that M/(M;, + M, + -+ + M,, ) is
isomorphic to a simple direct summand of M. By (1), M;, + M, +--- + M;,_, is a
maximal direct summand of M. On the other hand, we can check that
A= N (Miy + My + -+ Mi,,_,).
{i1,i2,.eyin_1}CIT
So, by (4), A is a direct summand of M. O

2.12. Proposition. Let M be an A-C3 module with A a class of right R-modules and
closed under isomorphisms and direct summands. If M = A1 @ A2 and f: A1 — Az isa
homomorphism with Ker(f) € A and Ker(f) Cq Ai, then Im(f) is a direct summand of
As.

Proof. Let f: A1 — Az be an R-homomorphism with Ker(f) € A. By the hypothesis,
there exists a decomposition A; = Ker(f)® B for some submodule B of A;. Then B® A,
is a direct summand of M. Note that every direct summand of an A-C3 module is also
an A-C3 module. Hence B @ A, is an A-C3 module. Let g = f|g : B — As. Then g is a
monomorphism and Im(g) = Im(f). It is easy to see that B® As = (g) @ A2, (¢9)NB =0
and (g) ~ B. Note that B, (g) € A. As B® Aj is an A-C3 module, B ® (g) is a direct
summand of B @ A,. Thus B @ (g) = B @& Im(g), which implies that Im(g) or Im(f) is a
direct summand of A,. O

2.13. Proposition. Let M be a right R-module and A, a class of right R-modules
and closed under isomorphisms and direct summands. If every submodule of M is A-
projective, the following conditions are equivalent:

(1) For any two direct summands M;, M2 of M such that My, My € A, M1 + My is
a direct summand of M.

(2) M is an A-C3 module.

(3) For any decomposition M = A; @ A, with A; € A, then every homomorphism
f: A1 — As has the image a direct summand of A,.

Proof. (1) = (2) is obvious.

(2) = (3) Let f: A1 — Az be an R-homomorphism with A; € A. By the hypothesis,
Ker(f) is a direct summand of A;. The rest of proof is followed from Proposition 2.12.

(3) = (1) Let N and K be direct summands of M such that N, K € A. Write
M = N®N and M = K ® K’ for some submodules N’, K’ of M. Consider the
canonical projections mx : M — K and 7y : M — N’. Let A = n/(mx(N)). Then
A=(N+K)n(N+K')NnN'is a direct summand of M by (3). Write M = A@ L for
some submodule L of M. Clearly,

(N+K)N[(N+KYNn(N'NnL)]=0.
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Hence, N' = A® (N'NL)and M = (N&® A) & (N'NL). Since A < N + K and
A< N+ K', we get

N+K=(NoA)N[N+K)n(N'NnL)

and
N+K =(NeAN[(N+K)Nn(N' NL)).
They imply
M =N+4+K+K
=(N@A)+[(N+K)n(N'NL)]+[(N+K)n(N'NL)
< (N+E)+[(N+E)n(N'NL)).
Thus M = (N+ K)® [(N+ K')n(N' NL). O

2.14. Proposition. Let M be a right R-module and A, a class of artinian right R-
modules and closed under isomorphisms and direct summands. If every submodule of M
is A-projective, then the following conditions are equivalent:

(1) M is an A-C3 module.

(2) If a submodule N € A of M is isomorphic to a direct summand of M, then N
is a direct summand of M.

(3) Whenever X1, Xo, ..., X, are direct summands of M and X1, Xo,..., X, € A,
then Y7 | X, is a direct summand of M.

Proof. (1) = (2). Let M; be a submodule of M and isomorphic to a direct summand
My of M and M; € A. Then M = My ® M. Suppose that My C M. Since My is
artinian and My & M, then My = M. If My ¢ M and denote 7 : Mz & My — My
the canonical projection, then by the hypothesis we have Ker(m|y, ) is a direct summand
of M. It follows that My = (M1 N M) ® Ni. Since N1 = w(M1) and My = My, then
there is an isomorphism ¢ : N’ — (M), where N’ is a direct summand of M;. Since
(¢) € A and (¢p) N Mz =0, M2 + (¢p) = M2 @ N; is a direct summand of M. Therefore,
N7 is a non-zero direct summand of M. It is clear that My N My € A and My N My is
isomorphic to a direct summand of M. If M; N M; is not a direct summand of M, by
using an argument that are similar to the argument presented above, we can show that
M; N My = Ny @ N5, where N2 € A is a non-zero direct summand of M and Nj € A
is a submodule of M isomorphic to a direct summand of M. Since each module of the
class A is artinian, by conducting similar constructions continue for some k, we obtain a
decomposition M1 = N1 @ ...&d Ni, where N; is a direct summand of M and N; € A for
each i. Since M is an A-C3 module, N1 & N2 @ ... PH Ny is a direct summand of M.

(2) = (1). It is obvious.

(1) = (3). We prove this by induction on n. When n = 2, the assertion follows from
Proposition 2.13. Suppose that the assertion is true for n = k. Let X1, Xo,..., Xxp1
be direct summands of M and X1, X2,...,Xrt+1 € A. Then there exists a submodule
N of M such that M = (Zle Xi)® N. Let 7 : (Zle X;)® N — N be the canonical
projection. As m(Xg41) is A-projective, then Xjpyq1 = ((E:f:1 Xi) N Xi41) @ S for some
submodule S of M. Since the equivalence of (1) and (2), 7(Xk+1) is a direct summand of
M and, therefore, N = 7(Xg+1) ® T with T a submodule M. It follows that Zfill X; =
(OCF X)) @ 7(Xkg1) and M = (X8, X;) @ m(Xpq1) @ T. Thus, S0 X, is a direct

summand of M. O

2.15. Remark. Let F' be a nonzero free module over Z and A, a class of all free Z-
modules. It is well known that F' is a quasi-continuous module and not a continuous
module. Thus, F'is an A-C3 module and satisfies the following property: there exists a
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submodule N € A of F such that N is isomorphic to a direct summand of F' and not a
direct summand of F'.

A right R-module M is said to be a C2-module if, whenever A and B are submodules
of M with A= B and B Cq M, then A Cq M. If M is a hereditary module, then all
submodules of M is projective. Then we get the following result.

2.16. Corollary. Let M be a hereditary artinian module. The following conditions are
equivalent:

(1) M is a C3-module.
(2) M is a C2-module.
(3) M has the summand sum property.

2.17. Proposition. Let M be a right R-module and A, a class of right R-modules
and closed under isomorphisms and direct summands. If every factor module of M is
A-projective, then the following conditions are equivalent:

(1) For any two direct summands M;, M2 of M such that My, M2 € A, M1 + My is
a direct summand of M.

(2) M is an A-C3 module.

(3) For any decomposition M = A; @ A, with A; € A, then every homomorphism
f: A1 — As has the image a direct summand of As,.

(4) Every submodule N € A of M that is isomorphic to a direct summand of M is
itself a direct summand.

(5) Whenever X;, Xo,..., X, are direct summands of M and X1, Xo,..., X, € A,
then Z?:l X; is a direct summand of M.

Proof. (1) = (2) is obvious.
(3) = (1) are proved similarly to the argument proof of Proposition 2.13.
(2) is obvious.

(3 (4). Let 0 : A — B be an isomorphism with A € A a direct summand of M
and B < M. We need to show that B is a direct summand of M. Write M = A@ T for
some submodule T of M. We have A/A N B is an image of M and obtain that AN B
is a direct summand of A. Take A = (AN B) @ C for some submodule C of A. Now
M=(ANB)®(Ca&T). Clearly, AN[(C®T)NB]=0and B=(ANB)® [(C®T)NB].
Let H:= 0 *((C®T)N B). Then H is a submodule of A, HN[(C ®T)N B] =0 and
A= H & H' for some submodule H' of H. Note that M = H & (H' & T). Consider the
projection 7 : M — H' & T. Then

He[(CeT)nBl]=Hon(Ce®T)NB).

By (3), the image of the homomorphism 7|(ceryng o olg : H — H' & T is a direct
summand of H' & T since H is contained in A. Write H' & T = 7| (car)npo(H) ® K for
some submodule K of H' & T. Then H' T =n((C & T)N B) & K. It follows that

M=Ha&r(CoT)NB)@K=H&[(CaT)NB|& K.
By the modular law, C® T =[(C®T)NB]® [(H® K)N (C & T)]. Thus
M =AnB)@[(CeT)NB|O[(HB®K)N(CaT))
=B@[(H®OK)Nn(CaT).

The implication (1) = (5) is proved similarly to the argument proof of Proposition
2.14. (]

Call A the class of all semisimple right R-modules. Then by Proposition 2.17, we have
the following result:



2.18. Corollary. The following conditions are equivalent for a module M:

(1) If A, B are semisimple submodules of M such that A = B Cq M, then A Cq M.

(2) If A, B are semisimple summands of M, then A+ B Cq M.

(3) If A, B are semisimple summands of M with AN B =0, then A+ B Cq M.

(4) Whenever X1, ..., X, are semisimple direct summands of M and X1,...,X, €
A, then Y7 | X; is a direct summand of M.

2.19. Corollary. Let @ be a quasi-injective module. If X1, ..., X,, are semisimple direct
summands of @, then >-" | X; is a direct summand of Q.

2.20. Corollary (|6, Proposition 2.1]). The following conditions are equivalent for a
module M:

(1) For any simple submodules A, B of M with A2 B Cq M, ACq M.

(2) For any simple direct summands A, B of M with ANB =0, A® B Cq M.

(3) For any finitely generated semisimple submodules A, B of M with A~ B Cq M,
ACqg M.

(4) For any finitely generated semisimple direct summands A, B of M with ANB =
0, A B Cqa M.

3. Characterizations of rings

In this section, we will characterize some classes of rings and modules via A-C3 mod-
ules and A-D3 modules. We first get the following lemma.

3.1. Lemma. Let A be a class of right R-modules with a local ring of endomorphisms
and closed under isomorphisms. Assume that K and M are indecomposable right R-
modules and not contained in A. Then

(1) N=M @ P is an A-D3 module for all projective modules P.
(2) N=M @ E is an A-C3 module for all injective modules E.
(3) N=M @ K is an A-D3 module and an A-C3 module.

Proof. (1) Let NJA = S Cq N with S € A. By [5, Lemma 26.4|, there exist a direct
summand M; of M and a direct summand P; of P such that N = S ® M; ® P;. Write
P = P, & P for some submodule P of P. Since M is an indecomposable module, we
have either M1y = 0 or M = M;. If M = 0,then N = SO P = (M@ P) o P
and it follows that M @& P, = S, and hence M € A contradicting. So M1 = M. Then
N=S@®(Me@&P)= (M P1)® P,. This gives S = P,, and consequently N/A = S is
projective. Hence, A is a direct summand of N and (1) holds.

(2) Suppose that A is a submodule of N such that A ~ S with S a submodule of
N and S € A . Asin (1), we see that N = S@® M; @ E1 with M = M; & M2 and
E = E1 @ Es. Also, as in (1), M1 = M. Therefore,

N=SeMeE,:=M&E=(M®&E\)®E:.

It follows that S ~ F» is an injective module. Thus A is a direct summand of N.

(3) We show that N has no a nonzero direct summand S with S € A. Assume on the
contrary that there exists a non-zero direct summand S Cq4 N with S € A. As, in (1),
N=S®M &K, with M = M; & Mz and K = K1 ® K. Also, as in (1), My = M.
Therefore,

N=SeMeK =MaoK.

Since K is indecomposable, K = K1 or K = Ko. f K = Ky, then S M e K =M d K
and consequently S = 0, a contradiction. If K = K5, then K1 = 0andso S&6M = MBK.
Therefore, K = S and hence K € A, a contradiction. O



Recall that a module is uniserial if the lattice of its submodules is totally ordered
under inclusion. A ring R is called right uniserial if Rr is a uniserial module. A ring R
is called serial if both modules rR and Rpg are direct sums of uniserial modules.

3.2. Theorem. Let R be a right artinian ring and A, a class of right R-modules with
a local ring of endomorphisms, containing all right simple right R-modules and closed
under isomorphisms. If all right R-modules are A-injective, then the following conditions
are equivalent for a ring R:

(1) Ris a serial artinian ring with J*(R) = 0.
(2) Every A-C3 module is quasi-injective.
(3) Every A-C3 module is C3.

Proof. (1) = (2) Assume that R is an artinian serial ring with J?(R) = 0. Then
every right R-module is a direct sum of a semisimple module and an injective module.
Furthermore, every injective module is a direct sum of cyclic uniserial modules. Let M
be an A-C3 module. We can write M = (©35;) ® (®3E;) where each S; is simple if s € J
and @y FE; is injective where each Ej is cyclic uniserial non-simple if j € J. Note that
any F; has length at 2 by [7, 13.3]. We show that M is a quasi-injective module. To
show that M is quasi-injective, by [16, Proposition 1.17] it suffices to show that @4.5; is
@7 E;-injective. By [16, Theorem 1.7], ®4S; is @7 FE;-injective if and only if S; is @y E;-
injective for all 4 € J. Furthermore, for any i € J, if S; is Ej-injective for all j € J, then S;
is @y Ej-injective by [16, Proposition 1.5]. So, it suffices to show that S; is Ej-injective
for each ¢ € J and j € J. Suppose that E; has a series 0 C X C E;. Let f: A — S; bea
homomorphism with A < E;. If A =0 or A = Ej; then it is obvious that f is extended
to a homomorphism from FE; to S;. Assume that A = X. If f is non-zero, then X ~ S;.
As M is an A-C3 module, X is a direct summand of M. It follows that X = Ej;, a
contradiction. Hence S; is Ej-injective and so M is quasi-injective.

(2) = (3) This is clear.

(3) = (1) Let M be an indecomposable module. If M € A, then it is quasi-injective.
Now, suppose that M ¢ A and let « : M — E(M) be the inclusion. Then, by Lemma 3.1,
M@ E(M) is A-C3 and by assumption, M @ E(M) is a C3-module. It follows that Im(¢)
is a direct summand of E (M) by [4, Proposition 2.3]. Hence M is injective. Inasmuch as
every indecomposable right R-module is quasi-injective, we infer from [9, Theorem 5.3]
that R is an artinian serial ring. By [8, Theorem 25.4.2], every right R-module is a direct
sum of uniserial modules. Now, by [7, 13.3], we only need to show that each uniserial
module, say M, has length at most 2. Suppose that M has a series 0 C X C Y C M of
length 3. Assume that Y € A. Then X is Y-injective and hence X is a direct summand of
Y, a contradiction. It follows that Y ¢ A. By Lemma 3.1, M @Y is an A-C3 module and
then, by hypothesis, is a C3-module. Consequently, the natural inclusion, : Y — M
splits; i.e. Y Cq M and so Y = M, a contradiction. Hence, R is an artinian ring with
J*(R) = 0. O

3.3. Theorem. Let R be a right artinian ring and A, a class of right R-modules with a
local ring of endomorphisms, containing all right simple right R-modules and closed under
isomorphisms. If all right R-modules are A-projective, then the following conditions are
equivalent for a ring R:

(1) R is a serial artinian ring with J*(R) = 0.

(2) Every A-D3 module is quasi-projective.

(3) Every A-D3 module is D3.

Proof. By Lemma 3.1 and [13, Theorem 4.4]. ]
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3.4. Proposition. Let A be a class of right R-modules and closed under isomorphisms
and direct summands. Then the following conditions are equivalent:

(1) All modules A € A are injective.

(2) Every right R-module is A-C3.

Proof. (1) = (2) is obvious.
(2) = (1). Suppose that A € A. Then by (2), A @ E(A) is an A-C3 module. Call

t: A — E(A) the inclusion map. By Proposition 2.12, Im(t) = A is a direct summand
of E(A). Thus A = E(A) is an injective module. O

3.5. Corollary ([6]). The following conditions are equivalent for a ring R:
(1) Ris aright V-ring.
(2) Every right R-module is simple-direct-injective.

3.6. Proposition. Let A be a class of right R-modules and closed under isomorphisms
and direct summands. Then the following conditions are equivalent:

(1) All modules A € A are projective.

(2) Every right R-module is A-D3.

Proof. (1) = (2). Assume that M is a right R-module. Let My, M2 be submodules of
M with M/Mi,M/Ms € A and M = M; + M. It follows that M /My, M/MsN are
projective modules and the following isomorphism

M/(M1 ﬁMg) = (Ml +M2)/(M1 ﬁMz) ~ M/M1 X M/M2

Then M /(M1 N My) is a projective module. We deduce that M; N M, is a direct
summand of M. It shown that M is an A-D3 module.

(2) = (1). Suppose that A € A. Call ¢ : RY) — A an epimorphism. Then RY) @ A
is an A-D3 module. By Proposition 2.6, A is isomorphic to a direct summand of RD.
Thus A is a projective module. O

3.7. Corollary (|13]). The following conditions are equivalent for a ring R:
(1) R is a semisimple artinian ring.
(2) Every right R-module is simple-direct-projective.

Let M be a right R-module. M is called regular if every cyclic submodule of M is
a direct summand. A right R-module is called M -cyclic if it is isomorphic to a factor
module of M.

3.8. Lemma. Let F be aregular module. Assume that A # 0 is a small finitely generated
submodule of the factor module F'/Fy for some submodule Fy of F. Then there exists a
F-cyclic module M and satisfies the property: there is a submodule N of M such that
N is isomorphic to a direct summand of M, not a direct summand of M and N ~ A.

Proof. By the hypothesis we have ((x1R + x2R + --- + 2mR) + Fo)/Fo = A for some
Z1,T2,...,ZTm of F. Since F is a regular module, 1R+ 2R+ -+ -+, R = w(F'), where
7 € End(F) and 72 = 7. Since A is a small submodule of F'//Fy, we have F'/Fy = ((1 —
m)F + Fy)/Fo. It follows that there exist epimorphisms f1 : w(F) — A, fo: (1—7)(F) —
F/Fy. It is easy to check A® (F/Fy) is a F-cyclic module. Call M = A® (F/Fp). Thus,
the module N := 0® A ~ A is not a direct summand of M and isomorphic to a direct
summand A & 0 of M. (]

A module M is called a V-module if every simple module in o[M] is M-injective (see
[19]). R is called a right V-ring if the right module Rg is a V-module.

3.9. Theorem. The following conditions are equivalent for a regular module F"



(1) F is a V-module.
(2) Every F-cyclic module M is an A-C3 module, where A is the class of all simple
right R-modules (i.e., M is a simple-direct-injective module).

Proof. The implication (1) = (2) is obvious.

(2) = (1). Let S € o[F] is a simple module and Er(S) is the injective hull of S in
the category o[F]. Assume that Er(S) # S. As Ep(S) is generated by F', there exists
a homomorphism f : F — Ep(S) such that f(F) # S. Then S is a small submodule
of f(F). Take ¢ : f(F) — F/XKer(f) the isomorphism. By Lemma 3.8, there exists a
F-cyclic module M and satisfies the property: there is a submodule N of M such that
N is isomorphic to a direct summand of M, not a direct summand of M and N =~ (S5).
Note that N is a simple submodule of M. We infer from Proposition 2.17 that M is not
an A-C3 module, where A is the class of all simple right R-modules. This contradicts
the condition of (2). O

3.10. Corollary ([6, Theorem 4.4.]). A regular ring R is a right V-ring if and only if
every cyclic right R-module is simple-direct-injective.
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