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Abstract

We introduce and study the Marshall-Olkin additive Weibull distribu-
tion in order to allow a wide variation in the shape of the hazard rate,
including increasing, decreasing, bathtub and unimodal shapes. The
new distribution generalizes at least eleven lifetime models existing in
the literature. Various of its mathematical properties including explicit
expressions for the ordinary and incomplete moments, generating func-
tion, moments of the residual and reversed residual life functions and
order statistics are derived. The parameters of the new distribution
are estimated by the maximum likelihood method. We illustrate em-
pirically the superiority of the new model over other distributions by
means of a real life data set.
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1. Introduction
In recent years, several lifetime models have been proposed and studied in order to

improve the modeling of survival data. The Weibull distribution does not provide a good
fit to data sets with bathtub shaped or upside down bathtub shaped (unimodal) failure
rates, often encountered in reliability, engineering and biological studies. Other popular
lifetime models are the gamma and lognormal distributions but their survival functions
have no closed-form expressions.

Extensions of the Weibull distribution arise in different research areas, see, for ex-
ample, Saboor et al. [24] and the references therein. Various extended Weibull models
have an upside–down bathtub shaped hazard rate such as the extensions discussed by
Bebbington et al. [7], Nadarajah and Cordeiro [18] and Saboor et al. [24], among others.

The procedure of adding one or two parameters to a family of distributions to obtain
more flexibility is a well-known technique in the existing literature. Marshall and Olkin
[16] pioneered a simple method of adding a positive shape parameter into a family of
distributions and several authors used their method to extend well-known distributions
in the last few years. If G(x), g(x) and r(x) denote the survival function (sf), probability
density function (pdf) and hazard rate function (hrf) of a parent distribution, then the
survival function F (x) of the the Marshall and Olkin (MO) family is defined by

F (x; δ) =
δ G(x)

1− δ G(x)
, x ∈ <, δ > 0,(1.1)

where δ = 1 − δ. Clearly, for δ = 1, we obtain the baseline distribution, i.e., F (x) =

G(x). They called the shape parameter δ “tilt parameter”, since the hrf h(x; δ) of the
transformed distribution is shifted below (δ ≥ 1) or above (0 < δ ≤ 1) from the baseline
hrf, say hG(x). In fact, for all x > 0, h(x; δ) ≤ hG(x) when δ ≥ 1, and h(x; δ) ≥ hG(x)
when 0 < δ ≤ 1.

The main motivation for the MO family is given as follows: let Z1, Z2, . . . be a sequence
of IID random variables from G(x) and N be a random variable with probability mass
function δ(1− δn−1) (for n = 1, 2, . . .). By defining TN = min {Z1, . . . , ZN}, we have

P
[
TN ≤ x

]
= 1−

∞∑
n=1

P
[
TN ≥ x

∣∣N = n
]
P
[
N = n

]
=

G(x)

G(x) + δ G(x)
,

which is equivalent to (1.1).
The pdf corresponding to (1.1) is given by

f(x; δ) =
δ g(x)[

1− δ G(x)
]2(1.2)

and its hrf reduces to

h(x; δ) =
r(x)

1− δ G(x)
.(1.3)

From equation (1.3) it follows that h(x; δ)/r(x) is increasing in x for δ ≥ 1 and
decreasing in x for 0 < δ ≤ 1.

Xie and Lai [27] defined the four-parameter additive Weibull (AW) distribution with
cdf given by

G(x;α, β, γ, θ) = 1− exp
(
−αxθ − γxβ

)
, x > 0,(1.4)

where θ and β are positive shape parameters and α and γ are positive scale parameters.
Further, 0 < θ < β or 0 < β < θ.
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The pdf corresponding to (1.4) is given by

g(x;α, β, γ, θ) =
(
αθxθ−1 + γβxβ−1

)
exp

(
−αxθ − γxβ

)
.(1.5)

A random variable X having the pdf (1.5) is denoted by X ∼AW(α, β, γ, θ).
In this paper, the AW distribution is embedded in a larger family by adding an extra

shape parameter. The model generated by applying the Marshall-Olkin transformation to
the AW distribution is called the Marshall-Olkin additive Weibull (MOAW) distribution.

The rest of the paper is outlined as follows. In Section 2, we define the new distri-
bution, derive a linear representation for its pdf, provide some sub-models and plots of
the densities and hrfs. Some mathematical properties including quantile function (qf),
ordinary, central and incomplete moments, moment generating function (mgf), mean de-
viations, moments of the residual life and reversed residual life are derived in Section
3. The order statistics and their moments are investigated in Section 4. In Section 5,
we discuss maximum likelihood estimation of the model parameters. In Section 6, we
show empirically the potentiality of the MOAW distribution by means of a real data set.
Finally, some concluding remarks are offered in Section 7.

The manipulations for the generating functions and Bell polynomials were carried out
with the help of computational package MATHEMATICA.

2. The MOAW distribution
In this section, we define the new distribution and present eleven sub-models. By

inserting (1.4) and (1.5) in equations (1.1) and (1.2), we obtain the cdf of the MOAW
distribution (for x > 0) with vector of parameters υ = (α, β, γ, θ, δ) given by

F (x; υ) = 1−
δ exp

(
−αxθ − γxβ

)
1− (1− δ) exp (−αxθ − γxβ)

,(2.1)

where α and γ are the scale parameters representing the characteristic lifetime and θ, β
and δ are the shape parameters representing different patterns of the MOAW distribution.

The MOAW density function is given by

f(x; υ) =
δ
(
αθxθ−1 + γβxβ−1

)
exp

(
−αxθ − γxβ

)
[1− (1− δ) exp (−αxθ − γxβ)]2

.(2.2)

Henceforth, let X ∼MOAW(υ) be a random variable having the pdf (2.2). The sf, hrf
and cumulative hazard rate function (chrf) of X are given by

F (x; υ) =
δ exp

(
−αxθ − γxβ

)
1− (1− δ) exp (−αxθ − γxβ)

,

h(x; υ) =
α θxθ−1 + γβxβ−1

1− (1− δ) exp (−αxθ − γxβ)

and

H(x; υ) = − log

[
δ exp

(
−αxθ − γxβ

)
1− (1− δ) exp (−αxθ − γxβ)

]
,

respectively. Sometimes, we omit the dependence on υ in these equations.
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Table 1. Sub-models of the MOAW(α, β, γ, θ, δ)

No. Distribution α β γ θ δ Author
1 AW α β γ θ 1 Xie and Lai [27]
2 MOMW α β γ 1 δ Alshangiti et al. [6]
3 MOLFR α 2 γ 1 δ New
4 MOW 0 β γ − δ –
5 MOR 0 2 γ − δ –
6 MOE α − 0 1 δ –
7 MW α β γ 1 1 Sarhan and Zaindin [25]
8 LFR α 2 γ 1 1 –
9 W 0 β γ − 1 Weibull [26]
10 R 0 2 γ − 1 Rayleigh [23]
11 E α − 0 1 1 –

Abbreviations: A = Additive, M = Modified, W = Weibull, E = Exponential, MO =
Marshall-Olkin, LF = Linear Failure, R = Rayleigh, AW = Additive Weibull.

2.1. Linear representation. An expansion for equation (2.2) can be derived using the
power series

(1− z)−τ =

∞∑
n=0

Γ(τ + n)

Γ(τ)n!
zn, τ > 0.

Then, the MOAW density function can be expressed as

(2.3) f (x; υ) =

∞∑
j=0

bj gj+1(x),

where, for j ≥ 0, bj = δ (1− δ)j Γ (j + 2) /j! and

gj+1(x) = (j + 1)
(
αθxθ−1 + γβxβ−1

)
exp

[
− (j + 1)

(
αxθ + γxβ

)]
is the pdf of the random variable Yj+1 ∼AW((j + 1)α, β, (j + 1)γ, θ).

Hence, the MOAW density function can be written as a mixture of AW densities and
then some of its mathematical properties can be obtained directly from those properties
of the AW distribution.

2.2. Sub-models and plots. The MOAW distribution is a very flexible model that
approaches to different distributions. Its eleven sub-models are listed in Table 1 and only
AW will be used in the empirical comparisons in Section 6.

Figure 1 and 2 display some plots of the MOAW density for selected values of α, β, γ, θ
and δ. These plots illustrate the versatility and modality of this distribution. The plots
of Figure 3 reveal that the hrf of X can have bathtub, unimodal, increasing, decreasing
and constant shapes.

3. Mathematical properties
The mathematical properties of the MOAW distribution including qf and random

number generation, ordinary, central and incomplete moments, mean deviations, mgf and
moments of the residual life and reversed residual life are investigated in this section.
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Figure 1. The MOAW density for some parameter vectors.
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Figure 2. The MOAW density for some parameter vectors.

3.1. Quantile function. The qf of X follows by inverting F (xp; υ) = p in (2.1). We
obtain

αxθp + γ xβp + log

[
1− p

1− p(1− δ)

]
= 0.(3.1)

Since equation (3.1) has no closed-form solution in xq, we require numerical methods
to obtain the quantiles.

3.2. Moments. The kth moment of X, say µ′k, is given by the following theorem:

Theorem 1.If X is a continuous random variable having the MOAW (α, β, γ, θ, δ) dis-
tribution, the k(≥ 1)th non-central moment of X is given by

(3.2) µ′k = E(Xk) =

∞∑
j=0

(j + 1) bj (αθ Ik+θ−1,j + γ βIk+β−1,j) .
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Figure 3. The MOAW hrf.

Proof:
We can determine µ′k from (2.3) and an integral of the type (for δ > 0)

(3.3) Iδ,j = I(δ; (j + 1)α, β, (j + 1) γ, θ) =

∫ ∞
0

xδ exp
[
− (j + 1) (αxθ + γxβ)

]
dx.

By expanding exp
[
−α(j + 1)xθ

]
in power series, equation (3.3) reduces to

Iδ,j =

∞∑
m=0

(−1)m [α (j + 1)]m

m!

∫ ∞
0

xδ+mθ exp
[
− (j + 1) γxβ

]
dx

=
1

βγ(δ+1)/β

∞∑
m=0

(−1)m

m!

[
α (j + 1)

γθ/β

]m
Γ

(
δ + 1 + θm

β

)
.(3.4)

Then, equation (3.4) can be expressed in a simple form, provided that β > 1, using the
confluent hypergeometric function 1F0. We obtain

(3.5) Iδ,j =
1

βγ(δ+1)/β 1F0

[ (
δ+1
β
, θ
β

)
−

;−α (j + 1)

γθ/β

]
,

where 1F0(a;−; z) has the series expansion
∑∞
k=0 (a)k

zk

k!
(see Erdelyi et al. [9]). Applying

(3.5) to equation (2.3) gives (for k ≥ 1)

(3.6) µ′k =

∞∑
j=0

(j + 1) bj (αθ Ik+θ−1,j + γ βIk+β−1,j) .

The characteristic function (chf) has many useful and important properties, which
gives it a central role in statistical theory. It is particularly useful in analysis of linear
combination of independent random variables. The chf of X is given by φ(t) = E(eitX),
where i =

√
−1. We can write

φ(t) =

∫ ∞
0

cos(tx) f (x; υ) dx+ i

∫ ∞
0

sin(tx) f (x; υ) dx.

The nth central moment µn = E(X − µ′1)n (for n ≥ 1) of X is given by

µn =

n∑
k,j=0

(
n

k

) (
−µ′1

)n−k
(j + 1) bj (α θ Ik+θ−1,j + γ βIk+β−1,j) .
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The variance, skewness, kurtosis and cumulants of higher-order of X can be deter-
mined from the central moments using well-known relationships.

3.3. Incomplete moments. The sth incomplete moment ofX is ϕs(t) =
∫ t
0
xs f(x)dx.

Henceforth, let J(t; s, j) =
∫ t
0
xs exp

[
−(j + 1) γ xβ

]
dx. We obtain from equation (2.3)

ϕs(t) =

∞∑
j=0

bj

∫ t

0

xs (α θxθ−1 + γ β xβ−1) exp
[
−(j + 1)

(
αxθ + γ xβ

)]
dx.

By expanding exp
[
−(j + 1)αxθ

]
, we have

(3.7)

ϕs(t) =

∞∑
j,k=0

bj [(j + 1)α]k

(−1)k k!
[α θJ (t; s+ θk + θ − 1, j) + β γ J (t; s+ θk + β − 1, j)] ,

where

J(t; s, j) = β−1 [(j + 1)γ](s+1)/β γ

(
s+ 1

β
, t

)
and γ(a, z) =

∫ z
0
ya−1 e−ydy is the the lower incomplete gamma function.

The amount of scatter in a population is evidently measured to some extent by the
totality of the deviations from the mean and median. The mean deviations about the
mean δ1 = E(|X − µ′1|) and median δ2 = E(|X −M |) of X can be used as measures
of spread in a population. They are given by δ1 = 2µ′1F (µ′1) − 2ϕ1(µ′1) and δ2 =
µ′1− 2ϕ1 (M), respectively, where µ′1 = E (X) comes from (3.6), F (µ′1) is evaluated from
(2.1), ϕ1(µ′1) is the first incomplete moment given by (3.7) and M is the median of X
obtained from (3.1) with p = 0.5. The Lorenz and Bonferroni curves are defined by
L(p) = ϕ1(xp)/µ

′
1 and B(p) = ϕ1(xp)/(pµ

′
1), respectively, where xp = F−1(p; υ) can be

computed numerically by (3.1) for a given probability p. These curves have significant
role in economics, reliability, demography, insurance and medicine. Readers are referred
to Pescim et al. [21] and Pundir et al. [22].

3.4. Moments of the residual life. Some functions related to the residual life are
now defined. For instance, the hazard rate, mean residual life and left censored mean
function. These three functions uniquely determine F (x). See, for instance, Gupta [10],
Kotz and Shanbhag [13] and Zoroa et al. [28].

3.1. Definition. Let X be a random variable representing the life length for a certain
unit at age t (where this unit can have multiple interpretations). Then, Xt = X−t | X > t
represents the remaining lifetime beyond that age t.

The cdf F (x) is uniquely determined by the nth moment of the residual life of X (for
n = 1, 2, . . .) (Navarro et al. [19]), and it is given by

mn (t) =
1

1− F (t)

∫ ∞
t

(x− t)n dF (x) .

Further, it can be expressed from (2.3) as

mn (t) =
1

R (t)

n∑
r=0

∞∑
j,k=0

(−1)n+k−r n! tn−r

r! k! (n− r)! bj [α (j + 1)]k

× [α θJ (t;n+ θk + θ − 1, j) + βγ J (t;n+ θk + β − 1, j)] .
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Another interesting function is the mean residual life (MRL) function given by m1(t). It
represents the expected additional life length for a unit which is alive at age t. The MRL
of X can be obtained by setting n = 1 in the last equation.

Guess and Proschan [11] gave an extensive coverage of applications of the MRL in sur-
vival analysis, biomedical sciences, life insurance, social studies, economics, demography,
maintenance and product quality control and product technology (Lai and Xie [15]).

3.5. Moments of the reversed residual life. The cdf F (x) is uniquely determined
by the mean reversed residual life of X (for n = 1, 2 . . .) (Navarro et al. [19]), and it is
given by

Mn (t) =
1

F (t)

∫ t

0

(t− x)n dF (x) .

In a similar manner, it can be expressed as

Mn (t) =
1

F (t)

n∑
r=0

∞∑
j,k=0

(−1)r+k n! tn−r

r! k! (n− r)! bj [α (j + 1)]k

× [α θJ (t;n+ θk + θ − 1, j) + βγ J (t;n+ θk + β − 1, j)] .

The mean inactivity time (MIT) of X is obtained by setting n = 1 in the above
equation. Some properties of MIT have been explored by Kayid and Ahmad [14] and
Ahmad et al. [4], among several others.

3.6. Generating function. In this section, we obtain the mgf of X using a power series
for its qf. The nonlinear equation (3.1) can be expressed as αxθ + γ xβ = z, where

z = z(δ, p) = − log

[
1− p

1− p(1− δ)

]
.

By expanding xθ in Taylor series, we obtain xθ =
∑∞
k=0(θ)(k) (x−1)k/k! =

∑∞
j=0 fj x

j ,
where fj =

∑∞
k=j(−1)k−j

(
k
j

)
(θ)(k)/k! and (θ)(k) = θ(θ−1) . . . (θ−k+1) is the descending

factorial. Analogously, by expanding xβ , we can write

(3.8) z = H(x) =

∞∑
j=0

hj x
j ,

where hj = αfj + γ gj and gj =
∑∞
k=j(−1)k−j

(
k
j

)
(β)(k)/k!. By using MATHEMATICA

H(x) = (α+ γ) + (α θ + γ β) (x− 1) +
[
α (θ)(2) + γ (β)(2)

] (x− 1)2

2

+
[
α (θ)(3) + γ (β)(3)

] (x− 1)3

3!

+
[
α (θ)(4) + γ (β)(4)

] (x− 1)4

4!
+O

(
(x− 1)5

)
.

Then, we obtain H(x) in the form (3.8) by expanding the powers of (x− 1).
Further, we use the Lagrange theorem to obtain an expansion for the qf Q(p; υ) =

F−1(p; υ). We assume that the power series holds

z = H(x) = h0 +
∞∑
j=1

hj t
j , h1 = H ′(x) 6= 0,
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where H(x) is analytic at zero. Then, the inverse power series x = H−1(z) exists, it is
single-valued in the neighborhood of the point z = 0, and it reduces to

x = H−1(z) =

∞∑
j=1

vj z
j ,

where the coefficient vj (for j ≥ 1) is given by

vj =
1

n!

dj−1
[
ψ(x)

]j
dxj−1

∣∣∣∣
t=0

, ψ(x) =
x

H(x)− h0
.

Then, the qf X becomes

(3.9) Q(p) =

∞∑
j=1

vj

[
− log

(
1− p

1− p(1− δ)

)]j
.

Hence, the mgf of X, say ρX(s), can be expressed as

(3.10) ρX(s) =

∫ 1

0

exp

{
s

∞∑
j=1

vj

[
− log

(
1− p

1− p(1− δ)

)]j}
dp.

The exponential partial Bell polynomials are defined by Abramowitz and Stegun [1].

exp

(
u
∑
m≥1

xm
tm

m!

)
=
∑
n,k≥0

Bn,k
n!

tn uk,(3.11)

where

Bn,k = Bn,k(x1, x2, . . . , xn−k+1) =
∑ n!

c1! c2! . . . (1!)c1(2!)c2 . . .
xc11 xc22 , . . . ,

and the summation takes place over all integers c1, c2, . . . ≥ 0, which satisfy c1 + 2c2 +
3c3 + · · · = n and c1 + c2 + c3 + · · · = k.

These polynomials can be evaluated as IncompleteBellB(n, k, x[1], x[2], . . . , x[n = k+1])
in MAPLE.

Applying (3.11) in equation (3.10) gives

(3.12) ρX(s) =
∑
n,k≥0

sk Bn,k
n!

∫ 1

0

[
− log

(
1− p

1− p(1− δ)

)]n
dp,

where Bn,k = Bn,k(1!v1, 2!v2, . . . , (n− k + 1)!vn−k+1) and the integral can be evaluated
in the software before. The final expression (3.12) is a polynomial in s up to a desired
order if we evaluate numerically the integral for every n.

4. Order statistics
The order statistics have great importance in some statistical problems and many

applications in reliability analysis and life testing. They can represent the lifetimes of
units or components of a reliability system. Let X1, . . . , Xn be a random sample of
size n from the MOAW(α, β, γ, θ, δ) model with cdf and pdf given by (2.1) and (2.2),
respectively. The pdf of the ith order statistic, say Xi:n, 1 ≤ i ≤ n, is given by

fi:n (x) =
δn−i+1

(
αθxθ−1 + γβxβ−1

)
exp

[
− (n− i+ 1)

(
αxθ + γxβ

)]
B (i, n− i+ 1) [1− (1− δ) exp (−αxθ − γ xβ)]n−i+2

×

[
1−

δ exp
(
−αxθ − γxβ

)
1− (1− δ) exp (−αxθ − γ xβ)

]i−1

,
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where B(·, ·) is the beta function.
The pdf of Xi:n can be expressed as a linear combination of AW densities

(4.1) fi:n (x) =

∞∑
j,w=0

=j,w g (x;α∗, β, γ∗, θ) .

Here,

=j,w =
(−1)j+w Γ (i) Γ (i− j − n− 1) δn+j−i+1 (1− δ)w

B (i, n− i+ 1) j!w!Γ (i− j) Γ (i− j − n− w − 1) (n− i+ j + w + 1)
,

and

g (x;α∗, β, γ∗, θ) =
(
α∗ θxθ−1 + γ∗ βxβ−1

)
exp

[
−
(
α∗xθ + γ∗xβ

)]
is the AW density function with parameters α∗, β, γ∗, θ, where α∗ = (n− i+ j+w+ 1)α
and γ∗ = (n− i+ j + w + 1) γ.

Thus, the density function of the MOAW order statistics is a linear combination of
AW densities. Based on equation (4.1), we can obtain some structural properties of Xi:n
from those AW properties. For example,

E (Xq
i:n) =

∞∑
j,w=0

=j,wE (Y q∗ ) ,(4.2)

where Y∗ ∼AW(α∗, β, γ∗, θ) .
The L-moments defined by linear combinations of expected order statistics are analo-

gous to the ordinary moments. They exist whenever the mean of the distribution exists,
even though some higher moments may not exist, and are relatively robust to the effects
of outliers. They are robust to outliers and virtually unbiased for small samples, making
them suitable for flood frequency analysis, including identification of distribution and
parameter estimation. The rth L-moment is given by

λr =
1

r

∑r−1

d=0
(−1)d

(
r − 1

d

)
E (Xr−d:r) .

Then, we can obtain the L-moments of X from equation (4.2) with q = 1 as infinite
weighted linear combinations of suitable AW means. The L-mean, λ1, is a measure of
central tendency and the L-standard deviation, λ2, is a measure of dispersion. Their ratio,
λ2/λ1, is called the L-coefficient of variation, the ratio λ3/λ2 is called the L-skewness,
while the ratio λ4/λ2 is referred to the L-kurtosis. For further details of L-moments,
readers are referred to as Hosking [12].

5. Maximum likelihood estimation
Several approaches for parameter estimation were proposed in the literature but

the maximum likelihood method is the most commonly employed. The maximum likeli-
hood estimators (MLEs) enjoy desirable properties and can be used when constructing
confidence intervals for the model parameters. The normal approximation for these es-
timators in large samples can be easily handled either analytically or numerically. So,
we consider the estimation of the unknown parameters for the new distribution from
complete samples only by maximum likelihood. Let x1, . . . , xn be a random sample of
this distribution with unknown parameter vector υ = (α, β, γ, θ, δ)T .

The log-likelihood function, say `(υ) obtained from Equation (2.2), is given by

(5.1) `(υ) = n log (δ) +
∑n

i=1
log (si) +

∑n

i=1
log (zi)− 2

∑n

i=1
log (ti) ,
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where zi = αθxθ−1
i + γβxβ−1

i , si = exp(−αxθi − γxβi ) and ti = 1− (1− δ) si.

The components of the score vector U (υ) = ∂`
∂υ =

(
∂`
∂α
, ∂`
∂β
, ∂`
∂γ
, ∂`
∂θ
, ∂`
∂δ

)T
are:

∂` (υ)

∂α
= θ

∑n

i=1

xθ−1
i

zi
−
∑n

i=1
xθi−2 (1− δ)

∑n

i=1

six
θ
i

ti
,

∂` (υ)

∂β
= γ

∑n

i=1

xβ−1
i (β log(xi) + 1)

zi
− γ

∑n

i=1
xβi log (xi)

− 2γ (1− δ)
∑n

i=1

six
β
i log (xi)

ti
,

∂` (υ)

∂γ
= β

∑n

i=1

xβ−1
i

zi
−
∑n

i=1
xβi −2 (1− δ)

∑n

i=1

six
β
i

ti
,

∂` (υ)

∂θ
= α

∑n

i=1

xθ−1
i (θ log (xi) + 1)

zi
− α

∑n

i=1
xθi log (xi)

− 2α (1− δ)
∑n

i=1

six
θ
i log (xi)

ti

and

∂` (υ)

∂δ
=
n

δ
− 2

∑n

i=1

si
ti
.

We require iterative techniques such as the Newton-Raphson algorithm to solve these
equations numerically. For the proposed distribution, all the second order log-likelihood
derivatives exist.

For interval estimation and hypothesis tests on the model parameters, we require the
5 × 5 observed (L̈(υ)) and expected (J(υ)) information matrices. Under general regu-
larity conditions, we can construct approximate confidence intervals for the individual
parameters based on the multivariate normal N5(0,J(υ̂)−1) distribution, where υ̂ is the
MLE of υ.

Approximate 100(1− φ)% confidence intervals for α, β, γ, θ and δ can be determined
as:

α̂± zφ/2
√
Ĵαα, β̂ ± zφ/2

√
Ĵββ , γ̂ ± zφ/2

√
Ĵγγ ,

θ̂ ± zφ/2
√
Ĵθθ and δ̂ ± zφ/2

√
Ĵδδ,

where zφ/2 is the upper φ-th percentile of the standard normal distribution.
We can compute the maximum values of the unrestricted and restricted log-likelihoods

to construct likelihood ratio (LR) statistics for testing some sub-models of the MOAW
model. For example, the test of H0 : δ = 1 versus H1 : H0 is not true is equivalent to
compare the MOAW and AW and the LR statistic reduces to

w = 2[`(α̂, β̂, γ̂, θ̂, δ̂)− `(α̃, β̃, γ̃, θ̃, 1)],

where α̂, β̂, γ̂, θ̂ and δ̂ are the MLEs under H1 and α̃, β̃, γ̃ and θ̃ are the estimates
under H0. Statistical w is approximately Chi-square distribution with degree of freedom
corresponding to the difference between the number of parameters of the two models.
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6. Application
In this section, we provide an application of the new distribution to show empirically

its potentiality. We shall compare the fits of the MOAW and AWmodels and the following
competing non-nested distributions, whose pdfs (for x > 0) are given below:

• The transmuted additive Weibull (TAW) distribution introduced by Elbatal and
Aryal [8], whose pdf is

f (x;α, β, γ, θ, λ) =
(
αθxθ−1 + γ βxβ−1

)
exp

(
−αxθ − γxβ

)
×
[
1− λ+ 2λ exp

(
−αxθ − γxβ

)]
.

• The exponentiated transmuted generalized Rayleigh (ETGR) distribution de-
fined by Afify et al. [2], whose pdf is

f (x;α, β, λ, δ) = 2α δ β2x exp
[
− (βx)2

] {
1− exp

[
− (β x)2

]}αδ−1

×
{

1 + λ− 2λ
(
1− exp

[
− (βx)2

])α}
×
{

1 + λ− λ
(
1− exp

[
− (βx)2

])α}δ−1

.

• The Kumaraswamy linear exponential (KLE) distribution proposed by Merovci
and Elbatal [17], whose pdf is

f(x;α, γ, δ, θ) = δ θ (α+ γx) exp
(
−αx− γ

2
x2
)
×
[
1− exp

(
−αx− γ

2
x2
)]δ−1

×
{

1−
[
1− exp

(
−αx− γ

2
x2
)]δ}θ−1

.

• The new modified Weibull (NMW) distribution defined by Almalki and Yuan
[5], whose pdf is

f(x;α, β, γ, δ, θ) =
(
α θxθ−1 + γ (β + δ x)xβ−1 exp (δ x)

)
exp

(
−αxθ − γ xβ

)
.

• The transmuted Weibull Lomax (TWL) distribution introduced by Afify et al.
[3], whose pdf is

f(x;α, β, λ, a, b) =
a bα

β

[
1−

(
1 +

x

β

)−α]b−1

exp

{
−a
{(

1 +
x

β

)α
− 1

}b}

×
(

1 +
x

β

)bα−1
{

1− λ+ 2λ exp

[
−a
{(

1 +
x

β

)α
− 1

}b]}
.

The parameters of the above densities are all positive real numbers except
|λ| ≤ 1, and the parameters θ and β for the TAW model, where 0 < θ < β or
0 < β < θ.

We consider a data set referring to nicotine measurements made from several brands
of cigarettes in 1998. The data have been collected by the Federal Trade Commission,
which is an independent agency of the US government, whose main mission is the pro-
motion of consumer protection. The report entitled tar, nicotine, and carbon monoxide
of the smoke of 1,206 varieties of domestic cigarettes for the year of 1998 is available at
http://www.ftc.gov/reports/tobacco and consists of the data sets and some information
about the source, smokers behavior and beliefs about nicotine, tar and carbon monoxide
contents in cigarettes. The data set is at http://pw1.netcom.com/rdavis2/smoke.html.
The site http://home.att.net/rdavis2/cigra.html contains n = 346 observations. These
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Table 2. MLEs of the parameters (standard errors in parentheses)

Model Estimates

MOAW α̂= 0.03177
(0.01212)

β̂= 1.8840
(0.3396)

γ̂= 0.01146
(0.00348)

θ̂= 6.5173
(1.0066)

δ̂= 0.02016
(0.00733)

TAW α̂= 1.2252
(0.239)

β̂= 0.8994
(0.091)

γ̂= 0.433
(0.229)

θ̂= 2.6404
(0.267)

λ̂= −0.8831
(0.147)

NMW α̂= 0.0012
(0.036)

β̂= 2.3518
(0.337)

γ̂= 0.7453
(0.276)

δ̂= 0.3956
(0.344)

θ̂= 2.083
(0.584)

TWL α̂= 10.6275
(25.423)

β̂= 24.7718
(72.961)

â= 4.6163
(5.992)

b̂= 2.3601
(0.293)

λ̂= 0.1625
(0.217)

AW α̂= 1.135
(0.062)

β̂= 0.3084
(0.1)

γ̂= 0.0002
(0.001369)

θ̂= 2.7219
(0.114)

ETGR α̂= 0.2879
(0.071)

β̂= 0.9481
(0.04)

δ̂= 8.8551
(3.2)

λ̂= 0.8266
(0.063)

KLE α̂= 0.1526
(0.123)

γ̂= 0.6362
(0.325)

δ̂= 1.9285
(0.309)

θ̂= 6.957
(4.792)

Table 3. Goodness-of-fit statistics

Models A∗0 W∗0 KS p-value AIC AICC BIC HQIC CAIC
MOAW 1.808 0.327 0.083 0.0157 222.03 222.21 241.3 229.69 222.21
AW 2.313 0.406 0.099 0.002 229.60 229.72 244.99 235.73 229.72
TAW 1.989 0.356 0.095 0.004 231.60 231.78 250.83 239.26 231.78
KLE 2.487 0.431 0.108 0.0006 230.71 230.92 246.09 236.83 230.82
NMW 2.313 0.406 0.099 0.0022 231.60 231.78 250.83 239.26 231.78
ETGR 4.289 0.768 0.141 0.0 246.91 247.03 262.30 253.04 247.03
TWL 2.932 0.502 0.143 0.0 491.82 491.99 501.38 495.46 493.18

Table 4. Confidence interval for the model parameters

CI α β γ θ δ
95% (0.0080, 0.0555) (1.2161, 2.5519) (0.0046, 0.01828) (4.5376, 8.4971) (0.0058, 0.0345)

data have been used by Nofal et al. [20] to fit the generalized transmuted Weibull distri-
bution. We analyze these data on nicotine, measured in milligrams per cigarette, from
several cigarette brands.

We use the the procedure NLMixed in SAS to compute the MLE υ̂. Table 2 lists
the MLEs (standard errors in parentheses) of the model parameters for the fitted seven
models to the current data. The covariance matrix of the MLEs for the fitted MOAW
distribution is given by

0.000147 −0.00762 0.000382 −0.03378 0.000879
−0.00762 0.1153 −0.00098 0.2403 −0.00402
0.000382 −0.00098 0.0000121 −0.00737 0.000242
−0.03378 0.2403 −0.00737 1.0132 −0.01943
0.000879 −0.00402 0.000242 −0.01943 0.0000538

 .

The diagonal entries of this matrix represent the variances of the MLEs of α, β, γ, θ
and δ. Then, the 95% confidence intervals for these parameters are given in Table 4.

In order to compare the distributions, we consider the following statistics: Akaike
information criterion (AIC), consistent Akaike information criterion (CAIC), Bayesian
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information criterion (BIC) and Hannan-Quinn information criterion (HQIC) given by

AIC = −2̂̀+ 2k, BIC = −2̂̀+ k log(n),

HQIC = −2̂̀+ 2k log[log(n)],

CAIC = −2̂̀+ 2kn/(n− k − 1),

AICC = AIC +
2 q (q + 1)

n− q − 1
,

where ̂̀ denotes the maximized log-likelihood function, k is the number of estimated
parameters and n is the sample size.

Some of the most widely used test statistics like the modified Anderson–Darling (A∗0),
modified Cramér Von–Mises (W ∗0 ) and Kolmogorov Smirnov (K-S) statistics are given
by

A∗0 =

(
2.25

n2
+

0.75

n
+ 1

)[
−n− 1

n

n∑
i=1

(2i− 1) log (zi (1− zn−i+1))

]
,

W ∗0 =

(
0.5

n
+ 1

)[ n∑
i=1

(
zi −

2i− 1

2n

)2

+
1

12n

]
,

K-S = Max
[
i

n
− zi, zi −

i− 1

n

]
,

p-value = 1−
√

2π

K-S
√
n

n∑
i=1

e
−π

2(2i−1)2

8(K-S)2n ,

respectively, where zi = cdf(y(i)) and the y ,(i)s are the ordered observations. These
statistics are used to assess the adequacy of the fit of the distributions considered in the
current data set. The model with minimum AIC, BIC, HQIC, CAIC, A∗0, W ∗0 and
K-S values (the last one with the p-value) can be chosen as the best model to fit the
data.

Table 3 lists the values of above statistics for seven fitted models. The figures in
Tables 3 reveal that the MOAW distribution yields the lowest values of these statistics
and then provides the best fit to these data. It is also seen that the p–value test for the
proposed model has the largest value among all models.

A comparison of the proposed distribution with some of its sub-models using LR
statistics is performed in Table 5. The numbers in this table, specially the p-value,
suggest that the new MOAW model yields a better fit to these data than the other
distribution.

Table 5. LR statistics.

Model Hypotheses Statistics w P -value
MOAW vs AW H0 : δ = 1 vs H1 : H0 is false 9.0 0.0027

More information is provided by a visual comparison of the histogram of the data
with the fitted density functions. The plot of the fitted MOAW, AW ant TAW density
functions are displayed in Figure 4.

In order to assess if the model is appropriate, the plots of the fitted MOAW, AW
ant TAW cumulative distribution and the empirical cdf are displayed in Figure 5. We
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conclude that the MOAW and TAW distributions provides a good fit for these data. Note
that the MOAW and TAW models are potentially competitors.

(a) (b)
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Figure 4. Fitted GL density for the data. (a) MOAW vs AW (b)
MOAW vs TAW.
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Figure 5. Estimated GL cumulative distributions for the data. (a)
MOAW vs AW (b) MOAW vs TAW.

7. Conclusions
In this paper, we propose a five-parameter model, called the Marshall-Olkin additive

Weibull (MOAW) distribution, which extends the additive Weibull (AW) distribution
pioneered by Xie and Lai [23] and some other well-known distributions. An obvious
reason for generalizing a standard distribution is the fact that the generated model can
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provide more flexibility to analyze real life data. We provide some of its mathematical
and statistical properties. The MOAW density function can be expressed as a linear
mixture of AW densities. We derive explicit expressions for the ordinary and incomplete
moments, quantile and generating functions and moments of the residual life and reversed
residual life model. We also obtain the density function of the order statistics and their
moments. We discuss the estimation of the model parameters by maximum likelihood.
The proposed distribution is applied to a real data set. It provides a better fit than
several other competitive nested and non-nested models. We hope that the proposed
model will attract wider application in areas such as engineering, survival and lifetime
data, meteorology, hydrology, economics and others.
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