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Using extreme values and fractional raw moments
for mean estimation in stratified random sampling
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Abstract

Unusual observations can occur in sample survey data. Mean estimator
is sensitive to very large and/or small values, if included in sample. It
can provide biased results and ultimately, tempted to delete from the
sample data. Extreme values, if known, can be retained in data and
used as the auxiliary information to increase the precision of estimate.
Similarly, a known auxiliary variable is always source of improvement
in precision of estimates. A transformation can be used for the aux-
iliary variable to get even more precised estimates. In this article, we
have suggested modified estimators for finite population mean when a
sample is drawn under stratified random sampling design. We used
extreme values and fractional raw moments of the auxiliary variable
and suggested improved ratio, product and regression type estimators.
By theoretical comparison, efficiency of proposed estimators is estab-
lished and numerical and simulation studies are conducted to support
the theoretical results.
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1. Introduction
The purpose of survey sampling is to utilize the maximum information about the

characteristic of interest. Many fields of study require estimation of the finite population
mean for variable of interest. For example, average wheat production per acre, aver-
age income of households, mean weight of meat producing animals etc. Mean per unit
estimator is base line estimator to estimate finite population mean.

When the variable of interest is dependent on an extraneous source, the variance of
the estimator can be inflated. To avoid this problem and to get precise estimates, it is
important to use the stratified random sampling. To improve the precision of estimates,
use of the auxiliary information has been in practice. [2] was pioneer to use the auxiliary
information for the estimation of population mean. It was established that when the
study variable and the auxiliary variable are positively correlated then ratio estimator
provides more efficient estimates as compared to sample mean estimator and if there is
negative relationship between the study and the auxiliary variable then product estimator
provides better estimate. When regression line between the study and the auxiliary
variables does not pass through origin then regression estimator dominates over ratio and
product estimators. In stratified random sampling, [3] proposed two different methods
for constructing the ratio estimators. In our study we use both combined and separate
estimators when using maximum and minimum values.

2. Sampling scheme
Let a population of size N is divided into L mutually exclusive strata of sizes Nh(h =

1, 2, 3, ..., L) such that
∑L
h=1 Nh = N . Let Yhi and Xhi be the values of the study and

the auxiliary variables at ith unit(i = 1, 2..., Nh) in the hth (h = 1, 2, 3, ..., L) stratum
respectively. Let a sample of size nh (h = 1, 2, 3, ..., L) is drawn from each stratum
independently by simple random sampling without replacement (SRSWOR) such that∑L
h=1 nh = n, where n is total number of units in a sample. Let yhi and xhi be the

values of the study and the auxiliary variables of the ith unit (i = 1, 2..., nh) in a sample.
Define:

Ȳ =
∑N

i=1 Yi

N
, X̄ =

∑N
i=1Xi

N
=

Population means of the study and the auxiliary variables respectively,

Ȳh =
∑Nh

i=1 Yhi

Nh
, ȳh =

∑nh
i=1 yhi

nh
=

Population and sample means of the study variable in the hth stratum,

X̄h =
∑Nh

i=1Xhi

Nh
, x̄h =

∑nh
i=1 xhi

nh
=

Population and sample means of the auxiliary variable in the hth stratum,

S2
hx =

∑Nh
i=1 (Xhi−X̄h)2

Nh−1
=

Population variance of the auxiliary variable in the hth stratum,

S2
hy =

∑Nh
i=1 (Yhi−Ȳh)2

Nh−1
= Population variance of the study variable in the hth stratum,

Shyx =
∑Nh

i=1 (Xhi−X̄h)(Yhi−Ȳh)

Nh−1
= Population covariance of Y and X in the hth stratum,

βh =
Shyx

S2
hx

= Population regression coefficient for the hth stratum,

βc =

∑L
h=1W

2
h(

Nh−nh
Nhnh

)Shyx∑L
h=1

W2
h

(
Nh−nh
Nhnh

)S2
hx

= Population regression coefficient across the strata,

Wh = Nh
N

= Stratum weight in the hth stratum,
fh = nh

Nh
= Sampling fraction in the hth stratum,

R = Ȳ
X̄

= Population ratio,
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Rh = Ȳh
X̄h

= Population ratio in the hth stratum.
The mean per unit estimator and its variance under stratified random sampling, are given
by

(2.1) ȳst =

L∑
h=1

Whȳh;V (ȳst) =

L∑
h=1

W 2
hλhS

2
hy, where λh =

1− fh
nh

.

Combined ratio, product and regression estimators of finite population mean (Ȳ ) in
stratified random sampling with their biases and mean square errors are given as follows:

(2.2) Ŷ RC0 =
ȳst
x̄st

X̄,

(2.3) Ŷ PC0 =
ȳstx̄st

X̄
,

(2.4) Ŷ lrC0 = ȳst + bc(X̄ − x̄st),

where bc =
∑L

h=1W
2
hλhshyx∑L

h=1
W2

h
λhs

2
hx

is the combined sample regression coefficient, across the
strata.

(2.5) B(Ŷ RC0) ∼=
L∑
h=1

Whλh
(RS2

hx − Shyx)

X̄
,

(2.6) B(Ŷ PC0) ∼=
L∑
h=1

Whλh
Shyx
X̄

,

(2.7) B(Ŷ lrC0) ∼= −Cov(x̄st, bc),

(2.8) MSE(Ŷ RC0) ∼=
L∑
h=1

W 2
hλh(S2

hy +R2S2
hx − 2RShyx),

(2.9) MSE(Ŷ PC0) ∼=
L∑
h=1

W 2
hλh(S2

hy +R2S2
hx + 2RShyx),

(2.10) MSE(Ŷ lrC0) ∼=
L∑
h=1

W 2
hλhS

2
hy(1− ρ2

c),

where ρc =
∑L

h=1W
2
hλhShyx√∑L

h=1
W2

h
λhS

2
hy

∑L
h=1

W2
h
λhS

2
hx

is the population correlation coefficient be-

tween the study and the auxiliary variables.

Separate ratio, product and regression estimators for finite population mean in strat-
ified random sampling are given as follows:

(2.11) Ŷ RS0 =
L∑
h=1

WhȳhR, where ȳhR =
ȳh
x̄h
X̄h

(2.12) Ŷ PS0 =

L∑
h=1

WhȳhP , where ȳhP =
ȳh
X̄h

x̄h
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(2.13) Ŷ lrS0 =

L∑
h=1

Whȳhlr, where ȳhlr =
{
ȳh + bh(X̄h − x̄h)

}
and bh =

shyx
s2
hx

.

Biases and mean square errors for separate estimators are given as:

(2.14) B(Ŷ RS0) ∼=
L∑
h=1

Whλh
1

X̄h
(RhS

2
hx − Shyx),

(2.15) B(Ŷ PS0) ∼=
L∑
h=1

Whλh
1

X̄h
(RhS

2
hx + Shyx),

(2.16) B(Ŷ lrS0) ∼= −
L∑
h=1

WhCov(x̄h, bh),

(2.17) MSE(Ŷ RS0) ∼=
L∑
h=1

W 2
hλh(S2

hy +R2
hS

2
hx − 2RhShyx),

(2.18) MSE(Ŷ PS0) ∼=
L∑
h=1

W 2
hλh(S2

hy +R2
hS

2
hx + 2RhShyx),

(2.19) MSE(Ŷ lrS0) ∼=
L∑
h=1

W 2
hλhS

2
hy(1− ρ2

h),

where ρh =
Shyx

ShyShx
is the correlation coefficient between the study and auxiliary variables

in the hth stratum.

In many situations real data sets contain unusual large and/or small values. Various
hybrid seed production companies introduce new varieties of seeds and also specify the
range of production per acre that farmer would benefit from. Maximum and minimum
values can easily be read from the specified ranges. For estimating average income of
households, income of the richest persons (maximum) in a society is well-known, and
that of poorest (minimum) can easily be assessed. Similarly in various surveys which
are conducted regularly after specific interval of time, information about maximum and
minimum values can easily be obtained. Mean per unit estimator for finite population
mean is very sensitive to unusual values. In such situation, this estimator can produce
misleading results if any of the unusual values is selected in the sample. [5] suggested
an unbiased estimator to overcome this problem of extreme values in the data set. Let
ymax and ymin be the maximum and minimum values in the data set respectively. The
estimator defined by [5], is given by

(2.20) ȳs =


ȳ + c, if sample contains ymin but not ymax
ȳ − c, if sample contains ymax but not ymin
ȳ, In other cases

where c is an arbitrary constant. Variance of the estimator ȳs, is given by:

(2.21) V ar(ȳs) = λS2
y −

2λnc

N − 1
(ymax − ymin − nc).
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At the optimum value i.e. c(opt) = ymax−ymin
2n

, the minimum variance of ȳs, is given by:

(2.22) V ar(ȳs)(min) = V ar(ȳ)− λ

2(N − 1)
(ymax − ymin)2.

[4] and [1] suggested ratio, product and regression type estimators using extreme values
of data in simple random sampling using one and two auxiliary variables respectively.

3. Proposed estimators using extreme values of data
Let yhmax(yhmin) and xhmax(xhmin) be the maximum(minimum) values of the study

and the auxiliary variables respectively in the stratum h. The proposed estimator for
finite population mean (Ȳ ) under stratified random sampling is given as follows

(3.1) ȳst.c =
L∑
h=1

Whȳhc ,

where

ȳhc =



ȳh + ch, if a sample from the hth stratum contains yhmin but not yhmax ,

ȳh − ch, if a sample from the hth stratum contains yhmax but not yhmin ,

ȳh, in other cases,

where ch(h = 1, 2, 3, ..., L) are arbitrary constants.

3.1. Proposed estimators when positive correlation between Y and X. When
relationship between the study variable Y and the auxiliary variable X is positive then
for large value of X in a sample, a large value of Y is expected to be selected in the
sample. Similarly for small value of X in a sample, a small value of Y is expected to be
selected. Therefore ratio estimators can be defined as:

Combined ratio estimator.

(3.2) Ŷ RC1 =
ȳst.c11
x̄st.c21

X̄.

Separate ratio estimator.

(3.3) Ŷ RS1 =

L∑
h=1

Wh
ȳh.c11
x̄h.c21

X̄h.

Combined regression estimator.

(3.4) Ŷ lrC11 = ȳst.c11 + bc(X̄ − x̄st.c21).

Separate regression estimator.

(3.5) Ŷ lrS11 =

L∑
h=1

Wh{ȳh.c11 + bh(X̄h − x̄h.c21)}.
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In the estimators from (3.2) to (3.5); ȳst.c11 =
∑L
h=1 Whȳh.c11 and x̄st.c21 =

∑L
h=1 Whx̄h.c21 .

Here, ȳh.c11 and x̄h.c21 are defined as:

(ȳh.c11 , x̄h.c21) =



(ȳh + c1h, x̄h + c2h), if sample contains yhmin but not yhmax ,

(ȳh − c1h, x̄h − c2h), if sample contains yhmax but not yhmin ,

(ȳh, x̄h), in other cases,

where c1h, c2h(h = 1, 2, 3, ..., L) are arbitrary constants.

3.2. Proposed estimators when negative correlation between Y and X. When
relationship between the study variable Y and the auxiliary variable X is negative then
for large value of X in a sample, a small value of Y is expected to be selected in a sample.
Similarly for small value of X in a sample, a large value of Y is expected to be selected.
Therefore product estimators can be defined as:

Combined product estimator.

(3.6) Ŷ PC1 =
ȳst.c12
X̄

x̄st.c22 .

Separate product estimator.

(3.7) Ŷ PS1 =

L∑
h=1

ȳh.c12
X̄h

x̄h.c22 .

Combined regression estimator.

(3.8) Ŷ lrC12 = ȳst.c12 + bc(X̄ − x̄st.c22).

Separate regression estimator.

(3.9) Ŷ lrS12 =

L∑
h=1

Wh{ȳh.c12 + bh(X̄ − x̄h.c22)}.

In the estimators from (3.6) to (3.9); ȳst.c11 =
∑L
h=1 Whȳh.c11 and x̄st.c21 =

∑L
h=1 Whx̄h.c21 .

Here, ȳh.c12 and x̄h.c22 are defined as follows:

(ȳh.c12 , x̄h.c22) =



(ȳh + c1h, x̄h − c2h), if sample contains yhmin but not yhmax ,

(ȳh − c1h, x̄h + c2h), if sample contains yhmax but not yhmin ,

(ȳh, x̄h), in other cases,

where c1h, c2h(h = 1, 2, 3, ..., L) are arbitrary constants.

4. Properties of the proposed estimators
4.1. Some useful results. To find out the biases and mean square errors of the pro-
posed estimators, we prove following two theorems.

4.1. Theorem. Let nh(h = 1, 2, 3, ..., L) is drawn from sub-populations Nh(h = 1, 2, 3, ..., L)
such that

∑
nh = n.

• The estimator ȳhc is an unbiased estimator of population mean Ȳh in the hth

stratum.
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• Variance of ȳhc is given as:

(4.1) V ar(ȳhc) = λhS
2
hy −

2nhchλh
Nh − 1

(yhmax − yhmin − nhch).

Proof. To prove first and second parts of Theorem 4.1, see [5] and the results in (2.21)
respectively. �

4.2. Theorem. Let a sample of sizes nh(h = 1, 2, 3, ..., L) are drawn from bi-variate sub-
populations Nh(h = 1, 2, 3, ..., L) respectively which constitute a stratified random sample
of size n(=

∑L
h=1 nh) from a population of size N .

• The covariance between ȳh.c11 and x̄h.c21 , when they are positively correlated, is
given as:

(4.2)
Cov(ȳh.c11 , x̄h.c21) =λhS

2
hyx −

λhnh
Nh − 1

{c1h(xhmax − xhmin)

+ c2h(yhmax − yhmin)− 2nhc1hc2h}.

• The covariance between ȳh.c12 and x̄h.c22 , when they are negatively correlated, is
given as:

(4.3)
Cov(ȳh.c12 , x̄h.c22) =λhS

2
hyx −

λhnh
Nh − 1

{c1h(xhmax − xhmin)

+ c2h(yhmax − yhmin)− 2nhc1hc2h}.

Proof. Proof of the results in Theorem 4.2 can be easily derived using the results from
[4] �

Using the results from Theorem 4.1, it can be shown that ȳst.c is an unbiased estimator
of population mean Ȳ .

E(ȳst.c) = E(

L∑
h=1

Whȳhc) =

L∑
h=1

WhE(ȳhc) =

L∑
h=1

WhȲh = Ȳ .

And expression for variance of ȳst.c can be established using result in (4.1),

(4.4)

V ar(ȳst.c) = V ar(

L∑
h=1

Whȳhc) =

L∑
h=1

W 2
hV ar(ȳhc).

=

L∑
h=1

W 2
hλh{S2

hy −
2nhch
Nh − 1

(yhmax − yhmin − nhch)}.

Differentiating V (ȳst.c) with respect to ch(h = 1, 2, 3, ..., L) respectively and equate to
zero, we have

∂V ar(ȳst.c)

∂ch
= 0⇒ yhmax − yhmin − 2nhch = 0.

Optimum value of the constant ch can be obtained from its corresponding equation as
follows

(4.5) chopt =
yhmax − yhmin

2nh
for (h = 1, 2, 3, ..., L).

The minimum variance V ar(ȳst.c), is given by

(4.6) V ar(ȳst.c)min =

L∑
h=1

W 2
hλh{S2

hy −
1

2(Nh − 1)
(yhmax − yhmin)2},
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or

(4.7) V ar(ȳst.c)min = V (ȳst)−
L∑
h=1

W 2
hλh

1

2(Nh − 1)
(yhmax − yhmin)2.

est.c1j = (ȳst.c1j − Ȳ )/Ȳ , est.c2j = (x̄st.c2j − X̄)/X̄, j = 1, 2

eh.c1j = (ȳh.c1j − Ȳh)/Ȳh, eh.c2j = (x̄h.c2j − X̄h)/X̄h, j = 1, 2

To the first order approximation, we have

E(est.c1j ) = E(est.c2j ) = E(eh.c1j ) = E(eh.c2j ) = 0,

E(e2
st.c1j ) =

1

Ȳ

L∑
h=1

W 2
hλh{S2

hy −
2nhc1h
Nh − 1

(yhmax − yhmin − nhc1h)},

E(e2
st.c2j ) =

1

X̄

L∑
h=1

W 2
hλh{S2

hx −
2nhc2h
Nh − 1

(xhmax − xhmin − nhc2h)},

E(e2
h.c1j ) =

λh
Ȳh
{S2

hy −
2nhc1h
Nh − 1

(yhmax − yhmin − nhc1h)},

E(e2
h.c2j ) =

λh
X̄h
{S2

hx −
2nhc2h
Nh − 1

(xhmax − xhmin − nhc2h)},

for j = 1, 2.
Using the results from the Theorem 4.2, we have following expressions for the expectation
of the relative errors

E(est.c1j × est.c2j ) =
1

Ȳ X̄

L∑
h=1

W 2
hλh[Shyx −

nh
Nh − 1

{c1h(xhmax − xhmin)

+ c2h(yhmax − yhmin)− 2nhc1hc2h}],

E(eh.c1j × eh.c2j ) =
λh

ȲhX̄h
[Shyx −

nh
Nh − 1

{c1h(xhmax − xhmin)

+ c2h(yhmax − yhmin)− 2nhc1hc2h}],

for j = 1, 2.

4.2. Properties of combined estimators. Using (3.2), the combined ratio estimator
Ŷ RC1 in terms of relative errors, we have

Ŷ RC1 = Ȳ (1 + est.c11)(1 + est.c21)−1,

Approximating up to first order, we have

(Ŷ RC1 − Ȳ ) ∼= Ȳ (est.c11 + est.c21 − est.c11est.c21 + e2
st.c21),

The bias of Ŷ RC1 is given by

(4.8)

B(Ŷ RC1) ∼=
L∑
h=1

W 2
h
λh
X̄

[
R{S2

hx −
2nhc2h
Nh − 1

(xhmax − xhmin − nhc2h)}

− {Shyx −
nh

Nh − 1
(c1h(xhmax − xhmin) + c2h(yhmax − yhmin)

− 2nhc1hc2h)}
]
,

where R = Ȳ /X̄.
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The mean square error of Ŷ RC1 up to first degree approximation is given by

(4.9)
MSE(Ŷ RC1) ∼= MSE(Ŷ RC0)−

L∑
h=1

W 2
h

2λhnh
Nh − 1

(c1h −Rc2h)

× {(yhmax − yhmin)−R(xhmax − xhmin)− nh(c1h −Rc2h)}.

Differentiating MSE(Ŷ RC1) with respect to c1h and c2h (h = 1, 2, 3, ..., L) respectively
and equate to zero, we have

∂MSE(Ŷ RC1)

∂c1h
= 0,

(yhmax − yhmin)−R(xhmax − xhmin)− 2nh(c1h −Rc2h) = 0,

where h = 1, 2, . . . , L.
Here we have L equations with 2L unknowns, therefore unique solution for the con-

stants is not possible. We suppose that c1h = (yhmax − yhmin)/2nh and it implies that
c2h = (xhmax − xhmin)/2nh where (h = 1, 2, 3, ..., L). For the optimum values of c1h and
c2h(h = 1, 2, 3, ..., L), the mean square error of (Ŷ RC1), is given by

(4.10)
MSE(Ŷ RC1)min =MSE( ˆ̄YRC0)−

L∑
h=1

W 2
h

λh
2(Nh − 1)

× {(yhmax − yhmin)−R(xhmax − xhmin)}2.

Similarly bias and mean square error of combined product estimator Ŷ PC1 , are give
by

(4.11)
B(Ŷ PC1) ∼=

L∑
h=1

W 2
h
λh
X̄

[
Shyx −

nh
Nh − 1

× {c1h(xhmax − xhmin) + c2h(yhmax − yhmin)− 2nhc1hc2h}
]
.

(4.12)
MSE(Ŷ PC1) = MSE(Ŷ PC1)−

L∑
h=1

W 2
h

2λhnh
Nh − 1

(c1h −Rc2h)

× {(yhmax − yhmin) +R(xhmax − xhmin)− nh(c1h +Rc2h)}.

Using optimum values of c1h and c2h, mean square error of Ŷ PC1 , is given by

(4.13)
MSE(Ŷ PC1)min =MSE(Ŷ PC0)−

L∑
h=1

W 2
h

λh
2(Nh − 1)

× {(yhmax − yhmin)−R(xhmax − xhmin)}2.

The bias and mean square error of combined regression estimator Ŷ lrC11 in case
positive correlation between Y and X are given by

B(Ŷ lrC11) = −Cov(x̄st.c21 , bc),(4.14)

and

(4.15)
MSE(Ŷ lrC11) = MSE(Ŷ lrC0)−

L∑
h=1

W 2
h

2λhnh
Nh − 1

(c1h − βcc2h)

× {(yhmax − yhmin)− βc(xhmax−xhmin)− nh(c1h − βcc2h)},
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where βc = Cov(ȳst, x̄st)/V ar(x̄st) is population regression coefficient.

For optimum values of constants c1h = (yhmax − yhmin)/2nh and c2h = (xhmax −
xhmin)/2nh (h = 1, 2, 3, ..., L), mean square error of Ŷ lrC11 , is given by:

(4.16)
MSE(Ŷ lrC11)min =MSE(Ŷ lrC0)−

L∑
h=1

W 2
h

λh
2(Nh − 1)

.

× {(yhmax − yhmin)− βc(xhmax − xhmin)}2

When there is negative correlation between Y and X, the variance of combined regression
estimator Ŷ lrC2, is given by

(4.17)
MSE(Ŷ lrC12) = MSE(Ŷ lrC0)−

L∑
h=1

W 2
h

2λhnh
Nh − 1

(c1h + βcc2h)

× {(yhmax − yhmin) + βc(xhmax − xhmin)− nh(c1h + βcc2h)},

At optimum values of constants c1h = (yhmax−yhmin)/2nh and c2h = (xhmax−xhmin)/2nh

for (h = 1, 2, 3, ..., L). The MSE of Ŷ lrC12 , is given by

(4.18)
MSE(Ŷ lrC12)min =MSE(Ŷ lrC0)−

L∑
h=1

W 2
h

λh
2(Nh − 1)

× {(y−yhmin) + βc(xhmax − xhmin)}2.

Using results for variances of combined regression estimators in Equations (4.16) and
(4.18), the minimum mean square error of combined regression estimator can be written
as

(4.19)
MSE(Ŷ lrC1)min =MSE(Ŷ lrC0)−

L∑
h=1

W 2
h

λh
2(Nh − 1)

× {(yhmax − yhmin)− |βc| (xhmax − xhmin)}2.

4.3. Properties of separate estimators. Consider separate ratio estimator Ŷ RS1 in
term of e′s

Ŷ RS1 =

L∑
h=1

WhȲh(1 + eh.c11)(1 + eh.c21)−1.

Expanding right hand side of above expression up to first order approximation, we have

(Ŷ RS1 − Ȳ ) ∼=
L∑
h=1

WhȲh(eh.c11 + eh.c21 − eh.c11eh.c21 + e2
h.c21),

The bias of Ŷ RS1 , is given by

(4.20)

B(Ŷ RS1) ∼=
L∑
h=1

W 2
h
λh
X̄h

[
Rh{S2

hx −
2nhch
Nh − 1

(xhmax − xhmin − nhc2h)}

− {Shyx −
nh

Nh − 1
(c1h(xhmax − xhmin) + c2h(yhmax − yhmin)

− 2nhc1hc2h)}
]
,
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where Rh = Ȳh/X̄h.
The mean square error of Ŷ RS1 , is given as

(4.21)

MSE(Ŷ RS1) ∼=
L∑
h=1

W 2
hλh

[
S2
hy −

2nhc1h
Nh − 1

(yhmax − yhmin − nhc1h)

+R2
h{S2

hx −
2nhc2h
Nh − 1

(xhmax − xhmin − nhc2h)}

− 2Rh{Shyx −
nh

Nh − 1
(c1h(xhmax − xhmin) + c2h(yhmax − yhmin)

− 2nhc1hc2h)}
]
,

or

(4.22)
MSE(Ŷ RS1) ∼= MSE(Ŷ RS0)−

L∑
h=1

W 2
h

2λhnh
Nh − 1

(c1h −Rhc2h)

× {(yhmax − yhmin)−Rh(xhmax − xhmin)− nh(c1h −Rhc2h)}.

DifferentiatingMSE(Ŷ RS1) with respect to each constant and equate to zero. Optimum
values of constants can be obtained from resulting equations as c1h = (yhmax−yhmin)/2nh

and c2h = (xhmax − xhmin)/2nh and minimum mean square error of Ŷ RS1 , is given by

(4.23)
MSE(Ŷ RS1)min ∼= MSE(Ŷ RS0)−

L∑
h=1

W 2
h

λh
2(Nh − 1)

× {(yhmax − yhmin)−Rh(xhmax − xhmin)}2.

Similarly bias and mean square error of separate product estimator, are given by

(4.24)
B(Ŷ PS1) ∼=

L∑
h=1

W 2
h
λh
X̄h

[
Shyx −

nh
Nh − 1

× {c1h(xhmax − xhmin) + c2h(yhmax − yhmin)− 2nhc1hc2h}
]
,

(4.25)
MSE(Ŷ PS1) ∼= MSE(Ŷ PS0)−

L∑
h=1

W 2
h

2λhnh
Nh − 1

(c1h +Rhc2h)

× {(yhmax − yhmin) +Rh(xhmax − xhmin)− nh(c1h +Rhc2h)}.

At optimum values of constants c1h = (yhmax−yhmin)/2nh and c2h = (xhmax−xhmin)/2nh,
minimum mean square error, is given by

(4.26)
MSE(Ŷ PS1)min ∼= MSE(Ŷ PS0)−

L∑
h=1

W 2
h

λh
2(Nh − 1)

× {(yhmax − yhmin) +Rh(xhmax − xhmin)}2.

When there is positive correlation between Yh and Xh, the bias and mean square error
of separate regression estimator, are given by

B(Ŷ lrS11) = −
L∑
h=1

WhCov(x̄h.c21 , bh),(4.27)

(4.28)
MSE(Ŷ lrS11) ∼= MSE(Ŷ lrS0)−

L∑
h=1

W 2
h

2λhnh
Nh − 1

(c1h − βhc2h)

{(yhmax − yhmin)− βh(xhmax − xhmin)− nh(c1h − βhc2h)},
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where βh = Shyx/S
2
hx is population regression coefficient in the hth stratum.

At optimum values of constant c1h = (yhmax−yhmin)/2nh and c2h = (xhmax−xhmin)/2nh,
minimum mean square error, is given by

(4.29)
MSE(Ŷ lrS11)min ∼= MSE(Ŷ lrS0)−

L∑
h=1

W 2
h

λh
2(Nh − 1)

× {(yhmax − yhmin)− βh(xhmax − xhmin)}2.

The MSE of separate regression estimator in case of negative correlation between Yh and
Xh, is given by

(4.30)
MSE(Ŷ lrS12) ∼= MSE(Ŷ lrS0)−

L∑
h=1

W 2
h

2λhnh
Nh − 1

(c1h + βhc2h)

{(yhmax − yhmin) + βh(xhmax − xhmin)− nh(c1h + βhc2h)},

At optimum values of constant c1h = (yhmax−yhmin)/2nh and c2h = (xhmax−xhmin)/2nh,
minimum mean square error of Ŷ lrS12 , is given by

(4.31)
MSE(Ŷ lrS12)min ∼= MSE(Ŷ lrS0)−

L∑
h=1

W 2
h

λh
2(Nh − 1)

× {(yhmax − yhmin) + βh(xhmax − xhmin)}2.

Generally mean square error of separate regression estimator can be written as

(4.32)
MSE(Ŷ lrS1)min ∼= MSE(Ŷ lrS0)−

L∑
h=1

W 2
h

λh
2(Nh − 1)

× {(yhmax − yhmin)− |βh| (xhmax − xhmin)}2.

4.3. Remark. It is obvious from MSE expressions of the proposed estimators based on
the extreme values, given in equations (4.7) - (4.32), that the proposed estimators are
having smaller MSE/variances than the existing estimators, mentioned in equations (2.1)
- (2.19) along with their MSE/variances.

5. Proposed estimators using fractional raw moments
Generally auxiliary information is utilized to enhance the precision of estimates of fi-

nite population parameters. If population parameters of the auxiliary variable are known
then some common estimators like ratio, product, regression and their modifications are
used. When information of the auxiliary variable is known it can be transformed to get
more precise estimates. Suppose that we have transformation on the auxiliary variable
X in the form of raw moment, is given by

(5.1)

Ui = Xp
i , where p > 0 and (i = 1, 2, 3, ..., N)

⇒Ū =

N∑
i=1

Xp
i

N
.

Here further assume that X ∈ <+.
In stratified random sampling after transformation, let Uhi and uhi be the population
and sample values of transformed auxiliary variable at the ith unit in the hth stratum
respectively. Let Ūh =

∑
Uhi
Nh

and ūh =
∑
uhi
nh

be the population and sample means,

S2
hu =

∑
(Uhi−Ūh)2

Nh−1
be the variance and Shyu =

∑
(Uhi−Ūh)(Yhi−Ȳh)

Nh−1
be the covariance
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with transformed auxiliary variable. Stratified ratio, product and regression estimators
along with their biases and mean square errors can be written as

(5.2) Ŷ RC2 =
ȳst
ūst

Ū ,

(5.3) B(Ŷ RC2) =

L∑
h=1

Whλh
(RuS

2
hu − Shyu)

Ū
,

(5.4) MSE(Ŷ RC2) =

L∑
h=1

W 2
hλh(S2

hy +R2
uS

2
hu − 2RuShyu).

(5.5) Ŷ PC2 =
ȳstūst

Ū
,

(5.6) B(Ŷ PC2) =

L∑
h=1

Whλh
Shyu
Ū

,

(5.7) MSE(Ŷ PC2) =

L∑
h=1

W 2
hλh(S2

hy +R2
uS

2
hu + 2RuShyu).

(5.8) Ŷ lrC2 = ȳst + bc(Ū − ūst),

where bc =
∑L

h=1W
2
hλhshyu∑L

h=1
W2

h
λhs

2
hu

is the combined sample regression coefficient and Ru = Ȳ
Ū
.

(5.9) B(Ŷ lrC2) = −Cov(ūst, bc),

(5.10) MSE(Ŷ lrC2) =

L∑
h=1

W 2
hλhS

2
hy(1− ρ2

yu),

where ρyu =
∑L

h=1W
2
hλhShyu√∑L

h=1
W2

h
λhS

2
hy

∑L
h=1

W2
h
λhS

2
hu

. Separate ratio, product and regression es-

timators for finite population mean in stratified random sampling, are given as follows:

(5.11) Ŷ RS2 =

L∑
h=1

WhȳhRu , where ȳhRu =
ȳh
ūh
Ūh,

(5.12) Ŷ PS2 =

L∑
h=1

WhȳhPu , where ȳhPu =
ȳh
Ūh

ūh,

(5.13) Ŷ lrS2 =

L∑
h=1

Whȳhlru ,

where ȳhlru =
{
ȳh + bhu(Ūh − ūh)

}
and bh =

shyu

s2
hu

.
The biases and mean square errors for separate estimators are given as:

(5.14) B(Ŷ RS2) =

L∑
h=1

Whλh
1

Ūh
(RhuS

2
hu − Shyu),
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(5.15) B(Ŷ PS2) =

L∑
h=1

Whλh
1

Ūh
(RhuS

2
hu + Shyu),

(5.16) B(Ŷ lrS2) = −
L∑
h=1

WhCov(ūh, bh),

(5.17) MSE(Ŷ RS2) =

L∑
h=1

W 2
hλh(S2

hy +R2
huS

2
hu − 2RhuShyu),

(5.18) MSE(Ŷ PS2) =

L∑
h=1

W 2
hλh(S2

hy +R2
huS

2
hu + 2RhuShyu),

(5.19) MSE(Ŷ lrS2) =

L∑
h=1

W 2
hλhS

2
hy(1− ρ2

hyu),

where Rhu = Ȳh
Ūh

and ρhyu =
Shyu

ShyShu
.

Let uhmax and xhmin be the maximum and minimum values of transformed auxiliary
variable respectively. The proposed estimators along with their mean square errors are
given as follows

Combined ratio estimator.

(5.20) Ŷ RC3 =
ȳst.c11
ūst.c21

Ū ,

(5.21)
MSE(Ŷ RC3)min = MSE(Ŷ RC2)−

L∑
h=1

W 2
h

λh
2(Nh − 1)

× {(yhmax − yhmin)−Ru(uhmax − uhmin)}2.

Separate ratio estimator.

(5.22) Ŷ RS3 =

L∑
h=1

Wh
ȳh.c11
ūh.c21

Ūh,

(5.23)
MSE(Ŷ RS3)min = MSE(Ŷ RS2)−

L∑
h=1

W 2
h

λh
2(Nh − 1)

× {(yhmax − yhmin)−Rhu(uhmax − uhmin)}2.

Combined product estimator.

(5.24) Ŷ PC3 =
ȳst.c12
Ū

ūst.c22 ,

(5.25)
MSE(Ŷ PC3)min = MSE(Ŷ PC2)−

L∑
h=1

W 2
h

λh
2(Nh − 1)

× {(yhmax − yhmin) +Rhu(uhmax − uhmin)}2.
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Separate product estimator.

(5.26) Ŷ PS3 =

L∑
h=1

ȳh.c11
Ūh

ūh.c21 ,

(5.27)
MSE(Ŷ PS3)min = MSE(Ŷ PS2)−

L∑
h=1

W 2
h

λh
2(Nh − 1)

× {(yhmax − yhmin) +Rhu(uhmax − uhmin)}2.

Combined regression estimator.

(5.28) Ŷ lrC31 = ȳst.c11 + bc(Ū − ūst.c21),

(5.29)
MSE(Ŷ lrC3)min = MSE(Ŷ lrC2)−

L∑
h=1

W 2
h

λh
2(Nh − 1)

× {(yhmax − yhmin)− |βc| (uhmax − uhmin)}2.

Separate regression estimator.

(5.30) Ŷ lrS31 =

L∑
h=1

Wh{ȳh.c11 + bh(Ūh − ūh.c21)},

MSE(Ŷ lrS3)min = MSE(Ȳ lrS2)−
L∑
h=1

W 2
h

λh
2(Nh − 1)

(5.31)

× {(yhmax − yhmin)− |βh| (uhmax − uhmin)}2.(5.32)

5.1. Remark. The results are obvious from the MSE expressions of proposed estimators
based on fractional raw moments and the extreme values in equations (5.20) - (5.31) that
the proposed estimators have smaller MSE/variances than the existing estimators in the
equations (2.2) - (2.19) along with their MSE/variances.

6. Numerical study
We have conducted a numerical study for three real data sets. Percentage efficiencies

of the proposed estimators relative to usual stratified estimator (ȳst) are calculated for
the three data sets.

6.1. Population-I: [6, page 218].
Y: Juice quantity per cane (grams)
X: Weight of cane (grams)

Table 1. Summary of Population-I

Nh X̄h Ȳh S2
hx S2

hy Shyx yhmax yhmin xhmax xhmin

Stratum-1 6 366.67 135.00 2706.67 80.00 440.00 150 125 450 300
Stratum-2 12 310.83 99.17 1881.06 226.52 618.93 135 80 410 260
Stratum-3 7 317.14 80.71 2890.48 120.24 444.05 100 70 420 250

A stratified sample of size n = 12 is selected by using proportional allocation such
that n1 = 3, n2 = 6, n3 = 3.
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6.2. Population-II: [6, page 194].
Y: Amount of pocket money spent by students (in rupees )
X: Annual income of students’ parents (in ’000 rupees)

Table 2. Summary of Population-II

Nh X̄h Ȳh S2
hx S2

hy Shyx yhmax yhmin xhmax xhmin

Stratum-1 4 92.50 925.00 851.00 50833.33 6266.70 1250 750 135 70
Stratum-2 10 57.20 535.00 31.07 11694.44 486.67 700 350 66 50
Stratum-3 13 38.00 303.85 35.00 9775.64 445.83 450 150 47 28

Students are divided into three stratum: poor, middle and rich. A sample of 15(= n)
students is selected by using proportional allocation. Sample sizes from the three stratum
are n1 = 2, n2 = 6, n3 = 7.

6.3. Population-III: [6, page 212].
Y: Area of leaf (in sq cm)
X: Weight of leaf (in mg)

Table 3. Summary of Population-III

Nh X̄h Ȳh S2
hx S2

hy Shyx yhmax yhmin xhmax xhmin

Stratum-1 12 103.42 25.752 133.900 40.157 67.506 36.61 17.76 123 84
Stratum-2 13 110.92 28.940 66.244 30.334 41.034 41.07 21.00 130 101
Stratum-3 14 104.29 25.777 154.990 46.628 82.082 39.06 16.07 129 81

Using proportional allocation method, n1 = 6, n2 = 7, n3 = 7 are sample sizes from
the three strata which constitute a sample of size n = 20.

The results are given in Tables 4, 5, 6 and 7.

7. Results and discussion
In Table 4, percentage efficiencies of proposed ratio, product and regression estimators

ȳst.c, Ŷ RC1 , Ŷ RS1 , Ŷ PC1 , Ŷ PS1 , Ŷ lrC1 and Ŷ lrS1 , based on extreme values, relative to
the usual stratified estimator ȳst are given for three populations. Also percentage effi-
ciencies of usual ratio, product and regression estimators Ŷ RC0 , Ŷ RS0 , Ŷ PC0 , Ŷ PS0 , Ŷ lrC0

and Ŷ lrS0 relative to the usual stratified estimator ȳst are given for the same three pop-
ulations. Results based on these data sets indicate that the all the proposed estimators
outperform their respective competitors. As the study variable and auxiliary variable
are positively correlated in the data sets for all three populations, therefore product
estimators are not performing well.

In Tables 5, 6 and 7, for different values of p, percentage efficiencies of proposed esti-
mators, using fractional moments of the auxiliary variable, relative to the usual stratified
estimator ȳst are given for Populations I, II and III respectively. For p = 1, the pro-
posed estimators Ŷ RC2 , Ŷ RS2 , Ŷ PC2 , Ŷ PS2 , Ŷ lrC2 , Ŷ lrS2 reduce to the usual estimators
Ŷ RC0 , Ŷ RS0 , Ŷ PC0 , Ŷ PS0 , Ŷ lrC0 , Ŷ lrS0 and the estimators Ŷ RC3 , Ŷ RS3 , Ŷ PC3 , Ŷ PS3 , Ŷ lrC3



399

and Ŷ lrS3 reduce to the previously proposed estimators in this article Ŷ RC1 , Ŷ RS1 , Ŷ PC1 ,

Ŷ PS1 , Ŷ lrC1 , Ŷ lrS1 .
In Tables 5 and 6, results show that as the value of p decreases, the percentage relative

efficiencies for the proposed ratio and product estimators increase up to a specific value
of p and then tend to decrease. But in Table 7, as the the value of p decreases, the
relative efficiencies of the proposed estimators decrease too.

Table 4. Percent relative efficiencies of proposed estimators with re-
spect to ȳst

Estimators Population-I Population-II Population-III

ȳst 100.00 100.00 100.00
ȳst.c 270.80 286.08 182.43
Ratio Estimators
Ŷ RC0 228.41 337.58 272.61
Ŷ RC1 381.39 447.58 412.59
Ŷ RS0 243.52 295.16 270.21
Ŷ RS1 407.12 423.42 408.82
Product Estimators
Ŷ PC0 21.84 29.55 49.40
Ŷ PC1 78.09 115.88 96.92
Ŷ PS0 22.32 27.57 49.66
Ŷ PS1 77.81 112.72 97.43
Regression Estimators
Ŷ lrC0 201.28 284.28 820.46
Ŷ lrC1 356.66 411.50 896.52
Ŷ lrS0 532.92 426.33 853.88
Ŷ lrS1 552.93 453.70 882.53
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Table 5. Percent relative efficiencies, calculated from Population-I,
for different values of p

Estimators p = 2 p = 1.5 p = 1 p = 0.90 p = 0.80 p = 0.70 p = 0.60 p = 0.50 p = 0.40 p = 0.30

ȳst 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Ŷ RC2 31.17 73.83 228.41 279.84 323.35 341.60 325.69 284.57 235.23 189.58
Ŷ RS2 34.23 80.96 243.52 293.05 293.05 331.06 341.95 320.79 278.33 230.15
Ŷ PC2 8.46 13.00 21.84 24.58 24.58 27.83 31.71 36.39 42.09 49.09
Ŷ PS2 8.71 13.33 22.32 25.10 25.10 28.38 32.30 37.02 42.75 49.76
Ŷ lrC2 204.18 203.61 201.28 200.60 200.60 199.85 199.03 198.15 197.20 196.19
Ŷ lrS2 579.94 559.39 532.92 527.08 527.08 521.10 514.99 508.77 502.46 496.06

ȳst.c 270.80 270.80 270.80 270.80 270.80 270.80 270.80 270.80 270.80 270.80
Ŷ RC3 97.95 193.99 381.39 419.64 419.64 449.08 464.93 464.49 448.27 419.73
Ŷ RS3 101.09 204.60 407.12 446.38 446.38 474.63 487.01 481.52 459.89 426.64
Ŷ PC3 31.21 47.58 78.09 87.16 87.16 97.68 109.90 124.15 140.77 160.17
Ŷ PS3 30.62 47.06 77.81 86.96 86.96 97.54 109.84 124.15 140.82 160.24
Ŷ lrC3 379.99 371.31 356.66 353.10 353.10 349.35 345.44 341.37 337.16 332.83
Ŷ lrS3 597.97 578.26 552.93 547.36 547.36 541.65 535.82 529.90 523.89 517.82

Table 6. Percent relative efficiencies, calculated from Population-II,
for different values of p

Estimators p = 2 p = 1.5 p = 1 p = 0.90 p = 0.80 p = 0.70 p = 0.60 p = 0.50 p = 0.40 p = 0.30

ȳst 100.00 100.00 100 100 100 100 100 100 100 100
Ŷ RC2 20.22 82.25 337.58 351.94 327.72 284.31 239.43 200.86 169.99 145.83
Ŷ RS2 53.15 123.93 295.16 308.45 320.80 311.57 284.75 249.01 212.16 178.72
Ŷ PC2 7.15 14.62 29.547 31.62 36.12 41.16 46.76 52.96 59.82 67.38
Ŷ PS2 11.44 17.05 27.575 29.09 32.46 36.39 40.98 46.37 52.73 60.26
Ŷ lrC2 150.43 197.97 284.28 294.80 316.01 336.57 355.13 370.20 380.39 384.66
Ŷ lrS2 430.10 429.51 426.33 425.86 424.82 423.66 422.38 420.97 419.44 417.78

ȳst.c 286.08 286.08 286.08 286.08 286.08 286.08 286.08 286.08 286.08 286.08
Ŷ RC3 73.92 219.67 447.58 457.88 466.66 461.46 445.86 423.77 398.40 372.01
Ŷ RS3 148.81 272.90 423.42 431.98 442.20 442.77 434.27 418.35 397.15 372.86
Ŷ PC3 32.46 64.15 115.88 122.16 135.34 149.34 164.21 180.01 196.81 214.69
Ŷ PS3 46.91 71.08 112.72 118.26 130.24 143.51 158.16 174.24 191.78 210.75
Ŷ lrC3 298.79 353.49 411.5 416.06 423.88 429.68 433.21 434.32 433.00 429.36
Ŷ lrS3 459.95 458.12 453.7 453.09 451.80 450.39 448.84 447.18 445.39 443.47
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Table 7. Percent relative efficiencies, calculated from Population-III,
for different values of p

Estimators p = 2 p = 1.5 p = 1 p = 0.90 p = 0.80 p = 0.70 p = 0.60 p = 0.50 p = 0.40 p = 0.30

ȳst 100.00 100.00 100 100 100 100 100 100 100 100
Ŷ RC2 884.81 519.12 272.61 242.15 216.04 193.58 174.19 157.38 142.74 129.94
Ŷ RS2 882.19 515.98 270.21 240.05 214.23 192.06 172.95 156.39 141.99 129.40
Ŷ PC2 29.14 37.31 49.40 52.51 55.92 59.66 63.78 68.34 73.38 78.98
Ŷ PS2 29.12 37.42 49.66 52.80 56.23 59.99 64.12 68.67 73.69 79.26
Ŷ lrC2 918.56 877.40 820.46 807.71 794.62 781.25 767.65 753.86 739.94 725.92
Ŷ lrS2 929.68 898.89 853.88 843.53 832.82 821.79 810.47 798.91 787.14 775.19

ȳst.c 182.43 182.43 182.43 182.43 182.43 182.43 182.43 182.43 182.43 182.43
Ŷ RC3 934.99 654.94 412.59 376.74 344.60 315.84 290.10 267.04 246.37 227.80
Ŷ RS3 933.72 650.31 408.82 373.38 341.68 313.35 288.02 265.37 245.08 226.87
Ŷ PC3 58.82 74.46 96.92 102.56 108.68 115.33 122.57 130.46 139.07 148.49
Ŷ PS3 58.76 74.68 97.43 103.12 109.28 115.96 123.21 131.09 139.67 149.01
Ŷ lrC3 971.53 943.34 896.52 885.34 873.66 861.54 849.01 836.14 822.96 809.54
Ŷ lrS3 963.62 931.03 882.53 871.34 859.76 847.83 835.60 823.10 810.38 797.49

8. Simulation study
Simulation study is important to evaluate performances of the suggested estimators

by repeated sampling. In this section, three populations given in Section 6 are considered
and different sample sizes (20%, 30% and 40% of N) are selected from each population.
It can be seen from Table 8 that sample sizes selected from Populations I , II and III
are (n = 5, 8, 10), (n = 5, 8, 11) and (n = 8, 12, 16) respectively. The sampling process is
repeated 1000 times and mean square errors of the estimators are calculated using these
samples as follows

(8.1) MSE(θ̂) =
1

1000

1000∑
k=1

(θ̂k − θ)2

where θ̂ is estimator of the parameter θ. Overall, mean square errors of all the estimators
decreases by increasing the sample sizes, however some results in Table 8 indicate that
decrease in mean square errors of ratio and regression estimators may be slower for larger
sample sizes. Furthermore, proposed estimators have smaller mean square errors than
the existing estimators. Therefore, the proposed estimators perform better than the
conventional estimators while handling the extreme values in the data.
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Table 8. Mean square errors of the estimators based on simulation study

Population-I Population-II Population-III

Estimators n = 5 n = 8 n = 10 n = 5 n = 8 n = 11 n = 8 n = 12 n = 16

ȳst 59.10 22.16 12.90 3588.33 2275.59 1232.95 4.33 3.41 2.03
ȳst.c 35.29 13.18 7.00 2351.09 1023.06 683.83 3.19 2.77 1.59
Ratio Estimators
Ŷ RC0 11.15 4.63 4.30 1264.47 716.00 381.26 1.90 1.39 0.84
Ŷ RC1 7.35 4.15 3.08 891.61 467.42 255.33 1.35 1.09 0.64
Ŷ RS0 11.14 4.62 4.30 1264.03 715.36 382.16 1.90 1.39 0.84
Ŷ RS1 7.36 4.15 3.08 891.82 467.16 256.25 1.34 1.10 0.64
Product Estimators
Ŷ PC0 229.39 80.87 49.28 10956.23 7640.00 3794.54 8.30 6.77 3.94
Ŷ PC1 162.06 52.33 26.57 6094.73 2565.30 1762.97 6.20 5.55 3.12
Ŷ PS0 229.32 80.83 49.26 10960.84 7634.88 3802.23 8.30 6.78 3.94
Ŷ PS1 162.06 52.30 26.58 6089.40 2566.04 1765.51 6.20 5.56 3.12
Regression Estimators
Ŷ lrC0 10.55 4.43 4.18 1419.75 812.56 424.45 0.89 0.54 0.33
Ŷ lrC1 6.60 3.81 3.01 983.50 498.93 272.55 0.56 0.37 0.23
Ŷ lrS0 10.55 4.43 4.18 1419.27 811.76 424.95 0.89 0.54 0.33
Ŷ lrS1 6.60 3.81 3.01 985.41 498.46 272.60 0.56 0.37 0.23

9. Conclusions
In the present study, it is established that when the study population contain extreme

values (substantially large or small relative to the other values of data) then the proposed
estimators can perform efficiently. Also it can be concluded that extreme values may be
used to enhance the efficiency of the estimator. Therefore, the proposed estimators can
be used in place of their competitor estimators in real life applications. It is shown that
using fractional raw moments of the auxiliary variable, efficiency of ratio and product
estimators can be improved by decreasing value of p up to a specific value for some
populations.
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