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Using extreme values and fractional raw moments
for mean estimation in stratified random sampling

Shoaib Ali*, Manzoor Khan' and Javid Shabbir #

Abstract

Unusual observations can occur in sample survey data. Mean estimator
is sensitive to very large and/or small values, if included in sample. It
can provide biased results and ultimately, tempted to delete from the
sample data. Extreme values, if known, can be retained in data and
used as the auxiliary information to increase the precision of estimate.
Similarly, a known auxiliary variable is always source of improvement
in precision of estimates. A transformation can be used for the aux-
iliary variable to get even more precised estimates. In this article, we
have suggested modified estimators for finite population mean when a
sample is drawn under stratified random sampling design. We used
extreme values and fractional raw moments of the auxiliary variable
and suggested improved ratio, product and regression type estimators.
By theoretical comparison, efficiency of proposed estimators is estab-
lished and numerical and simulation studies are conducted to support
the theoretical results.
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1. Introduction

The purpose of survey sampling is to utilize the maximum information about the
characteristic of interest. Many fields of study require estimation of the finite population
mean for variable of interest. For example, average wheat production per acre, aver-
age income of households, mean weight of meat producing animals etc. Mean per unit
estimator is base line estimator to estimate finite population mean.

When the variable of interest is dependent on an extraneous source, the variance of
the estimator can be inflated. To avoid this problem and to get precise estimates, it is
important to use the stratified random sampling. To improve the precision of estimates,
use of the auxiliary information has been in practice. [2] was pioneer to use the auxiliary
information for the estimation of population mean. It was established that when the
study variable and the auxiliary variable are positively correlated then ratio estimator
provides more efficient estimates as compared to sample mean estimator and if there is
negative relationship between the study and the auxiliary variable then product estimator
provides better estimate. When regression line between the study and the auxiliary
variables does not pass through origin then regression estimator dominates over ratio and
product estimators. In stratified random sampling, [3] proposed two different methods
for constructing the ratio estimators. In our study we use both combined and separate
estimators when using maximum and minimum values.

2. Sampling scheme

Let a population of size N is divided into L mutually exclusive strata of sizes Np(h =
1,2,3,...,L) such that 25:1 Np = N. Let Yp; and Xj; be the values of the study and
the auxiliary variables at i*" unit(i = 1,2...,Np) in the Rt (h =1,2,3,...,L) stratum
respectively. Let a sample of size n, (h = 1,2,3,...,L) is drawn from each stratum
independently by simple random sampling without replacement (SRSWOR) such that
25:1 np = n, where n is total number of units in a sample. Let yx;, and xp; be the
values of the study and the auxiliary variables of the " unit (i =1,2...,np) in a sample.

Define:
c_ XN Y g 2N X _
Y===5" X= =1 =

Population means of the study and the auxiliary variables respectively,
v, — PIRLTR TR DL T
h="7N, Y= ", -

Population and sample means of the study variable in the A" stratum,

N, n
X — Zi:hl Xhi Ty = ZL:hl Thi —
h Np, » Uh np

Population and sample means of the auxiliary variable in the h" stratum,

N .2
S2 _ lehl (Xpni—Xn) _
hz — Np—1 -

Population variance of the auxiliary variable in the A*" stratum,
_ SR (Y= R)?

S,%y ===y = Population variance of the study variable in the hth stratum,
N (X pi—Xn) (Yni Vi
Shyz = L h”’Nhf‘l)( hi=¥n) _ Population covariance of Y and X in the h'" stratum,
Shy: . . .
Brn = % = Population regression coefficient for the k" stratum,
hx
L 2, Np—n
=1 Wi ( 1\}fhnhh )Shya . . .
Be = —3 5 N —wi—, — Population regression coefficient across the strata,
h=1 Wh< Npnp )Shm

Wy = % = Stratum weight in the h*"* stratum,
frn = 2o = Sampling fraction in the A" stratum,

Np,
R = Population ratio,

=
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X
The mean per unit estimator and its variance under stratified random sampling, are given
by

Ry = }?—’; = Population ratio in the h*" stratum.

1ffh.

L L
2.1 st = Gn: V(Gst) = ZAnS? h A\n =
( ) Yst ZWhyhvv(y t) ZWh hShy7 where h o

h=1 h=1

Combined ratio, product and regression estimators of finite population mean (Y) in
stratified random sampling with their biases and mean square errors are given as follows:

(2.2)  Yare, = 24X,
Tst

= gstjst
2.3 Y = 2=
(2.3) PCo %
(24)  Yircy = Fst + be(X — Zst),

L 2
Zh=1 Wirnshyx

where b, = T L 1S the combined sample regression coefficient, across the
h=1 VA hSha
strata.
- - (RS?, — Shya)
(25)  B(Yroo) =Y Wiy—rt 2002
h=1 X

Shya:
X )

L
(26)  B(Yrc,) =Y Wikn
h=1

2.7)  B(Yircy) 2 —Cov(Far, be),

(28)  MSE(YVrey) =S WZAL(S2, + R*S2, — 2RShya),

M M-

(29)  MSEX pcy) =S WM (S}, + R*S7e + 2RShye),
h=1
N L
(2.10) MSE(Yircy) = > WiAnSi, (1 — p2),
h=1

ke WA Shya
L 2 2 L 2 2
h=1 Wh,khshy h=1 WiEAnSh,
tween the study and the auxiliary variables.

where p. = is the population correlation coefficient be-

Separate ratio, product and regression estimators for finite population mean in strat-
ified random sampling are given as follows:
L

(2.11)  Yrs, = »_ Walr, where f§nr = %Xh
h
h=1

L _
(2.12) ?PSO = ;Whyhp, where ynp = %i‘h
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L
Jan — S x
(2.13) erso = Z Whynir, where yni, = {gjh + bh(Xh — i'h)} and by, = Sth
h=1 hz

Biases and mean square errors for separate estimators are given as:

L
= 1
(2.14)  B(Yrs,) = ) Wh/\hX—h(RhSﬁz — Shyz),

h=1
o L 1
(2.15) B(Yps,) = Z Wh)\h)—(f}(RhSiI + Shyz),
h=1 v
. L
(2.16)  B(Yirs,) = — Y WiCov(n, bn),
h=1

M=

(2.17) MSE(Y rsy) =

>
Il

1

(2.18) MSE(Y ps,) Wi (Shy + R Sha + 2RiShyz),

1R
M=

>
Il

1

WiAnSi, (1= pi),

Mh

(2.19) MSE(Yis,)

>
Il

1

Shyz
ShySha

where pp, = is the correlation coefficient between the study and auxiliary variables

in the h*" stratum.

In many situations real data sets contain unusual large and/or small values. Various
hybrid seed production companies introduce new varieties of seeds and also specify the
range of production per acre that farmer would benefit from. Maximum and minimum
values can easily be read from the specified ranges. For estimating average income of
households, income of the richest persons (maximum) in a society is well-known, and
that of poorest (minimum) can easily be assessed. Similarly in various surveys which
are conducted regularly after specific interval of time, information about maximum and
minimum values can easily be obtained. Mean per unit estimator for finite population
mean is very sensitive to unusual values. In such situation, this estimator can produce
misleading results if any of the unusual values is selected in the sample. [5] suggested
an unbiased estimator to overcome this problem of extreme values in the data set. Let
Ymaz and Ymin be the maximum and minimum values in the data set respectively. The
estimator defined by [5], is given by

y + ¢, if sample contains y,,in but not ymaz
(2.20) §s =<y —c, if sample contains Ymaz but not Ymin

Y, In other cases

where c is an arbitrary constant. Variance of the estimator s, is given by:

2\nc

N 2
(2.21) Var(ys) = \S, N1

(ymaz — Ymin — 7’LC).
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At the optimum value i.e. c(opy) = ¥mee-Ymin the minimum variance of s, is given by:

) o A .
(2.22) Vﬂ/r(ys)(mzn) = Var(y) m(ymaz ymzn) .

[4] and [1] suggested ratio, product and regression type estimators using extreme values
of data in simple random sampling using one and two auxiliary variables respectively.

3. Proposed estimators using extreme values of data

Let Yhomaw Yhpin) and zn,. .. (x4, ;) be the maximum(minimum) values of the study
and the auxiliary variables respectively in the stratum h. The proposed estimator for

finite population mean (Y) under stratified random sampling is given as follows

L
(31) gst.c = ZWhghc,

h=1
where

Gn + cn, if a sample from the A" stratum contains yx

min

Gne = S Yn — cn, if a sample from the h'" stratum contains yp,,,, but not y

Un, in other cases,

where cp(h =1,2,3, ..., L) are arbitrary constants.

3.1. Proposed estimators when positive correlation between Y and X. When
relationship between the study variable Y and the auxiliary variable X is positive then
for large value of X in a sample, a large value of Y is expected to be selected in the
sample. Similarly for small value of X in a sample, a small value of Y is expected to be
selected. Therefore ratio estimators can be defined as:

Combined ratio estimator.

(3.2)  Yre, = Lty
Tst.coq
Separate ratio estimator.

L _
(3.3)  Yrgs, = Z W, Lo x|

h=1 Lh.cz1

Combined regression estimator.
(3~4) ?lrcu = Yst.e1n T bC(X - jstcm)-

Separate regression estimator.

L

(3'5) ?lrsu = Z Wh{ghﬁn + bh(Xh - i‘hﬁm)}’
h=1

but not yn,, ..,

min?
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In the estimators from (3.2) to (3.5); Yst.c,y = Zi:l Whih.ci, and Tst.co; = Zﬁzl WhTh.co -
Here, §n.c;; and Zp.c,, are defined as:

(Jn + cin, Th + can), if sample contains yy but not yn,, ..,

min

(Gh.c11>Thocor) = < (Yo — C1n, Th — cap), if sample contains yy,,,, but not yy

min?

(Un>Zn), in other cases,

where ci1p,, con(h = 1,2,3, ..., L) are arbitrary constants.

3.2. Proposed estimators when negative correlation between Y and X. When
relationship between the study variable Y and the auxiliary variable X is negative then
for large value of X in a sample, a small value of Y is expected to be selected in a sample.
Similarly for small value of X in a sample, a large value of Y is expected to be selected.
Therefore product estimators can be defined as:

Combined product estimator.

(3.6) Ypc, = ys;—;m Tst.con-

Separate product estimator.
~ L ?
X h.c12 —
(3.7)  Yps, =»  “=Tp,,,.
= Xk

Combined regression estimator.
(38) ?lT‘Clz = gstclz + b(‘()_( - jst.022)~
Separate regression estimator.
) L
(39)  Yis, = Z WidGh.cro +00(X — Thcoy) }-
h=1

In the estimators from (3.6) to (3.9); Fst.cyy = Zﬁzl Whih.cy; and Tst.cy, = Zﬁzl WhZh.cy; -
Here, §n.c;, and Zp.c,, are defined as follows:

(Yn + cin, Th — c2n), if sample contains yy, but not Yn,, ..

min

(Jh.c12) Thocos) = $ (Yn — C1n, Th + con), if sample contains yy,,,, but not yy

min?

(Tn, Zn), in other cases,

where cip, con(h = 1,2,3, ..., L) are arbitrary constants.

4. Properties of the proposed estimators

4.1. Some useful results. To find out the biases and mean square errors of the pro-
posed estimators, we prove following two theorems.

4.1. Theorem. Letnp(h =1,2,3,..., L) is drawn from sub-populations Np(h = 1,2,3, ..., L)
such that > np = n.

o The estimator §re is an unbiased estimator of population mean Yy in the h'"
stratum.
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o Variance of Yne is given as:

2N Ch AR

(4.1)  Var(gne) = AnShy — W(yhmm

= Yhomin — HCR)-
Proof. To prove first and second parts of Theorem 4.1, see [5] and the results in (2.21)
respectively. O

4.2. Theorem. Let a sample of sizes np(h =1,2,3,..., L) are drawn from bi-variate sub-
populations Np(h =1,2,3, ..., L) respectively which constitute a stratified random sample
of size n(= 25:1 np) from a population of size N.

o The covariance between Yn.c;; and Th.c,,, when they are positively correlated, is

gilven as:

)\hnh
Np—1
+ C2n(Yhmas — Yhmin) — 2NC1RC2R}.

Cov(Fn.ci1sThicar) :)‘hszyz - {c1r(Zhomae — thm)

(4.2)

o The covariance between Yn.c,, and Th.c,,, when they are negatively correlated, is
given as:

_ _ Annp
(4.3) Cov(Fn.cizs Th.cas) :)‘hs}zlyac - m{clh(mhm,am - whmin)

+ 20 (Yhmas = Yhmin) — 20hC1RC2R )

Proof. Proof of the results in Theorem 4.2 can be easily derived using the results from
[4] O

Using the results f{om Theorem 4.1, it can be shown that ¥s:.. is an unbiased estimator
of population mean Y.

L L L
E(§st.c) = E(Z Whihe) = Z WhE(§he) = Z WiY, =Y.
h=1 h=1 h=1

And expression for variance of gst.. can be established using result in (4.1),

L L
Var(gst.c) = Var(z Whihe) = Z W;fVar(gjhc).
h=1

h=1

(4.4)

2npe
= Wi dn{Siy = o Yhmmaw — Ynpin — TnCR)}
f Np —1

L
Differentiating V (§st.c) with respect to cn(h = 1,2,3,..., L) respectively and equate to

zero, we have

OVar(Yst.c)
Bch

Optimum value of the constant ¢, can be obtained from its corresponding equation as

=0= Yhmaz — Yhmin — 200CH = 0.

follows

yhmam — yhnlin
(4.5)  Chyp = B T— for (h=1,2,3,..,L).

The minimum variance Var(gst.c), is given by

L
— R 2 2 _ # _ 2
(4.6)  Var(Gst.c)min = ; Wih{Siy — 5 D) (Yhmaz — Yhmin)- }s
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2

L
4.7)  Var(gst.c)min = V(¥st) — Z WE)\hm(yhnlaz = Yhmin) -

€st.c1; = (gst.clj - }7)/}77 €st.co; = (jstczj - )_()/)_(7 .7 =1,2
h.cr; = (Ph.cr; — Y1)/ Ya, Chico; = (Thucy; — X))/ Xn, j=1,2

To the first order approximation, we have

E(est.clj) = E(estczj) = E(eh Clj) = E(eh.cgj) =0,

2npe
B(€ie,;) = Z Wi An{Shy — h:q (Yhmaz = Yhmin — THC1R)},
L
1 2npc
E(€ateo;) = < Z Wi A {Sha — h_z}i (Thmas = Thymin — MhC20)},

2 Ab (o2 2npcin
E(eh.c,;) = T{Shy TN, —1 (Yhmas = Yhumin — MhC1R)}

2nhc h
E(ei.c2j) = { hx — N _21 (:L,hvnaz - :I:h-min - nhc2h)}7
for j=1,2.

Using the results from the Theorem 4.2, we have following expressions for the expectation
of the relative errors

L
1 Nh
E(65t<clj X 65t-62] =3 An[Shyz — {10 (Thpae — th,in)
T VX & No—1
+ 20 (Yhmar = Yhumin) — 2N0C1RC2R Y],

An

n
E(en.ci; X €h.ey;) = 75 =5 [Shya — W}il{clh(whmw = Thyyin)

+ 20 (Yhmaw = Yhmin) — 2100C10C21 ],

for j=1,2.

4.2. Properties of combined estimators. Using (3.2), the combined ratio estimator
Y re1 in terms of relative errors, we have

?Rcl = Y(l + est.cll)(l + est.621)71

I

Approximating up to first order, we have

SV ¥ ¥ 2
(YRC1 - Y) = Y(estcu + €st.co; — €st.c1q Cst.coy T estcgl)

The bias of ?RCH is given by

A 2npc
YRCl Z W2 h R{th - Nhh_zlz( hmaz — xhwnin - nhCQh)}

(4.8) nh

—{Shye — ﬁ(clh(mhmaz = Thppin) T 20 Yhmae = Yhmin)
- QTlhclhczh)H7

where R=Y/X.



391
The mean square error of Y rc, up to first degree approximation is given by

- 2>\
MSE(Yre,) = MSE(Y rey) Z W2 SAn (cin — Rean)

X A{(Yhmas — yhmm) - 1’3(9L’hmam = Thypin) — Pr(cin — Rean)}.

Differentiating MSE(Y ro,) with respect to c15 and cz2p (b = 1,2,3, ..., L) respectively
and equate to zero, we have

OMSE(Y re,)
dcin
Yhmaw = Yhmin) — B(Zhpmaw = Thipin) — 2nn(cin — Rean) =0,
where h =1,2,..., L.
Here we have L equations with 2L unknowns, therefore unique solution for the con-
stants is not possible. We suppose that ¢in = (Ynmew — Yhmin )/ 20k and it implies that
ca2h = (Thopaw — Thyyiy )/2nn where (h=1,2,3, ..., L). For the optimum values of ¢i5 and

con(h =1,2,3,...,L), the mean square error of (Y rc, ), is given by

(410) MSEY re, min =MSE(Yrey) ZWh N, o 1)
X {(Yhmas — yhmm) — R(Thpas = Thpin) }-

Similarly bias and mean square error of combined product estimator Y pc,, are give
by

A n
PCl ZWQ h Shym_ h

(4.11) Ni—1
X {Clh(mhmm = Thpin) + 20 (Yhmaw = Yhmin) = 200C11C2R Y]
MSE(Y pe,) = MSE(Y e, ) Z W2 ”h"h c1n — Rean)
(4.12) ! )

X AWhmaz = Yhmin) + R(l‘hmaz - mhmm) —nn(ein + Rean)}

Using optimum values of c¢i5 and c2p, mean square error of Y pc,, is given by

MSE(Y pey )min =MSEY pcy) Z Wh Nh —

(4.13)

X AWYhmaw — yhmm) = R(Thpar — Thpin) 1

The bias and mean square error of combined regression estimator Yi,c,, in case
positive correlation between Y and X are given by

(4.14) B(?ZT011) = —Cov(a‘cst_cu,bc),

and

e 2)\ n
(4.15) MSE(Yirc,,) = MSE( erco Z W 2R Clh—ﬂcczh)

X AYhmaz = Yhmin) — 5c(9~“hmar$h,m) —np(cin — Becon)},
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where 8. = Cov(§st, Tst)/Var(Zs:) is population regression coeflicient.

For optimum values of constants cin = (Yhmaw — Yhpmin)/2nn and con = (Th,,0n —

Th,,,.)/2nn (h=1,2,3, ..., L), mean square error of Y;.c,,, is given by:
MSE Y r =MSE( Y r W7
(4.16) Vircs)min trCo) Z "N, — 1) Nh 1y
X {(yhm,az - yhvnin) - ﬂc(x}hnam - thm)}Q

When there is negative correlation between Y and X, the variance of combined regression

estimator ercz, is given by

2)\hnh

MSE(Yircy,) = MSE( erco Z VV2 cin + Becan)

(4.17)
X AYhmaz = Yhmin) T 5c(~’ﬂhmam - fﬂhmm) —np(cin + Becon)},

At optimum values of constants ¢i1, = (Yhmaw —Yhumin )/ 27k a0d Con = (Thonaw —Thyin )/ 200
for (h=1,2,3,...,L). The MSE of Y c,,, is given by

MSEY 1r¢15)min =MSE(Yirc,) Z Wi Nh 0

(4.18)
X AWY=Yhmin) + ﬁc(mhmu = Thpin) -

Using results for variances of combined regression estimators in Equations (4.16) and
(4.18), the minimum mean square error of combined regression estimator can be written
as

L
-~ o - B 9 Ah
(419) MSE(Y 1r¢, )min =MSE(Y 1rc,) ; Wi S, =T

X {(yhmam - yhnLin) - |/85‘ (whmaac - "'L‘hmin)}2'

4.3. Properties of separate estimators. Consider separate ratio estimator Y rs, in
term of €’s

Yrs, = Z WiYn(1+ eneyy )1+ €ney )"
h=1

Expanding right hand side of above expression up to first order approximation, we have
) L
(Yrs, —Y) = ZWth(EhAcM + €hcay — €h.cry Chicor + Ehca)s
h=1

The bias of ?RSN is given by

A 2npc
B(Yrs,) ZWQ . Rh{shm — T (Bhimas — Thyin — TC20)}

N, —1
(4.20) n
— {Shyz — Nihl(clh(mhmaz = Thin) T 20 (Yhmas = Yhmin)
-

— 2npcincan)}],
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where Rh = Yh/)(:h.

The mean square error of Y rg,, is given as

L
~ 2npc
MSE(Yrs,) 2 3 Wihn [Shy = 57 Whmas = Ynnin = 70C10)
h=1
21 a2 2npcan
(4.21) + Rh{Sh:E - Nh -1 (‘rhnlam - mh'min - nthh)}

n
— 2Rn{Shy= — W’il(clh(%mm = Thpin) 20 (Yhmaz — Yhmin)

- 2nh01h02h)}] ,

or

2/\hnh
Np—1

L
MSE(Y rs,) = MSE(Y rs,) — »_ Wi
h=1
X {(Yhmas = Yhmin) = Bo(@hmas — Thyin) — a(cin — Rucan)}.

(4.22) (cih — Rncan)

Differentiating M SE(Y rs, ) with respect to each constant and equate to zero. Optimum
values of constants can be obtained from resulting equations as ¢1, = (yhmaz —Yhpmin )/ 2100

/2np, and minimum mean square error of Y RS, , IS given by

hanin )

and cop = (Th,,,, — Th

MSEY g8, )min = MSE(Y rs, ) Z Wh Nh —

(1.23) =

X AWhmar = Ymin) = B @hpay — Thpin )}

Similarly bias and mean square error of separate product estimator, are given by

A n
YPSI Z Wi Shy:c*Nih

(4.24) n—1
X {Clh Thomas = Thonin) + 20 Yhmaw = Ynmin) — 200C10C20}],
- - 2\nn
MSE(Y ps;) 2 MSE( YPSD ZW "20 (eun + Riean)
(4.25) Pt

X {(Yhmas = Yhmin) + Br(Thmes — mm) —nn(cin + Ripcan)}

At optimum values of constants ci1r, = (Yhmaw —Yhmin )/ 20k a0d C2n = (Thonaw —Thppin )/ 2100,
minimum mean square error, is given by

MSE(Y psy)min = MSE(Y ps,) ZWh Nh =

(4.26)

X A Whmas — mm) + Ru(Thpay — Thi)}-
When there is positive correlation between Y} and X, the bias and mean square error
of separate regression estimator, are given by
L

(4'27) B(?lTSu) = - Z thov(‘i'h»Cm ) bh)a
h=1

o~ 2)\ n
MSE(Y1rs,,) = MSE(Yrs,) Z Wi =Chhh T (c1n = Buean)

(4.28)

{Whimaw = Ynmin) — ﬁh(fhmam - l’h) —np(cin — Brean)}s
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where [, = Shygc/Siz is population regression coefficient in the h*" stratum.
At optimum values of constant ¢1r, = (Yhmay —Yhmin )/ 20k a0d C2n = (Thinaw —Thypin )/ 2100,
minimum mean square error, is given by

o - by
MSE(Y 178y, )min = MSE(Y1rs,) ZWh 5 K

(4.29) Pt Ny —1)

X AWhmaz = Ynmin) = Br(@hpaw — Thoin )}

The MSE of separate regression estimator in case of negative correlation between Y}, and
Xp, is given by

MSE(Yirs,,) = MSE(Y 1rs,) Z W Zoh < (can + Buean)

(4.30)
{Whimas = Yhmin) + 5h($hmm = Thyin) = P(C1h + Brcan)},

At optimum values of constant cin = (Yh.nue —Yhpin )/ 20k a0d con = (Thypwe —Thy i )/ 210k,

minimum mean square error of Y;,s,,, is given by

MSE(Y 1r813)min = MSE(Y1,5,) Z Wi =T N = 1)

X AYnmaz — yhm,m) + 5h(a?hmaz = Thpin )}

Generally mean square error of separate regression estimator can be written as

(4.31)

MSE(Yl'rsl)mzn — MSE YZTSO Z Wh h — 1)

X AYrmae — hmm) — |Bnl (l’hmw = T}

4.3. Remark. It is obvious from MSE expressions of the proposed estimators based on
the extreme values, given in equations (4.7) - (4.32), that the proposed estimators are
having smaller MSE /variances than the existing estimators, mentioned in equations (2.1)
- (2.19) along with their MSE /variances.

(4.32)

5. Proposed estimators using fractional raw moments

Generally auxiliary information is utilized to enhance the precision of estimates of fi-
nite population parameters. If population parameters of the auxiliary variable are known
then some common estimators like ratio, product, regression and their modifications are
used. When information of the auxiliary variable is known it can be transformed to get
more precise estimates. Suppose that we have transformation on the auxiliary variable
X in the form of raw moment, is given by

U;=XP, where p>0 and (i=1,2,3,...,N)
(5.1)

Here further assume that X € ®R*.

In stratified random sampling after transformation, let Uy, and up; be the population
and sample values of transformed auxiliary variable at the " unit in the h'* stratum
respectively. Let Uj, = ZTIL’” and up = Z%h’“ be the population and sample means,
S?Lu = M be the variance and Shyu = E(Uh"'_]\l;]}hl(f/“_yh) be the covariance
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with transformed auxiliary variable. Stratified ratio, product and regression estimators
along with their biases and mean square errors can be written as

(5.2) Yo, = Z“ U,

st

L 2
=S R.Sj., — Shyu
(5.3) B(Y rey) = E WhAh%,

h=1
L
(5.4)  MSE(Yre,) = > WA (Siy + RaSiu — 2RuShyu).
h=1
< gstﬂst
5.5)  Ype, = 22t
(5.5) PCy -

o S ”
(5.6) B(Y pcs,) Z WhAn hy
h=1

L
(5.1)  MSE(Yrpcy) = > WEA(SE, + R2SE, + 2RuShyu).
h=1

(5.8)  Yirc, = Fst + be(U — tst),

Zh 1 Wh )‘hshyu

where b, SL W,

=<

is the combined sample regression coefficient and R, =

(5.9)  B(Yirc,) = —Covliist, be),

L
(5.10) MSE(Yic,) = > WitnSiiy (1= pia),
h=1
Skt WEARShyu
b WESE, Sy WS,
timators for finite populatlon mean in stratified random sampling, are given as follows:

where py, =

. Separate ratio, product and regression es-

L _
(5.11) ?RSQ = ZWhﬂth where YhRy = %U}H
h
h=1
~ L —
(5.12) Yps, = ZWhghPuv where gnp, = [yj,iﬂ}b,
h
h=1

L
(5.13) Y5, = Z Whinir,

hyu

where ynir, = {yh +bhu( n — Un } and b, = 2

hu
The biases and mean square errors for separate estimators are given as:

(5.14) B(Yrs,) = ZWh/\hU (RhuShu Shyu),
h=1
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L

= 1
(5.15)  B(Yrsy) = > Widn = (RnuShu + Shyu),
h=1 Un
N L
(5.16) B(YZT»SQ) = — Z WhCO’U(’U,h, bh),
h=1

(517) MSE(?RSQ) = W}?)\h(s}%y + R%uszu - ZRhuShyu),

M=

>
Il

1

(5.18) MSE(Yps,) =Y Wili(Shy + RuuwSiu + 2RhuShyu),

M=

>
Il

1

Wi?)\thQLy(l - p%yu%

M=

(5.19) MSE(Yis,) =

>
Il

1

Shyu

— Y —

where Rp, = T and pryu = Sy
Let un,,,, and zp,,;,, be the maximum and minimum values of transformed auxiliary
variable respectively. The proposed estimators along with their mean square errors are

given as follows

Combined ratio estimator.

(5.20) Yo, = Ltang,

ust4c21

L
~ ~ by
MSE(Y rey)min = MSE(Y rey) — Y Wi 5 h

(5.21) — (Nn —1)

h
XA Whimas = Ymin) — BulUnpay — tn, )}

Separate ratio estimator.
L

(5.22) Vs, = 3 Wy 2o,
he1 Uh.coq
A ~ L A
MSE(Y g8 )min = MSE(Y - 2__7h
(523 7 (V' rss ) SE(Y rs;) = Y _ Wi 2(N, — 1)

h=1
X {(yhmaz - yhmin) - Rhu(uhmaz - uhmq‘n)}Q'
Combined product estimator.

(5.24) Yrc, = y“‘%ast.m,

L
~ ~ A
MSE(Y pcy)min = MSE(Y pe,) = y_ Wiz h

(5.25) — (N —1)

h
X AWhmas = Ynmin) + Bha(Whppas — Un,i )}
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Separate product estimator.

L _

B Yh.c11 —
526) Yps, =) e,
(5.26) Yps, h§:1 T, neean

L
S S An

MSE(Y ps,)min = MSE(Y ps —§ || —

(5.27) (¥rss) (Yps2) 2 (N, — 1)

X AWhmas = Yhmin) + Bhu(Unas = Un i)}
Combined regression estimator.

(528) ?erLo,l = gstcll + bc(U - ﬂst.czl),

L
o - Ah
MSE(Y 1rey )min = MSE(Y 1rcy) — 2 M
(5.29) SEWirc,) SE(Yirca) ;Wh2(Nh—1)

X AWhmas = Ynmin) — 1Bel o — wnyi )}

Separate regression estimator.

L
(5.30)  Yirsy, = Z WidGh.c11 + bn(Un — Ghcar) }

h=1
i X~ < 2 >\h
(5.31)  MSE(Yirsy)min = MSE(Yirs,) — ; Wi SN = 1)
(5.32) X AWhmas = Ynmin) = 180l Whpas = Whpin) )

5.1. Remark. The results are obvious from the MSE expressions of proposed estimators
based on fractional raw moments and the extreme values in equations (5.20) - (5.31) that
the proposed estimators have smaller MSE /variances than the existing estimators in the
equations (2.2) - (2.19) along with their MSE /variances.

6. Numerical study

We have conducted a numerical study for three real data sets. Percentage efficiencies
of the proposed estimators relative to usual stratified estimator (gs:) are calculated for
the three data sets.

6.1. Population-I: [6, page 218|.

Y: Juice quantity per cane (grams)
X: Weight of cane (grams)

Table 1. Summary of Population-I

Nh Xh Ylh S}QLz Sizly

Stratum-1 6  366.67 135.00 2706.67 80.00 440.00 150 125 450 300
Stratum-2 12 310.83 99.17 1881.06 226.52 618.93 135 80 410 260
Stratum-3 7 317.14 80.71 2890.48 120.24 444.05 100 70 420 250

Shym Yhmaz  Yhmin  LThmaz  Lhpmin

A stratified sample of size n = 12 is selected by using proportional allocation such
that ny = 3,712 = 6,713 = 3.
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6.2. Population-II: [6, page 194].

Y: Amount of pocket money spent by students (in rupees )
X: Annual income of students’ parents (in ’000 rupees)

Table 2. Summary of Population-II

Nn X Vi She Sy Shyz  Yhmar  Yhmin  Thimae  Thoin
Stratum-1 4 9250 925.00 851.00 50833.33 6266.70 1250 750 135 70
Stratum-2 10 57.20 535.00 31.07 11694.44 486.67 700 350 66 50
Stratum-3 13 38.00 303.85 3500 9775.64 44583 450 150 47 28

Students are divided into three stratum: poor, middle and rich. A sample of 15(= n)
students is selected by using proportional allocation. Sample sizes from the three stratum
are n; =2,n2 =6,n3 = 7.

6.3. Population-III: [6, page 212|.

Y: Area of leaf (in sq cm)
X: Weight of leaf (in mg)

Table 3. Summary of Population-III

v \ 2 2
N, X Yn Sha Shy Shye  Yhmao  Yhmin  Thmae  Thoin

Stratum-1 12 103.42 25.752 133.900 40.157 67.506 36.61 17.76 123 84
Stratum-2 13 110.92 28.940 66.244 30.334 41.034 41.07 21.00 130 101
Stratum-3 14 104.29 25.777 154.990 46.628 82.082 39.06 16.07 129 81

Using proportional allocation method, n1 = 6,n2 = 7,n3 = 7 are sample sizes from
the three strata which constitute a sample of size n = 20.

The results are given in Tables 4, 5, 6 and 7.

7. Results and discussion

In Table 4, percentage efficiencies of proposed ratio, product and regression estimators

Ust.c; Y RCys Y RSy, Y PCy, Y Psyy Yirc, and Yi,s,, based on extreme values, relative to
the usual stratified estimator ys: are given for three populations. Also percentage effi-

ciencies of usual ratio, product and regression estimators Y rcy, Y rsy, Y Py, Y PSy, Y ircCy

and Y5, relative to the usual stratified estimator ¢s; are given for the same three pop-
ulations. Results based on these data sets indicate that the all the proposed estimators
outperform their respective competitors. As the study variable and auxiliary variable
are positively correlated in the data sets for all three populations, therefore product
estimators are not performing well.

In Tables 5, 6 and 7, for different values of p, percentage efficiencies of proposed esti-
mators, using fractional moments of the auxiliary variable, relative to the usual stratified
estimator gs: are given for Populations I, II and III respectively. For p = 1, the pro-

posed estlmators YRCz,YRsz,YPC27 Ypsz,Ych2,ersz reduce to the usual estlmators

Y rey YRSO, YPCO7 Y psy, Yircy, Y irs, and the estimators YR037 YRS37 YP03 , YPS37 er03
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and ?lT‘Sg reduce to the previously proposed estimators in this article Y rey, Y sy, Y Poy
Yps,,Yircy, Yirs, -

In Tables 5 and 6, results show that as the value of p decreases, the percentage relative
efficiencies for the proposed ratio and product estimators increase up to a specific value
of p and then tend to decrease. But in Table 7, as the the value of p decreases, the
relative efficiencies of the proposed estimators decrease too.

Table 4. Percent relative efficiencies of proposed estimators with re-
spect to Yst

Estimators Population-I Population-II Population-III
Ust 100.00 100.00 100.00
ot 270.80 286.08 182.43
Ratio Estimators

Y rey 292841 337.58 272.61
Y re, 381.39 447.58 412.59
Y rso 243.52 295.16 270.21
Yrs, 407.12 423.42 408.82
Product Estimators

Yre, 21.84 20.55 49.40
Yre, 78.09 115.88 96.92
Y ps, 92.32 27.57 49.66
Yps, 77.81 112.72 97.43
Regression Estimators

Yircy 201.28 284.28 820.46
Yic, 356.66 411.50 896.52
Yirso 532.92 426.33 853.88

Yirs, 552.93 453.70 882.53
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Table 5. Percent relative efficiencies, calculated from Population-I,
for different values of p

Estimators p=2 p=15 p=1 p=090 p=080 p=070 p=0.60 p=050 p=040 p=0.30

Yst 100.00  100.00  100.00  100.00 100.00 100.00 100.00 100.00 100.00 100.00
?RC: 31.17 73.83 22841 279.84 323.35 341.60 325.69 284.57 235.23 189.58
?352 34.23  80.96  243.52  293.05 293.05 331.06 341.95 320.79 278.33 230.15
?PC2 8.46 13.00 21.84 24.58 24.58 27.83 31.71 36.39 42.09 49.09
?psz 8.71 13.33 22.32 25.10 25.10 28.38 32.30 37.02 42.75 49.76
?chz 204.18 203.61 201.28  200.60 200.60 199.85 199.03 198.15 197.20 196.19
?17‘52 579.94 559.39 532.92  527.08 527.08 521.10 514.99 508.77 502.46 496.06
Yst.c 270.80 270.80 270.80  270.80 270.80 270.80 270.80 270.80 270.80 270.80
?ch 97.95 193.99 381.39 419.64 419.64 449.08 464.93 464.49 448.27 419.73
?353 101.09 204.60 407.12  446.38 446.38 474.63 487.01 481.52 459.89 426.64
?pc3 31.21 47.58 78.09 87.16 87.16 97.68 109.90 124.15 140.77 160.17
?ps3 30.62  47.06 77.81 86.96 86.96 97.54 109.84 124.15 140.82 160.24
?zrc3 379.99 371.31 356.66  353.10 353.10 349.35 345.44 341.37 337.16 332.83
?1753 597.97 578.26 552.93  547.36 547.36 541.65 535.82 529.90 523.89 517.82

Table 6. Percent relative efficiencies, calculated from Population-II,
for different values of p

Estimators p=2 p=15 p=1 p=090 p=080 p=070 p=0.60 p=050 p=040 p=0.30

Yst 100.00  100.00 100 100 100 100 100 100 100 100

?ch 20.22 82.25 337.58 351.94 327.72 284.31 239.43 200.86 169.99 145.83
?RSz 53.15  123.93 295.16  308.45 320.80 311.57 284.75 249.01 212.16 178.72
?p@ 7.15 14.62  29.547  31.62 36.12 41.16 46.76 52.96 59.82 67.38
?psZ 11.44 17.05  27.575 29.09 32.46 36.39 40.98 46.37 52.73 60.26
?1702 150.43 197.97 284.28  294.80 316.01 336.57 355.13 370.20 380.39 384.66
?1752 430.10 429.51 426.33  425.86 424.82 423.66 422.38 420.97 419.44 417.78
Yst.c 286.08 286.08 286.08  286.08 286.08 286.08 286.08 286.08 286.08 286.08
?RCS 73.92  219.67 447.58  457.88 466.66 461.46 445.86 423.77 398.40 372.01
?353 148.81 27290 423.42  431.98 442.20 442.77 434.27 418.35 397.15 372.86
?pc3 32.46 64.15 115.88  122.16 135.34 149.34 164.21 180.01 196.81 214.69
?ps3 46.91 71.08 112.72  118.26 130.24 143.51 158.16 174.24 191.78 210.75
?HCS 298.79 353.49  411.5 416.06 423.88 429.68 433.21 434.32 433.00 429.36

Yirs, 459.95 458.12  453.7  453.09 451.80 450.39 448.84 447.18 445.39 443.47
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Table 7. Percent relative efficiencies, calculated from Population-III,
for different values of p

Estimators p=2 p=15 p=1 p=090 p=080 p=0.70 p=0.60 p=0.50 p=0.40 p=0.30

Yst 100.00  100.00 100 100 100 100 100 100 100 100

?nc2 884.81 519.12 272.61 242.15 216.04 193.58 174.19 157.38 142.74 129.94
?}?52 882.19 51598 270.21  240.05 214.23 192.06 172.95 156.39 141.99 129.40
?Pcz 29.14 37.31 49.40 52.51 55.92 59.66 63.78 68.34 73.38 78.98
?psz 29.12 37.42 49.66 52.80 56.23 59.99 64.12 68.67 73.69 79.26
?1702 918.56 877.40 820.46  807.71 794.62 781.25 767.65 753.86 739.94 725.92
?17‘52 929.68 898.89 853.88  843.53 832.82 821.79 810.47 798.91 787.14 775.19
Yst.c 182.43 182.43 182.43 18243 182.43 182.43 182.43 182.43 182.43 182.43
?Rcz 934.99 654.94 412,59  376.74 344.60 315.84 290.10 267.04 246.37 227.80
?ng 933.72  650.31 408.82  373.38 341.68 313.35 288.02 265.37 245.08 226.87
?pc3 58.82 74.46 96.92 102.56 108.68 115.33 122.57 130.46 139.07 148.49
?ps3 58.76 74.68 97.43 103.12 109.28 115.96 123.21 131.09 139.67 149.01
?zrc3 971.53 943.34 896.52  885.34 873.66 861.54 849.01 836.14 822.96 809.54
?1753 963.62 931.03 882.53 871.34 859.76 847.83 835.60 823.10 810.38 797.49

8. Simulation study

Simulation study is important to evaluate performances of the suggested estimators
by repeated sampling. In this section, three populations given in Section 6 are considered
and different sample sizes (20%, 30% and 40% of N) are selected from each population.
It can be seen from Table 8 that sample sizes selected from Populations I , IT and III
are (n =5,8,10), (n =5,8,11) and (n = 8,12,16) respectively. The sampling process is
repeated 1000 times and mean square errors of the estimators are calculated using these
samples as follows

>

81) MSE(@) = ﬁ 3 (6 - 0)?

where 0 is estimator of the parameter 6. Overall, mean square errors of all the estimators
decreases by increasing the sample sizes, however some results in Table 8 indicate that
decrease in mean square errors of ratio and regression estimators may be slower for larger
sample sizes. Furthermore, proposed estimators have smaller mean square errors than
the existing estimators. Therefore, the proposed estimators perform better than the
conventional estimators while handling the extreme values in the data.
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Table 8. Mean square errors of the estimators based on simulation study

Population-I Population-IT Population-IIT
Estimators n=5 n=8 n=10 n=>5 n=3y8 n=1 n=8 n=12 n=16
Yst 59.10 2216 1290  3588.33 2275.59 1232.95 4.33 3.41 2.03
Ust.c 35.29 13.18 7.00 2351.09 1023.06 683.83  3.19 2.77 1.59
Ratio Estimators
?RCO 11.15  4.63 4.30 1264.47  716.00  381.26 1.90 1.39 0.84
?RCI 7.35 4.15 3.08 891.61 467.42  255.33 1.35 1.09 0.64
?RSO 11.14  4.62 4.30 1264.03  715.36  382.16 1.90 1.39 0.84
?Rsl 7.36 4.15 3.08 891.82 467.16  256.25 1.34 1.10 0.64
Product Estimators
?pco 229.39 80.87 49.28 10956.23 7640.00 3794.54 8.30 6.77 3.94
?pc1 162.06 52.33  26.57  6094.73 2565.30 1762.97 6.20 5.55 3.12
?Ps(, 229.32 80.83 49.26 10960.84 7634.88 3802.23 8.30 6.78 3.94
?ps1 162.06 52.30 26.58  6089.40 2566.04 1765.51 6.20 5.56 3.12
Regression Estimators
?lrco 10.55  4.43 4.18 1419.75  812.56 42445  0.89 0.54 0.33
?MCI 6.60 3.81 3.01 983.50 498.93  272.55  0.56 0.37 0.23
?lrSo 10.55  4.43 4.18 1419.27  811.76  424.95  0.89 0.54 0.33
?lv"Sl 6.60 3.81 3.01 985.41 498.46  272.60  0.56 0.37 0.23

9. Conclusions

In the present study, it is established that when the study population contain extreme
values (substantially large or small relative to the other values of data) then the proposed
estimators can perform efficiently. Also it can be concluded that extreme values may be
used to enhance the efficiency of the estimator. Therefore, the proposed estimators can
be used in place of their competitor estimators in real life applications. It is shown that
using fractional raw moments of the auxiliary variable, efficiency of ratio and product
estimators can be improved by decreasing value of p up to a specific value for some
populations.
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