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The geometric power half-normal regression model
with cure rate
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Abstract

In this paper we consider the geometric cure rate model de�ned in [16],
using for S0(·), the survival function of carcinogenic cells, an extension
of the half-normal distribution based on the distribution of the maxi-
mum of a random sample. The implementation of maximum likelihood
estimation for the model parameters is discussed and, �nally, the model
is �tted to a real database (Melanoma data set), and comparisons are
performed with alternatives to the new S0(·).
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1. Introduction

To generate alternative families of distributions one can use the power of an absolutely
continuous distribution, as initiated by [9], where the famous Lehmann's alternatives are
proposed. Given a cumulative distribution function, F, this family of models can be
written as

(1.1) FF (z;α) = {F (z)}α, z ∈ R.

Lehmann has considered α as a rational number. In the case of α integer, this distribution
is the distribution of the maximum of a random sample. Durrans extends the distribution
for the case of α ∈ R in a hydrological context (see [6]), calling it the fractional order
distribution in which case the density function can be written as
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(1.2) ϕF (z;α) = αf(z){F (z)}α−1, z ∈ R+.

where α ∈ R+ is called a resilience parameter. The case where F = Φ, was originally
studied in [6] with further results in [8] and [14], where its Fisher information matrix
was derived and shown to be nonsingular. [14] call it the Power distribution and in the
case of F = Φ, the Power-Normal distribution. The notation Z ∼ PF (α) means that a
random variable Z has a power distribution. In the equation (1.2), α is called a resilience
parameter family (see [11]). Considering in 1.2 a Half-Normal(HN) distribution function,
we obtain the Power Half-Normal(PHN) model, studied in [7].

Let T ∼ PHN(σ, α). Then, the survival function of T is given by

(1.3) SPHN (t;σ, α) = 1−
(

2Φ

(
t

σ

)
− 1

)α
, t > 0,

where σ > 0 is a scale parameter and α > 0 is a resilience parameter.

Cumulative damage such as chronic heart disease and several di�erent types of cancer
can be caused in individuals by several unknown causes or risk factors. This degradation
leads to a fatigue process, the propagation life time of which may be suitably shaped by
the PHN distribution. To model such phenomenon, [4] proposed the geometric cure rate
Birnbaum-Saunders regression model. The main of the present article is to propose a new
distribution, the Geometric Power Half-Normal cure rate model (GPHNcr), designed in a
scenario of latent causes with fraction of healing and where there is no information about
which causes were responsible for the individual's death or reappearance of the tumour.
For instance, in clinical studies, part of the population can respond favourably to the
treatment, being considered cured. The proportion of such fraction of the population
which is not susceptible to the event of interest is termed cure fraction. Distributions
which accommodate cured fraction have been widely developed. Perhaps, the most pop-
ular type of cure rate model is the mixture of distributions introduced by [3] and [2]. In
this distribution, it is assumed that a certain proportion of the patients, say p, are cured,
in the sense that they do not present the event of interest during a long period of the
time and can be seen to be the immune or cured to the cause of death under study (see
[12]). The key reference on the mixture distribution approach is [10]. To the best of our
knowledge, there is no literature considering the mixture PHN (MPHN) as a distribution
with survival function given by

(1.4) SMPHN (t) = p0 + (1− p0)SPHN (t), t > 0,

where SPHN (t) is given by (1.3) and p0 is the cured fraction.
The sections of this paper are organized in the following manner. In Section 2, we explain
the model formulation and give some of its main properties. In Section 3, we develop
parameters estimation for the model via maximum likelihood. In Section 4, we perform a
simulation study to determine when the maximum likelihood estimators (MLE) perform
well. In Section 5, we show a real data application where inference is made with the
MLE. Finally, some conclusions are given in Section 6.

2. Model formulation

The distribution GPHNcr is derived as follows. For an individual picked at random
in the population, let M be the unobserved number of causes (risk factors) causing the
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event of interest. Suppose that M follows a geometric distribution with parameter θ and
probability function

(2.1) P (M = m) = (1− θ)θm, m = 0, 1, . . . .

Consider that the time for the j−th cause to produce the event of interest is indicated
by Zj , j = 1, . . . ,M . We assume that, conditional on M , the Zj′s are independent and
identically distributed (i.i.d.) with PHN distribution given in (1.3). Moreover, we assume
that Z1, Z2, . . . are independent of M .
The observed time to event is de�ned by the random variables T = min(Z1, . . . , ZM ),
and T = ∞ if M = 0 with P (T = ∞ | M = 0) = 1. Under this con�guration, the
population survivor function is given next.

1. Proposition. Under then above formulation, the population survivor function is
given by

(2.2) SGPHNcr(t) =
1− θ

1− θ[1− (2Φ( t
σ

)− 1)α]
,

where Φ(·) is the standard normal distribution.

Proof. The proof follows directly from [16], and using the survivor function in (1.3).2

The cure fraction is given by SGPHNcr(θ) = 1 − θ, indicating that this not a proper
survivor function. The corresponding density function is given by

(2.3) fGPHNcr(t) = θ(1− θ)fPHN (t)

{
1− θ

[
1−

(
2Φ

(
t

σ

)
− 1

)α]}−2

,

where fPHN (t) is the pdf of the PHN distribution. The population risk function is given
by

(2.4) hGPHNcr(t) =
θfPHN (t)

1− θ
[
1−

(
2Φ
(
t
σ

)
− 1
)α] ,

The distribution in (1.4) can be written as a mixture distribution (see [2]). Therefore,

(2.5) SGPHNcr(t) = (1− θ) + θ

{
(1− θ)

[
1−

(
2Φ
(
t
σ

)
− 1
)α]

1− θ
[
1−

(
2Φ
(
t
σ

)
− 1
)α]

}
.

The survivor function for the noncured population, for the GPHN model is given by

(2.6) SGPHN (t) = P (T > t |M ≥ 1) =
(1− θ)

[
1−

(
2Φ
(
t
σ

)
− 1
)α]

1− θ
[
1−

(
2Φ
(
t
σ

)
− 1
)α] , t > 0.

Notice that SGPHN (0) = 1 and SGPHN (∞) = 0, so that (2.6) is a proper survivor
function.
The pdf for the GPHN distribution is given by

(2.7) fGPHN (t) =
(1− θ)2αφ( t

σ
)(2Φ( t

σ
)− 1)α−1

σ
(
1− θ

[
1−

(
2Φ
(
t
σ

)
− 1
)α])2 , t > 0.

Figure 1 shows the GPHN probability density functions for some �xed values of θ. The
plots in these �gures show that the GPHN distribution is �exible and that the value of
θ has a substantial e�ect on its skewness and kurtosis, as wes shall observe further in
Figure (3).
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Figure 1. Plots for the pdf of the GPHN distribution for σ = 1.5, α =
1.5(left), α = 2.5(right)
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Figure 2. Plots for the risk function for the GPHN distribution for
σ = 1.5, α = 0.5(left),α = 1.5(right)

Moreover, from (2.6) and (2.7) it is easy to verify that the risk function for the noncured
population is given by

(2.8) hGPHN (t) =
hPHN (t)(

1− θ
[
1−

(
2Φ
(
t
σ

)
− 1
)α])2 , t > 0,

where hPHN (t) is the risk function for the PHN distribution.
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2.1. Moments. Moments of the GPHN model can be computed numerically using the
routine �integrate� from the software R (see [15]). The following proposition presents the
r-th moment of a random variable following the GPHN distribution.

2. Proposition. The r-th moment of the random variable T ∼ GPHN(σ, α, θ), is given
by

µr = E(T r) = ασr(1− θ)κr(α, θ), r = 1, 2, ...,

where κr(α, θ) =
∫ 1

0

(Φ−1( 1+u
2 ))ruα−1

(1−θ(1−u)α)2
du is computed numerically.

Proof. The moment de�nition implies

µr = E(T r) =

∫ ∞
0

tr
(1− θ)2αφ( t

σ
)(2Φ( t

σ
)− 1)α−1

σ
(
1− θ

[
1−

(
2Φ
(
t
σ

)
− 1
)α])2 dt.

The result follows after making the variable change u = 2Φ
(
t
σ

)
− 1. 2

Therefore, the �rst four moments are given by

(1) µ1 = E(T ) = α(1− θ)σκ1(α, θ)
(2) µ2 = E(T 2) = α(1− θ)σ2κ2(α, θ)
(3) µ3 = E(T 3) = α(1− θ)σ3κ3(α, θ)
(4) µ4 = E(T 4) = α(1− θ)σ4κ4(α, θ)

1. Corollary. The asymmetry and kurtosis coe�cients are given, respectively, by√
β1 =

κ3(α, θ)− 3α(1− θ)κ1(α, θ)κ2(α, θ) + 2α2(1− θ)2κ3
1(α, θ)√

α(1− θ)(κ2(α, θ)− α(1− θ)κ2
1(α, θ))3/2

,

and

β2 =
κ4(α, θ)− 4α(1− θ)κ1(α, θ)κ3(α, θ) + 6α2(1− θ)2κ1(α, θ)2κ2(α, θ)− 3α3(1− θ)3κ4

1(α, θ)

α(1− θ)(κ2(α, θ)− α(1− θ)κ2
1(α, θ))2

.

Table 1. Moments for some combinations of parameters of the GPHN
distribution.

θ = 0 θ = 0.5 θ = 0.8
σ = 1 σ = 2 σ = 1 σ = 2 σ = 1 σ = 2

α = 1 α = 2 α = 1 α = 2 α = 1 α = 2 α = 1 α = 2 α = 1 α = 2 α = 1 α = 2

µ1 0.798 1.128 1.596 2.257 0.586 0.624 1.172 1.247 0.364 0.274 0.729 0.548
µ2 1 1.637 4 6.547 0.627 0.859 2.507 3.435 0.313 0.357 1.252 1.429
µ3 1.596 2.821 12.766 22.568 0.916 1.444 7.327 11.559 0.413 0.588 3.304 4.706
µ4 3 5.547 48 88.744 1.636 2.808 26.169 44.924 0.701 1.133 11.211 18.124√
β1 0.995 0.704 0.995 0.704 1.436 1.004 1.436 1.004 2.188 2.242 2.188 2.242
β2 3.869 3.435 3.869 3.435 5.311 3.414 5.311 3.414 9.079 7.943 9.079 7.943

From Table 1, we note that for α = σ = 1 and θ = 0 the coe�cients of skewness
and kurtosis coincide with the coe�cients of the HN distribution,

√
β1 = 0.995 and

β2 = 3.869.

3. Inference

Letting Ci be the i-th censoring time, we observe that Yi = min{Ti, Ci} and δi =
I(Ti ≤ Ci), i = 1, . . . , n. Let γ the parameter vector for the distribution of time to event
Z in (3). Given a sample of n pairs (y1, δ1), ..., (yn, δn) the corresponding likelihood
function under uninformative censoring is given by

L(γ, θ) ∝
n∏
i=1

{fGPHNcr(yi; γ, θ)}δi{SGPHNcr(yi; γ, θ)}1−δi ,(3.1)
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Figure 3. Plots for the asymmetry coe�cient (left panel) and the
kurtosis coe�cient (right panel) of the GPHN model.

where SGPHNcr(yi; γ, θ) and fGPHNcr(yi; γ, θ) are given in (2.2) and (2.3), respectively.
Hereafter, denote 1− θ = p0. To complete speci�cation of the model, the cure fraction is
related to the covariates xi by considering the link function log( p0i

1−p0i
) = xTi β, that is,

p0i =
exp(xTi β)

1 + exp(xTi β)
, , i = 1, . . . , n,

where β represents the regression coe�cient parameter vector.
We remember that covariates are traditionally used to model the expectation of the
number of competing causes. For instance, in the proposed model, from (2.1), we have

E(Mi) =
θi

(1− θi)
= exp(xTi β)

and p0i = 1− θi, so that

(3.2) p0i =
1

(1 + exp(xTi β))
.

The connection between the cured fraction and the covariates is much more cumber-
some in this expression than in the logistic link.
Thus, the improper functions given in (2.3) and (2.6) can be written as

(3.3) SGPHNcr(yi; γ,β) = {1 + (p−1
0i − 1)FPHN (yi; γ)}−1, yi > 0

and

(3.4) fGPHNcr(yi; γ,β) = {1+(p−1
0i −1)FPHN (yi; γ)}−2{p−1

0i −1}fPHN (yi; γ), yi > 0.

The likelihood function given in (3.1) can be expressed as

L(θ,D) ∝
n∏
i=1

{(p−1
0i − 1)fPHN (yi; γ)}δi{1 + (p−1

0i − 1)FPHN (yi; γ)}−δi−1,

where θ = (βT , γT )T , D = (y, δ,X), and X = (xT1 , ..., x
T
n ).
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The maximum likelihood estimation of the parameter vector θ is carried out by direct
numerical maximization of the log-likelihood function l(θ;D) = log(L(θ;D)), which is ac-
complished by using existing software (see [15]). The computational program is available
from the authors upon request. Under suitable regularity conditions, it can be shown

that the asymptotic distribution of the maximum likelihood estimator θ̂ is multivariate

normal with mean vector θ and covariance matrix Σ(θ̂), which can be estimated by

Σ̂(θ̂) =
{
− ∂

2l(θ;D)

∂θ∂θT

}−1

, evaluated at θ = θ̂.

The required second derivatives are computed numerically.
To compare model �ts, we used the Akaike criterion (see [1]), namely

AIC = −2 log
[
L
(
θ̂
)]

+ 2k,

where k is the dimension of θ which is the vector of parameters of the model being
considered. We considered also the BIC (see [17]), namely

BIC = −2 ln
[
L
(
θ̂
)]

+ k [log (n)] .

The best model is the one with the smallest AIC (BIC).

4. Simulation study

To evaluate the performance of the parameter estimation procedure for the proposed
models, we conducted a simulation study. In this study we considered the proposed
model with the PHN distribution for the event times (Z) with parameter α = 2 and
σ = 1. For the i-th individual, the number of causes of the event of interest, (Mi), is
generated from the Geometric distribution with parameter,

1− θi = p0i = exp(β0 + β1xi)/(1 + exp(β0 + β1xi)), i = 1, . . . , n.

In our simulations we consider a binary covariate x with values drawn from a Bernoulli
distribution with parameter 0.5. We took β0 = 0.5 and β1 = −1 so that the cured

fraction for the two levels of x are p
(0)
0 = 0.62 and p

(1)
0 = 0.38 respectively.

We took the sample sizes to be n = 50, 100, 200, 400 and 800. For each set up,
we conducted 1000 simulations and calculated the average of the maximum likelihood

estimates (MLEs) of the cured fraction (p
(0)
0 and p

(1)
0 ), standard deviation (SD) of MLEs

and the square root of mean square errors (SRMSE) of the MLEs. The simulation results
are shown in Table 2 for simulated data from the GPHN cure model. We can observe
that the average of MLEs are closed to the true parameter values, with the SDs and
SRMSEs decreasing as sample size increases, suggesting the consistency of the estimates,
as expected.

Table 2. Averages of maximum likelihood estimates (MLEs), standard
desviation (SD) and square root of mean square error (RMSE) of cure

fraction p
(0)
0 and p

(1)
0 for simulated data from PHN cure rate model.

n Average of MLE SD of MLE SRMSE

p
(0)
0 p

(1)
0 p

(0)
0 p

(1)
0 p

(0)
0 p

(1)
0

50 0.6169 0.3727 0.0974 0.0935 0.0088 0.0095
100 0.6230 0.3779 0.0673 0.0664 0.0045 0.0044
200 0.6233 0.3765 0.0483 0.0463 0.0024 0.0022
400 0.6210 0.3778 0.0334 0.0326 0.0011 0.0011
800 0.6223 0.3778 0.0245 0.0234 0.0006 0.0006
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Figure 4. Kaplan-Meier estimate of the survival of function.

5. Illustration

In this section we work out an example employing the modelling presented in Section
2. The data set includes 205 patients observed after surgery for the removal of malignant
melanoma in a follow-up period of 15 years. These data are available in the timereg
packaged in R (Scheike, 2009). The observed time (T ) ranges from 10 to 5565 days (from
0.0274 to 15.25 years, with mean=5.9 and standard deviation=3.1 years) and refers to
the time until the patient's death or the censoring time. Dead patients from other causes,
as well as patients still alive at the end of the study are censored observations (72%).
We take ulceration status (x1)(absent, n=115; present, n=90) and tumour thickness (x2)
(in mm., mean=2.92 and standard deviation=2.96) as covariates. The Kaplan-Meier es-
timate of the survivor function is given in Figure (4). The presence of a plateau above
0.6 indicates that models that ignore the possibility of cure will not be suitable for these
data.
We then �t the GPHNcr distribution with p0i as in (3.2), as well as the MPHN dis-
tribution (1.4) with p0i as in (3.2). The maximum likelihood estimates (MLEs) of the
model parameters are given in the Table 3. In the same Table also is presented the AIC
and BIC selection criteria on the two candidate models. According to both criteria, the
GPHNcr model stands out as the best one and then is chosen to be our working model.
The QQ plot of the normalized randomized quantile residuals, in Figure (5), suggests
that the GPHNcr model yields an acceptable �t.

6. Concluding remarks

The paper focuses on proposing a new model for life-time data based on the GPHNcr
distribution generated in a scenario of latent and competitive causes, which includes a
cure fraction. The practical relevance of the new distribution was demonstrated in a real
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Table 3. Maximum likelihood estimates for the parameters in models
MPHN and GPHNcr.

Model Estimates Criteria

α σ βintercept βthickness βulceration AIC BIC

GPHNcr 1.905 5.004 1.809 -0.179 -1.4804 420.86 437.472
(0.293) (1.079) (0.346) (0.054) (0.357) - -

MPHN 1.528 4.168 1.213 0.172 1.534 431.39 447.995
(0.172) (0.155) (0.336) ( 0.076) (0.411) - -

α σ βintercept βthickness βulceration AIC BIC

GBScr 1.357 10.091 1.257 -0.168 -1.422 426.7 443.3
( 0.560) (3.437) (0.3455) (0.053) ( 0.353) - -

MBS 1.312 6.442 2.421 -0.956 -1.331 430.9 447.5
(0.201) (0.565) (0.763) ( 0.556) (0.821) - -

Figure 5. Residual plots for the model (left panel) and Kaplan-Meier
estimates for ulceration patients (right panel)

data analysis as was indicated by computing Akaike and BIC scores to compare model
�tting with MBS and GBScr models proposed by [4].
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