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E�ciency of D-optimal designs for quasi-likelihood
estimation in Poisson regression model with

random e�ects
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Abstract

Optimum experimental designs are most commonly used to obtain max-
imum likelihood estimators of parameters. However, obtaining an ex-
plicit form of these estimators is not feasible for generalized linear mixed
models (GLMMs). Hence as an alternative method to handle this is-
sue, the quasi-likelihood method is applied to Poisson regression models
with random e�ects, a special case of GLMMs. In this paper, we con-
sider this model and compare D-optimal designs for quasi-likelihood
estimation and maximum likelihood estimation of �xed e�ects param-
eters. The empirical results in a simulated environment suggest that
the optimal designs for quasi-likelihood estimation are e�cient.
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1. Introduction

Many experiment responses are not continuous and can not be described by a linear
model with normally distributed errors. If responses are binary or count data, general-
ized linear models (GLMs), which are described in great detail by McCullagh and Nelder
(1989), are established tools to model such data.
The maximum likelihood method can be applied to estimate the parameters in GLMs.
As a result, the Fisher information matrix, which equals asymptotically the inverse of
the variance-covariance matrix of the maximum likelihood estimator of �xed parameters,
can be obtained.
The particular property of GLMs is to assume that all observations are independent of
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each other. Therefore, these models are not appropriate to analyze correlated data struc-
tures. In this case, generalized linear mixed models, which extend GLMs by including
random e�ects in the predictors, are the general tools at hand to model the correlated
data (McCulloch and Searle, 2001).
However, unlike GLMs, the likelihood function to estimate the �xed parameters of
GLMMs can not be obtained explicitly, and hence there is no closed form for the Fisher
information matrix.
Despite widespread theoretical and numerical work on GLMMs, there are few results on
optimal designs for these models. Waterhouse (2005) has done extensive work on optimal
designs for GLMMs. Recently, the quasi-likelihood approach has been applied to �nd
optimal designs for some special cases of GLMMs, called Poisson regression models with
random coe�cients (Niaparast (2009), Niaparast and Schwabe (2013)).
In this paper we take these special cases of GLMMs into account. The quasi-likelihood
approach is applied to this model. McCullagh (1983) has demonstrated that under suit-
able conditions, quasi-likelihood estimators are e�cient.
In the present work, Also using simulation and numerical techniques, we compare the op-
timal designs for maximum likelihood estimators to these for quasi-likelihood estimators
of the �xed e�ect parameters. To the best of the authors'knowledge, there is no published
study on the relative e�ciency of D-optimal designs for quasi-likelihood estimators.
In what follows, we will �rst review Poisson regression models with random e�ects, in-
formation matrices and quasi-information matrices, and discuss designed experiments.
Section 3 provides criterion for the measurement relative e�ciency of the quasi-likelihood
method to obtain D-optimal designs for Poisson regression models with random e�ects
and gives an approximation of the Fisher information matrix. Then in section 4 we ob-
tain the relative e�ciency of D-optimal designs for quasi-likelihood estimation for three
cases of Poisson regression models with random e�ects. Finally we conclude with a short
discussion of the results.

2. Preliminary

The results of this paper extend those of Niaparast (2009) and Niaparast and Schwabe
(2013). We use their notation and results, hence we summarise them here.

2.1. Model. We consider a Poisson regression model with random e�ects, which can be
written as,

Yij | bi
ind∼ P (µij(bi)) i = 1, . . . , s j = 1, . . . ,mi

s∑
i=1

mi = n,(2.1)

where Yij stands for the jth observation for individual i at the experimental setting xij
from the experimental region X.
The conditional mean of Yij given bi, µij(bi), is speci�ed as an exponential function of
xij and bi; that is,

µij(bi) = exp(f>(xij)β + g>(xij)bi)

where β = (β1, . . . , βp)
> is the p-dimensional vector of �xed e�ects and bi is the q-

dimensional vector of random e�ects for individual i. These are assumed to be indepen-
dent and identically normally distributed with mean 0 and variance-covariance matrix
Σ. Also we suppose that f = (f1, . . . , fp)

> and g = (g1, . . . , gq)
> are the vectors of

known regression functions corresponding to the �xed e�ect parameters and random ef-
fect parameters, respectively. We assume that f and g are the same for all individuals.
Moreover, we suppose that the random e�ects are uncorrelated for di�erent individuals.
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According to Niaparast and Schwabe (2013), the mean and the variance-covariance struc-
ture for the responses of the ith individual are as follows:

E(Yij) = exp(f(xij)
> βββ +

1

2
σ(xij , xij)) = µ(xij) ,

Var (Yij) = µ(xij) + µ(xij)
2 c(xij , xij) ,

Cov (Yij , Yij′) = µ(xij)µ(xij′) c(xij , xij′),

where σ(x, x′) = g(x)>Σ g(x′) and c(x, x′) = exp (σ(x, x′))− 1.
Let Yi = (Yi1, . . . , Yimi)

> be the vector of mi observations for individual i with mean
vector E(Yij) = µ(xij). Therefore,

V ar(Yi) = Vi = Ai + AiCiAi,

with Ai = diag{µ(xi1), . . . , µ(ximi)} and Ci = (c(xij , xij′))j,j′=1,...,mi
.

Since that the covariance between observations from di�erent individuals are zero, the
variance-covariance of the vector of all observations is a block diagonal matrix

V = V ar(Y) = diag{V1, · · · ,Vs}
and depends on β through the mean vector E(Y).

2.2. Quasi-information matrix. The log-likelihood for model (2.1) can be obtained
as

`(βββ; y) =

s∑
i=1

log

(∫ mi∏
j=1

µij(bi)
yij

yij !
exp(−µij(bi))PN(0,ΣΣΣ) (dbi)

)
(2.2)

It involves an integration over bi with respect to the Normal distribution with mean 0 and
variance-covariance matrix Σ. Unfortunately this integral cannot be simpli�ed further or
evaluated in closed form and hence the Fisher information cannot be expressed in closed
form either. There are several attempts to �nd some numerical methods, but there is no
guaranteed method to establish stable solutions (see e.g. Davidian and Giltinan (1995)
and Pinheiro and Bates (2010)). For a general discussion of appropriateness of various
approximations of the Fisher information matrix see Mielke (2012). As an alternative
method the quasi-likelihood method can be considered.
Let Y be a vector of observations with the mean E(Y) = µ(β) and variance-covariance
matrix V ar(Y) = V (µ(β)) which is related to µ(β) through the known variance function
V (.).
The quasi-score function to estimate the regression parameters β is de�ned as

U(β,y) = φ2D>(V (µ(β)))−1(y − µ(β))

where D is the partial derivative of the components of µ(β) with respect to the entries
in β and hence it is a function of β (McCullagh and Nelder,1989).

β̂Q is called the quasi-likelihood estimator of β, if U(β̂Q,y) = 0.
Under mild conditions (McCullagh, 1983), we have

β̂Q ∼ AN(β,M−1
β ) ,

where Mβ = −E( ∂
∂β
U(β,y)) = D>V −1(µ(β))D is the quasi-information matrix. This

matrix plays the same role as Fisher information for ordinary likelihood function.
In the model (2.1), the quasi-information can be written as

Mβ = F> (A−1 + C)−1F =

s∑
i=1

F>i (A−1
i + Ci)

−1Fi ,(2.3)

where C = diag(Ci)i=1,...,s, F = (F>1 , . . . ,F
>
s )> and A = diag(µi(β))i=1,...,s (Niaparast

and Schwabe, 2013).
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2.3. Designs. In carrying out an experiment, subjects such as expend and the extend of
reliance of the result of experiment, led researchers to design the experiment for getting
the best result before doing that.

2.1. De�nition. An approximate design for individual i, ξi, is a probability measure
with �nitely many support points xi1, . . . , xiti and weights pi1, . . . , piti which sum up to
1. In other words xijs are experimental settings and pij (j = 1, . . . , ti) are the proportion
of individual i which is taken at xij .
The approximate design for individual i can be represented as

ξi =

{
xi1 . . . xiti
pi1 . . . piti

}
.

Based on this de�nition and to emphasis the design, we can represent equation (2.3)
as

Mβ(ξi) = F>ξi (A−1
ξi

+ Cξi)
−1Fξi .

The population design is de�ned as

ζ =

{
ξ1 . . . ξs
w1 . . . ws

}
,

where wi(i = 1, . . . , s) is the proportion of the individuals that have been observed under
the individual setting ξi so the population quasi-likelihood information matrix will be

Mβ(ζ) =
∑

wiMβ(ξi).

If all individuals are observed under the same individual design ξ, then the quasi-
information for population design equals the quasi-information for an individual.
Here, we suppose that all individuals are treated under the same design and hence we
can ignore the index i in the experimental settings.

2.2. De�nition. ξ∗ is D-optimal design if

ξ∗ = argmin
ξ∈Ξ
− log det(Mβ(ξ)).

In other word, ξ∗ is a D-optimal design if it achieves the maximum determinant of
the quasi-information matrix.

3. Results

Niaparast (2009) and Niaparast and Schwabe (2013) have obtained D-optimal designs
for quasi-likelihood estimator of the �xed e�ect parameters of Poisson regression model
with random e�ects. In this section we are going to measure the relative e�ciency of
D-optimal designs for quasi-likelihood estimators.

3.1. Lemma. Suppose that β̂Q is the quasi-likelihood estimator of β. Then

Mβ(ξ) ≤ Iβ(ξ) ∀ξ ∈ Ξ.

Proof. According to the Cramer-Rao inequality, the inverse of the Fisher information

matrix for β is lower bound for any unbiased estimator of β. Since β̂Q is an unbiased
estimator of β asymptotically, then

V arβ̂Q
(ξ) > I−1

β (ξ) ∀ξ ∈ Ξ.

This inequality means V arβ̂Q
(ξ) is greater than inverse of Fisher information matrix,

Iβ(ξ), in the sense of Loewner ordering (Pukelsheim (1993)).
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On the other hand V arβ̂Q
(ξ) equals the inverse quasi-information matrix asymptotically

(McCullagh, 1983).
Regarding to Pukelsheim (1993),

V arβ̂Q
(ξ) > I−1

β (ξ) ⇒ Mβ(ξ) < Iβ(ξ) ∀ξ ∈ Ξ

�

3.2. Corollary. For any design ξ ∈ Ξ with Mβ(ξ) < Iβ(ξ), we have

• det(Mβ(ξ)) < det(Iβ(ξ)).
• tr(Mβ(ξ)) < tr(Iβ(ξ)).

To compare the Fisher information matrix and the quasi-information matrix, we de�ne
the Q− Ire criterion by

Q− Ire =

(
det(Mβ(ξ∗))

det(Iβ(ξ∗))

) 1
p

where Iβ(ξ∗) and Mβ(ξ∗) are the Fisher information matrix and the quasi-information
matrix for the same experimental setting of D-optimal designs, respectively.

In fact, I−1
β (ξ∗) and M−1

β (ξ∗) are the asymptotic variances of β̂ based on the quasi-

likelihood method and the likelihood method respectively, if ξ∗ is the D-optimal design
based on both methods. Therefore this criterion measures the di�erence between two
asymptotic variances of two unbiased estimators of β̂. The Fisher information matrix for
design ξ is given by the p × p symmetric matrix whose (k, l)-th element is given by the
covariance between the �rst partial derivatives of the log-likelihood with respect to the

parameters, i.e. Cov( ∂`(β;y)
∂βk

, ∂`(β;y)
∂βl

) where

∂

∂βk
`(β; y) =

t∑
j=1

njfk(xj)yj −
t∑
j=1

njfk(xj) exp(f>(xj)β)

∫
ePj(b)db∫
eP0(b)db

(3.1)

Here nj = m · pj stand for the number of observations which are taken at xj ,

P0(b) = −
∑t
j=1 nj exp(f>(xj)β + g>(xj)b) +

∑t
j=1 g>(xj)byj − b>Σ−1b

2
and Pj(b) =

g>(xj)b−
∑t
j=1 nj exp(f>(xj)β + g>(xj)b) +

∑t
j=1 g>(xj)byj − b>Σ−1b

2
.

Since the relation (3.1) involves two integrals which cannot be expressed explicitly, the
Laplace approximation is considered. Therefore relation (3.1) can be represented as fol-
lows:

∂

∂βk
`(β; y) =

t∑
j=1

njfk(xj)yj −

t∑
j=1

njfk(xj) exp(f>(xj)β)

(
− det(H(b̃0))

− det(H(b̃j))

) 1
2

eP (b̃j)−P (b̃0) ,

where b̃0 and b̃j (j = 1, . . . , t) are local extrema of the functions P0(b) and Pj(b),
respectively. Also, we have

H(b̃) =

t∑
j=1

(−njg(xj)µj(b̃)g>(xj))− Σ−1.
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4. Simulation

In the following we will measure the relative e�ciency of the quasi-likelihood approach
for three special cases of Poisson regression model with random e�ects. Note that in
these cases D-optimal designs for quasi-estimators of parameters have been obtained by
Niaparast (2009) and Niaparast and Schwabe (2013).
In practice, we obtain ξ∗ for the maximum quasi-likelihood estimation of parameters,
and then we simulate the Fisher information matrix under the condition that ξ∗ be also
the D-optimal design for maximum likelihood estimation of β. Then we calculate Q−Ire

(1) Simple Poisson regression model with random intercept (SMI):
This model is obtained by assuming β> = (β0, β1), f>(xj) = (1, xj), g(xj) = 1
and var(b) = σ2. As in Niaparast (2009) and Stufken and Yang (2012) we con-
sider designs with two support points. Table 1 contains Q− Ire, det(Iβ(ξ∗)) and
det(Mβ(ξ∗)) for some representative values of σ.
Generally, the variance of observations decreases as σ decreases. Therefore the
determinant of the Fisher information matrix and the determinant of the quasi
information matrix properly decreased. Also, with increasing σ the distance be-
tween det(Iβ(ξ∗)) and det(Mβ(ξ∗)) increased, but values of the Q− Ire demon-
strated that D-optimal designs for quasi-likelihood estimation of parameters are
e�cient for di�erent σ.

Table 1. Q− Ire for SMI

β0 = 3,β1 = −2,m=100 β0 = 3,β1 = −5,m=100

σ |Iβ(ξ∗)| |Mβ(ξ∗)| Q− Ire |Iβ(ξ∗)| |Mβ(ξ∗)| Q− Ire
0.1 13471.22 13415.03 0.998 2149.35 2146.41 0.999
0.2 3805.49 3736.66 0.991 608.53 597.86 0.991
0.3 1772.64 1699.24 0.979 284.61 271.87 0.977
0.4 1042.83 962.89 0.961 167.03 154.06 0.960
0.5 701.52 617.95 0.938 111.66 98.87 0.941
0.6 514.15 428.83 0.913 82.23 68.61 0.913
0.7 405.29 313.99 0.880 64.76 50.23 0.881
0.8 332.84 238.90 0.847 53.61 38.22 0.844
0.9 288.47 186.94 0.805 46.16 29.91 0.805
1 256.24 149.34 0.763 41.36 23.89 0.760

(2) Quadratic Poisson regression model with random intercept (QMI):
It might happen that the e�ect of the explanatory variables are stronger than
that which in SMI describes as the relation between the explanatory variable and
response variable. Thus the quadratic model which is a special case of model
(2.1) where β> = (β0, β1, β2), f>(xj) = (1, xj , x

2
j ), g(xj) = 1 and var(b) = σ2.

As we mentioned in the simple poisson regression model with random intercept
(SMI), we have also considered the saturated designs with three support points.
The Q− Ire, det(Iβ(ξ∗)) and det(Mβ(ξ∗)) for this model according to di�erent
values of σ are listed in table (2).
The results for here are similar to those obtained in the SMI example.

(3) Simple Poisson regression model with random slope (SMS):
An assumption that might sometimes be in contention is whether the e�ect of
the explanatory variable is constant across the di�erent subjects. Contrary to a
random intercept model, a random slope model allows the explanatory variable
to have a di�erent e�ect for each individual. This model also arises as a special
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Table 2. Q− Ire for QMI

β0 = 3,β1 = −5,β2 = −2,m=100 β0 = 3,β1 = −2,β2 = −5,m=100

σ |Iβ(ξ∗)| |Mβ(ξ∗)| Q− Ire |Iβ(ξ∗)| |Mβ(ξ∗)| Q− Ire
0.1 1909.96 1903.23 0.999 671.68 671.11 0.999
0.2 537.75 529.39 0.995 193.58 191.06 0.996
0.3 257.35 245.58 0.984 93.42 89.25 0.985
0.4 155.71 143.87 0.974 56.32 52.38 0.976
0.5 109.40 96.45 0.959 39.92 35.14 0.958
0.6 85.18 70.68 0.940 30.80 25.76 0.942
0.7 71.35 55.14 0.918 26.03 20.13 0.918
0.8 63.30 45.27 0.894 23.00 16.51 0.895
0.9 59.73 38.56 0.864 21.56 14.06 0.867
1 58.64 33.87 0.833 20.95 12.35 0.838

case of model (2.1) where µj(b) = exp(β0 + β1xj + bxj) and b ∼ N(0, σ2).
For SMS, D-optimal designs are searched among two-point designs (Niaparast
and Schwabe, 2013). Table 3 contains three values Q − Ire, det(Iβ(ξ∗)) and
det(Mβ(ξ∗)).

Table 3. Q− Ire for SMS

β0 = 2,β1 = −3,m=100 β0 = −2,β1 = −3,m=100

σ |Iβ(ξ∗)| |Mβ(ξ∗)| Q− Ire |Iβ(ξ∗)| |Mβ(ξ∗)| Q− Ire
0.1 6797.00 6783.35 0.999 2.7489 2.7481 0.999
0.2 4632.30 4625.97 0.999 2.7428 2.7334 0.9982
0.3 3136.28 3128.35 0.999 2.716 2.708 0.998
0.4 2213.48 2193.96 0.995 2.673 2.672 0.999
0.5 1619.13 1599.07 0.994 2.631 2.627 0.999
0.6 1235.64 1205.62 0.988 2.575 2.570 0.999
0.7 968.33 935.92 0.983 2.510 2.500 0.998
0.8 775.98 744.94 0.980 2.428 2.417 0.998
0.9 633.89 605.32 0.977 2.343 2.316 0.994
1 527.87 500.76 0.974 2.233 2.199 0.992

5. Discussion

In this paper we evaluate the relative e�ciency of the quasi-likelihood method in ob-
taining D-optimal designs for Poisson regression models with random e�ects. For this
purpose, the quasi-information matrix was compared with approximations of the Fisher
information matrix. To gain the Fisher information matrix of usual methods, the co-
variance between �rst partial derivatives of the log-likelihood with respect to parameters
must be computed. The likelihood function includes the integral over the product of
the probability density functions within any individual. Since these functions vary be-
tween zero and one, then their product tends to zero. To solve this problem, the Laplace
approximation and weak law of large numbers were used to approximate the Fisher in-
formation.
The obtained results demonstrate that the D-optimal designs for quasi-likelihood esti-
mator of parameters are e�cient. Figure 1 shows D-optimal designs for quasi-likelihood
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Figure 1. Q− Ire for three models, SMI, QMI and RMS

estimators in simple model with random slope are more e�cient.
Since the theoretical results can be obtained for quasi-likelihood approach in GLMMs, an
interesting subject for further study is to extend the results to other optimality criteria.
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