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Estimation of population distribution function in
the presence of non-response
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Abstract

This article addresses the problem of estimating the population distri-
bution function in the presence of non-response. We suggest a general
class of estimators for estimating the cumulative distribution function
using the auxiliary information. Expressions for bias and mean squared
error of considered estimators are derived up to the first order of ap-
proximation. The performance of estimators are compared theoreti-
cally and numerically. A numerical study is carried out to evaluate the
performances of estimators.
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1. Introduction

It is a well established phenomenon in the theory of sample survey that the non-
response is an unavoidable fact, which is devastating and almost in every surveys of
human respondents, suffer from some degree of non-response. Non-response mainly clas-
sified as: (), unit non-response or total failure, in which entire unit is missing, for
example, a person may totally refuse or unable to participate in the survey for some
specified reasons and (77), item non-response or partial failure, in which at least one item
is missing from some measurements for the given observations. For example, a household
may hesitate to give information about his income. The problem of non-response has
already been tackled from different ways, is common and widespread in mail surveys
than in personal interviewing. The usual approach to overcome non-response problem
is to contact the non-respondent and obtain maximum information as much as possible.
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Hansen and Hurwitz [11] were the first to suggest a non-response technique in mail sur-
veys, combined the advantages of mailed questionnaires and personal interviews. They
plan first use the economies involved in the use of questionnaires by mailing them to a
sample of population under study. After this a follow-up is carried out by interviewing a
subsample of the non-respondents.

Consider a finite population of size N and a random sample of size m is drawn from
a population by using simple random sample without replacement (SRSWOR) sampling
scheme. In survey of human populations, it is often the case that mgr units respond,
but the remaining ma; = (m — mg) units do not. The initial survey may be conducted
through the mail or by telephone, perhaps computer aided. Hansen and Hurwitz [11]
suggested a two phase sampling scheme for estimating the population mean by using the
following steps.

(a) a simple random sample of size m is selected and the questionnaire are mailed
to the sampled units;

(b) a subsample of size r = ™A for (k> 1) is taken from mys non-responding units.

The graphical illustration of non-response scheme is given in Figure 1. A widely debated

/

AN J
@
-
/ \
;/ M (sample \
\ Size) /
AN %
/ \
| |
v v
M\ (Non-Responding IMR (Responding

Samples) Samples)

» r=m|v|lk

(Personally Interviewed)

Figure 1. Illustration of Hansen and Hurwitz [11] non-response scheme

topic in sample survey is the estimation of population mean for the study variable by
using the auxiliary variables in the presence of non-response. Several authors including
Chambers and Dunstan [3], Rao [28], Rao et al. [27], Khare and Srivastava [17, 18, 19],
Olkin [25] suggested different types of estimators for estimation of population mean using
the auxiliary information under non-response. Okafor and Lee [24] presented ratio and
regression estimation with sub-sampling the non-respondents in estimating the popula-
tion mean Y. Further, Khare and Sinha [14, 15, 16] proposed some classes of estimators
for estimating population mean using multi-auxiliary characters in different way. For
the estimating population mean under two-phase sampling scheme in presence of non-
response, Singh and Kumar [34, 35, 36], Klein [20], Tabasum and Khan [40], and Shabbir
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and Nasir [33] have made significant contributions. Diana and Perri [5] suggested a class
of estimators in two-phase sampling with sub-sampling of non respondents in estimating
the finite population mean. For controlling the non-response bias and eliminating the
need for call backs in survey sampling, John and Robert [13], citeBS, and Dunkelberg
and Goerge [7], El-Badry [8], Diana and Perri [4], Hansen et al. [12], and Politz and
Simmons [26], discussed some good techniques and plans.

An extensive literature is available on estimation of population mean under non-
response, but lesser effort has been devoted in the development of efficient methods for
population cumulative distribution function by using the auxiliary information.

We are often concerned with the proportion of y; values in the population. Users of
sample survey data commonly need to estimate the population distribution function, or,
equivalently, the proportion of units in the population with values less than or equal to
a specified value t,. For example, we may be interested in the proportion of agricultural
area for poisonous effect of pesticides less than zero, the proportion of filtration plants
for the present of arsenic in portable water less than zero. Such a proportion is particular
value of the cumulative distribution function (CDF') for the population.

N
1
Fr(ty) =~ D T <t).
=1

Above expression is just the average of the values of Bernoulli distribution I (y; < ty)
over all elements of the population, where I (y; <ty) = 1 for y < t, and I (y; < ty)
= 0, for y > t,. Often in survey sampling, we can only measure the study variable
for those items in some sample, thus, the usual estimators of the distribution function
depends exclusively on the selection of the sampling design and the sampled portion of
the population. It is often seen the case, that some values of study variable are not
available for non-sampled portion of the population, so we may use auxiliary information
for improving the efficiency of population distribution function.

Chambers and Dunstan [3] and Chambers et al. [2] suggested the procedure and prop-
erties for estimating the finite population distribution function and the quantiles based on
use of the auxiliary information. Rao et al. [27] used a general sampling design and pro-
posed ratio and difference type estimators for population distribution function. Kuk [21],
presented a classical as well as a prediction approach in estimating the distribution func-
tion from survey data. Some more work is due to Woodruff [42], Kuk and Mak [22, 23],
Rueda et al. [30, 31], Rueda and Arcos [29], Dorfman [6], Ahmed and Abu-Dayyeh [1],
and Singh and Joarder [39].

In presence of the auxiliary information, there exist several general estimation pro-
cedures. For more details see Wang and Alan [41], Kuk and Mak [23], Rao et al. [27],
Rueda et al. [31], Garcia and Cebrian [9] and Singh et al. [37] to obtain more efficient
estimates for the population mean or totals.

An extensive literature is available on estimation of population mean under non-
response, but lesser effort has been devoted in the development of efficient methods for
population cumulative distribution function (CDF) by using the auxiliary information.
The present article focuses on the estimation of population distribution function of the
study variable using the auxiliary information when data are not collected from all sam-
pled units due to the problem of non-response.

We organize the rest of the article as follows: Section 2 introduces the notations
and symbols. Section 3 gives detailed proof for estimating the population distribution
function under non-response case. Section 4 contains the expressions for the bias and
mean squared error (MSE). Section 5 gives a general class of estimators to first order
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of approximation. A numerical study is presented in Section 6 and cost of the survey is
discussed in Section 7. Section 8 gives the conclusion.

2. Notations and symbols

Consider a finite population Q@ = {1,2,..., N} having N distinct and identifiable
units. Let (y1,¥2,...,yn) be the values of the study variable Y. For each index t,,
(-0 < ty < +0), the cumulative distribution function (CDF) of Y is given by

v (ty) *NZI

where 7 (.) is an indicator function.
Then the corresponding population § quantile (0 < 5 < 1) is defined by

(22)  Qv(B) =inf {ylFv(y) > B} = Fy ' (B),

where inf stands for infinimum. The problem is to estimate Fy (t,) for any given t,. We
draw a random sample of size m from N by simple random sampling without replacement
sampling scheme (SRSWOR). Then given t,, the Fy (¢,) can be estimated by

(2.1)

08  Rl)= =Y Twi<s)

Following Garcia and Cebrian [9], it is easy to show that

. - N-—-m
(@4) B (Fr(t) = Frit) and V(Fy(t)) = s Be(t) (L Fr(t)),
where F(.) and V (.) are the mathematical expectation and variance of (.), respec-

tively. The layout of response stratum is given in Table 1.

Table 1. Layout of respondent stratum

X< Fx(tz) X > Fx(tz) Total

Y < Fy(ty) mi1/Ni1 mi2/Ni2 Ni.
Y > Fy(ty) ma1/Na1 maz/Naa No.
Total N N2 N

Here, N11, Ni2, N21, and Na2 be the number of units in the population in their respec-
tive cells for respondents. Similarly, m11, mi2, m21, and ma2 be the number of units
in the sample in their respective cells. Hence (m11, mi2,m21,m22) is a trivariate Hyper
Geometrically( THG) distributed random variable,

i.e., (TTL117 miz, Mmai, m22) ~ THG (N, m, N117 ]\rlg7 N21).

Also mFy (t,) = mi1 +mi2 and mFx(t;) = mi1 + moi.

The non-response stratum layout is given in Table 2.

Table 2. Layout of non-response stratum

X < FO(tay) | Xo > FP (ts,) | Total

Vo RO | mE NG| /N | N

Vs > FP (ty,) | m) /NS m) /NS | NP
Total NA(f) ij) N
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Here, Nl(f), Nl(g), NZ(?, and Ng) be the number of units in the population in their re-
spective cells for non-respondents. Similarly, mﬁ), mg) mg) and mé? be the number of
units in the sample in their respective cells.

Let {I (Y: <ty),I(X; <tgy)} =1if ith unit possesses an attribute and

{I(Y; <ty),I(X;<ts)} = 0 otherwise, which follows the uniform probability distri-
bution. Let sample means F;i(ty), 13)*(,(161)) be the unbiased estimators of population
means (Fy (t,), Fx(t.)) based on m observations. Let S%.. (t,) = Fy(ty) (1 — Fy(t)),
82 (t2) = Fx () (1 — Fx (t.)),

Sty (tey) = Fxa(tzy)(1 — Fx2(tz,)) be the population variances and

Sry 5 (ty,ta) = Fy,x(ty,tz) — Fy (ty)Fx (tz) be the population covariance for Stratum 1
and Stratum 2 respectively.

Also Cry (ty) = Ly (ty) Cry (te) = S 02) Cp (t,,) = I Fxa(ay) 16 the popula-

FY(ty) ’ Fy (tz) FX2(tm2)
tion coefficient of variations of X for Stratum 1 and Stratum 2 respectively.
_ 1—2Fx (ts) _ 1-3Fx(tz)+3F% (tz) .
Let 51 (Fx (tz)) = R T and f2(Fx (t2)) = ~F i) i-Fx(f)) Pe the popu

_ SFYX(tyvtz)
FY(ty),FX(tm)) - SFY(ty)SFX (tr)
be the phi-population correlation coefficient. To obtain Bias and MSE of estimators up
to first order of approximation, we define the following relative error terms.

w Py (ty)—Fy(ty) s _ Fx(te)—Fx(tz) _ Py (ty)—Fy(ty) Fx (ta)=Fx (tz)
Letes = =) 6=~y 0T T R Fix(tz)
such that E (ej) = E(e;) =0, for i =0, 1. To first order of approximation we have

(

B (%) = zhs { NPy (1) (1= P (8) + 2P (1) (1= FP (1)) } 2 Vi,

(e1?) = sty { M Fx (k) (1= Fx(ta)) + 2P (t2) (1= F (t02)) | = Vi,

(2) A7 (2) _ Ar(2) Ar(2)
E (eje}) = % A (%) W (%)} ~ Vv,
2

B () = prly OBy (0) (L By (8,))} = Vi,
E(ef) = i MaFx(ta) (1= Fx(t2))} = Voz,
E(eger) = Fy(ty)lFX(tz) {/\1 (N11N221\72N12N21)} =V,
where . . . .
V* — E{(Fs*/(ty>*FY<ty))r(F)*((tx)*FX(tw))S} V*’ — E{(Fs*/(tqﬁfFY(ty))r(FX(ta:)*FX(tw))s}

e (Fyn(ty))" (Fxn(ta))® > (Fyn(ty))" (Fxn(ta))® ’

AL = (% — %), and A2 = W, with Wy = %, Ny be the number of units in the

population corresponding to non-response group.

lation coefficients of skewness and kurtosis of X. Let (p(

and e; =

ty

3. Estimation of population distribution function under non-response

In this section, we drive the expressions for mean, variance and covariance of the

estimator, FC7(t,) = wr FY (ty) + war FEC7 (ty,) under non-response for estimating the
CDF.
Suppose that the underlying population is divided into two homogeneous strata: (i)
response group and (i7) non-response group. Let Nr and Nj; be the number of units
in the population that correspond to the response group and the non-response group,
respectively, where Nr + Nas = N. Given this information, following Gross [10], the
finite population CDF, Fy (t,), can be written as

(3.1)  Fy(ty) = WaF\" (t,) + WarF (ty,),

where W; = N;/N for i = R, M.
Out of m selected units, mgr units respond and mps units do not respond, where mpr +
my = m. In order to get response from mys, the non-respondents are contacted once
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again by personal interview. Then sub-sample of size r = m/k for (k> 1), is obtained
from mps non-responding units. It is assumed that all r units respond. Let Fél)(ty) and

F;,QT) (ty,) be the CDF estimators based on mg and r responding units. On the lines of
Hansen and Hurwitz [11], the estimator of Fy (t,) under non-response is given by

(3.2) B (ty) = wal) (ty) + wa Y7 (ty,),

where w; = m;/m for i = R, M.
Based on the estimator given in (3.2), we present the following theorem.
Theorem 1

(i) FS)(t,) is an unbiased estimator of Fy (t,), i.e., E (Fé*)(ty)) = Fy (ty).
(i0) Var (F(t,))
= [R5 Py (1)1 = Fr () + 280 Mo g0, (1- FP (1))
(iii) Cov (Fy)(ty), F;%x))
- [(l—f) (N11N2(21\7)1;712N21) 4 Wari-1) (Nﬁ)Né?fo?Nﬁ))}

m m (Nj(é>>2

Proof (i). Taking mathematical expectation on both sides of (3.2), we have

E (PO (1) = B {wnbP )} + B {wa B (40) },

B (B0 (1)) = B {wrBa (B (t)lma) } + B {wa B (B (t)Ima) },

B (57 (t)) = B {wn (FV) (t)Imn | + E {wa Bz (Bs (B2 (t,0)r.ma) ) },
E(B(,)) = By {wn (F) @)lmn} + B {ws B (B () me) },

B (E (1)) = B {we (F) (t)Ime} + B {war (F () me) |,

E(F7(t)) = WeF (1) + Wa Y (1) = Py (t,),
which completes the proof.
Proof (ii). From (3.2), we can write

(33) B0 = Fr(ty) +war (B () - B (1))
where, By (t,) = waF (t,) + wn B (ty,).

It is easy to show that

(34) B (Fr(t)) = Frt),

and

85 Var (Br()) = [y €)1 - (6)].

If we consider N — 1 = N, then we can write (3.5) as

Var (FY(t)) = {Nm_NmFY(ty)(l - FY(ty))] :

Applying variance on both sides of (3.3), we get
N—m

Fy (ty) (1 = Fy (ty))

(3.6) Var (F}(/*>(ty)) = +Var {wM (Fl(fr) (ty,) — Fff)(tyz))}
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From (3.6), we can write

Vil {wne (B8 (1)~ B2 (1)) )

(3.7 Var {wM (Fi(f’")(tw) - Fi(/Q)(tW))} - YEV, {’U)M (F}(,QT) (tyy) — F;(/Q)(tyz))}

Considering the terms on right hand side of (3.7), we have

ViE; {wM (Ff’")(tw) - Fx(/z)(tw))} = ViEFEs {’wM ( P (ty,) — Fx(g)(t?n))}
(3.8) =0

(3.9) EVa {wM (F;Q”(ty ) — B3 (t,, )} E {vag( (¢, )—F<2>(t,,2))}.
Considering the term on right hand side of (3.9), we have

Ve { (B () = 12 (1)) }

= Vel { (B (1) = B2 (10)) } + BaVa { (B2 (1) = B2 (1))}

Vo { (B2 t) = A2000) ) = 2203 { (B 0) = 570, )

Finally, we get

fr(2r) (2) _ (2) _ p®
(310) Vo {(FF"(tye) = B2 (1)) } = mM—l T B { B (1) (1 B2 (1)) }
Replace the values of r = m/k, Eo (F)(, va) ) = F)(f)(tw) and

o (10)" 1 (Y200) # (10
= Nu-mu g 2>( 2 ) (— F<2 (tys)) (F(Q) vs) )2 in (3.10), and after some simplifica-

mpr (Npr—1)
tions, we get

1) Vo { (B0 = AP () } = e P2 04,) (1= B (0)

Substituting (3.11) in (3.9), we have
Er {w12MV2 (F(QT)( v2) — F(Z)(ty2)>}
- B {mI\/I MF@ (ty )(1 7F3(/2)(ty2))}7

m2 mp(Npr—1)
or

By {wiiVe (B (t,) = B (4,) ) | = Pl R0 53 (1) (1- B2 (1))

m

If we consider Ny — 1 =2 Ny, then above expression can be written as

(612) B {udVs (B (1)~ B2 1)) ) = PP EZD 50, (12 AP 1,))

Substituting (3.8) and (3.12) in (3.7), we get
- on . War (k-1
(313)  Var {ws (B (1) ~ B2 (1))} = VLE =D g2, (1 A2 ,0))

From (3.6), the covariance term can be written as
Cov { By (ty) war (FE7 (1) = B2 (1) ) |

E1Covs {FAy(ty),wM (Ff”(tw) - F( >(ty2))}

@14 = +Couvi B {ﬁY(ty)vwhl (Fgr)(tw) - FS)(tW))}
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Now considering the term Covs {Fy (ty), wnr (F}([Q'r) (tys) — F;,Q)(tyzn}
on right hand side of (3.14), we get

E2Cous {F} (ty), war (F;Qr) (ty,) —
(3.15) = . ) ) =0.
+ Cova i3 {FY(ty)va (FY V(tyy2) — Fy (tyz))}
On similar steps, it can be shown that
(316)  Covi Bz { Fy(t,),war (B (ty) — Y (1)) } = 0.
Substituting (3.15) and (3.16) in (3.14), we get
(3.17) Cov {Fy (t,), war (F;Z”(tm) - FS)(%))} -0

Again by using (3.13) and (3.17) in (3.6), we get

S
&
~
-
<
N
\
N——
——

‘N —m
Fy (ty)(1 — Fy (ty
Var(p;(/*>(ty)): N FY () (ty))
|+ M=) b, (12 PP 1)

This completes the proof and on the same lines we have

TN —m
Fx(te)(1 = Fx (t2))
(% mN
Var (F>((>(tz)) = X War (k— 1)

F () (1= FP ()

Proof (iii). See Appendix A, Page 53.

4. Suggested estimators of population distribution function

We suggest the following family of estimators for estimating the population distribu-
tion function.

4.1. General family of estimators. A general family of estimators for estimating
CDF, is given by

(lFx(tI) +b
5 (aﬁx(tl) n b) 4 (1—6) (aFx(ta) + b)

(4.1) FJ\/[J(ty) = FY(ty)

where 4, g are suitably chosen constants and a (# 0), b are either real numbers or function
of known parameters of the auxiliary variable X, such as standard deviation (Sry (tz)),
co-efficient of variation (Cry (tz)), co-efficient of skewness (81(Fx(tz))), co-efficient of
kurtosis (82(Fx (tz))), and co-efficient of correlation (p(ry (¢,),Fx (t))-

Expressing (4.1) in terms of €’s, we have

Fara(ty) = Fy (ty) (14 eo) (1 + dover) ™7,

aFx (to)
aFx (tz)+b"
Expanding the right hand side of the above expression and retaining the terms up to

power 2 in €’s, we have

where o =

(4.2)  Fas(ty) = Fy(ty) |1+ eo — dager + Mé%ﬁe% — dageoer
y y D)
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4.1.1. Situation I - Non-response both on the study and the auziliary variables: F; (ty),
F)*( (tz). When non-response occurs on both the study and the auxiliary variables, and
population mean Fx (t;) of the auxiliary variable X is known in advance. In agricultural
survey, for instance, expenditures of fertilizer or pesticides on crop can be used as the
auxiliary variable for the estimation, say, production of crop, there may be non-response
on both the variables and for Situation I, Equation (4.1) can be written as,

9

aFx(tz) + b
B (aﬁ};(tz) + b) +(1-6) (aFx(ts) + b)

For this, (4.2) can be written as,

(4.3)  Euslty) = Fy(ty)

gg+1) 2 2 .0
2

(@) B (0% Fet) |1+~ dagei + Fatei? - dageiei .

where F‘E?,L (ty) for case of Situation I.
Subtracting Fy (t,) from both sides of (4.4) and then taking expectation, we get the bias
of FX})JL (ty) up to first order of approximation, given as

. ~ 1 * *
(4.5)  Bias (FI(\/}?L (ty)> >~ Fy (ty) [629(9 + 1)04?5‘/02 - 6go¢iV11} .

Squaring both sides of (4.4) and then taking expectations, we get the MSE of FJE}?,L (ty),
up to first order of approximations, given by

(4.6) MSE (F;;?,_ (ty)) > F2(ty) [Vao + 09202V, — 20gaiVii ]

where a; = % for i =0,1,...,13.

Different estimators can be generated from proposed class of estimators by substituting
the suitable choices of (d,a,b,g). The generated estimators are listed in Table 3. Many
more estimators can also be generated from suggested family of estimators by substitut-
ing different values of (d,a,b,g ).

The biases of the suggested family of estimators Fﬁ}l (ty) up to the first order of approx-
imations are given below.

(4.7)  Bias (FA<;§,1( )) = Fy(ty) (Vo — Vi) s

(48)  Bias (F{}), () = Fy (1) (Viy),

(4.9)  Bias (Fli}?, (t, ) = Fy (ty) (a2Vy — aiVih)
for ¢ = 3,10, 12, and

(4.10) Bias (FJE/I)J (ty ) >~ Fy(t a Vo + ann)

for i =4 - 9,11,13.
The MSE of the suggested family of estimators (F]S)JL (ty)) up to first order of approxi-

mation are given below.

(411)  MSE (B}, (1)) = FE(t,)Vao,

(412)  MSE (B{}), (t,)) = F2(t) (Vi + Vs — 2Vi1),
(413)  MSE (B}, (t,)) = FE(t) (Vo + Vi + 2Vih),
(4.14) MSE( ) P

lz’(ty) (V;E) + OC?VO*Q - 2041“/1*1) )



Table 3. Some members of the suggested classes of estimators FJ(\;?h (ty)

5 a b g Estimator

— 0 0 EL () = By ()

R . R, () = B (B

L 0 0Bt = By, ( EG)

1 1 Cry (tz) LB () = () %&:ﬁxj;
o Crglt) 1 B, ) = o) (Sl

U b e B () = Rl ()R )
L Oncl)  BalFx(t)) 1 B () = ) (R
o Sexte) 1 FD, () = Ry ) (Pl

L See(t)  Ba(Px(ta) 1 B 0) = B ) (SRS )
L Ba(Fx(te) Spy (tz) -1 Fﬁ}g(ty)zﬁ;(ty) gi?ig:;;if{cggiii;gi;
e ¢
L e L F ) = Bl (et
1 1 B2 (Fx (tz)) 1 Fﬁ?flz(t”):ﬁ;(ty) %

) . Ba(Fx(t)) -1 Eypy (ty) = Fy(ty) %

for i = 3,10,12., and
(415)  MSE (B, (4)) = FH(t,) (Vi + ol Ve + 2:V73) |
for i =4-9,11,13.

Also here,

Fx(t
0512070(2:0(3:17043:044: x (ta)

Fx (tz)+Cry

_ B (Fx (tx)) Fx (ta)
5 7 Ba(Fx (t2))Fx (ta)+Cry *

«

Cry Fx (ta) Fx (tz) Sry Fx (ta)

Qs = Cry Fx(te)+Cry ? arn, = Fx (tz)+SFy’ Qg = Sry Fx (te)+B2(Fx (tz))’
_ B2(Fx (te))Fx (tz) _ Fx (tz)
Qo = B2 (Fx (tz))Fx (tz)+SFy Q(1o,11) = Fx (82)+0(Fy (ty), Fx (t2))

Q(1219) = (i) s PR

4.1.2. Situation II - Non-response only on the study variable: ﬁ'{ﬁ(ty) When non-response
occurs only on the study variable, information on the auxiliary variable X is obtained
from all sampled units and population mean Fx (t,) of the auxiliary variable X is known.
In household survey, for example, by using the household size as the auxiliary variable
for the estimation of family expenditures. Information can be obtained completely on
family size, while there may be non-response on household expenditure. For Situation
II, (4.1) can be written as

aFx(tz) + b

(4.16)  Fi7) (8,) = F¥ (1) .
5 (an(tz) n b) + (1 - 8) (aFx(ts) + b)
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Expression (4.16) in terms of €’s, we have

7 1
(4.17) F](\j?]i(ty)ng(ty) 1+ el — dager + glg+1) 2 2 ]7

2 5 a’el — dagejer

where Fz(j?zl (ty), for the case of Situation II.
Different estimators can be generated from suggested family of estimators by substituting
the suitable choices of (d,a,b,9) and are listed in Table 4.

The biases of the suggested family of estimators (Fﬁ?,l (ty)) up to the first order are

Table 4. Some members of the suggested class of estimators F‘ﬁ}b (ty)

6 a b g Estimator
0 0 0 0 ED (ty) = Fy(ty)
1 1 0 1 ﬁ?n (ty) = F(ty) (KE;))
(2) o Fx (tz)
1 1 0 1 L(ty) = B (1) (é(m)
<2> x Fx(te)+Cry (tx)
! ! COrx (te) L By, () = F () Fx (t2)+Cpy (t2)
(2) _ Fx (ts)+Cry (ta)
1 1 Cry (t2) 1 BP0 = B ) (Feirreiy
- (2) . Ba(Fx (t2)) Fx (t2)+Cry (to)
L Pa(Fx(te)) Crx(te) -1 Fyp () = Fy (b)) | 5ok (5 Fx () Oy (50
(2) Fx Cry (tz)Fx (tz)+B2(Fx (tz))
1 Cryl(ta) B2(Fx (tz)) -1 o (ty) = Fy (1) o () Fx (1) F B2 (Fx (52))
(2) . Fx (ta)+Sry ()
1 1 Sry (ta) 1B () = B ) ( maoree i
jae) . Spy (te)Fx (te)+B82(Fx (t))
L Spy(ta) Pa(Fx(ta)) -1 Faph(ty) = Fy(ty) 50 oy Fx (2a) 582 (P (52))
2 o B2(Fx (t2))Fx (te)+Spy (ta)
1 p2(Fx(ta)) Srx (tz) LB () = () B2 (Fx (62)) Fx (2 Sy (52
- Fx (tz)+p(Fy (ty),Fx (t
n N 1 F® ey = preeny ((EX (Fy (1), Fx (ta))
P(Fy (ty),Fx (t2)) pe () = £y (ty) II;XEtm;JrP(Fy(ty),Fx(tm))
(2) _ X (o) FP(Fy (ty) Fx (ta))
1 1 piry () ix ) L Far, ) = B ) ( icmmnn o mae)
(2) _ Fx (tz)+B2(Fx (tz))
1 1 Bo(Fx(te)) 1 Fz(v;)m(ty) = Fy(t) <1;x ((tz))+%2((§x((tm)))))
) te)+ z(te
1 1 B2(Fx (tz)) Ly, (ty) = FY () (WM)

given below.
(4.18) Bias (F}j}l (ty))
(4.19) Bias (Fﬁ?h (ty))

(4.20) Bias (F}j?, (ty))
for ¢ = 3,10, 12, and

IR

Fy (ty) (Voz - V1*1/) )
Fy (ty) (Vﬂl) )
Fy (ty) [Cli (OéiVOQ - Vfi)] )

1%

R

(421)  Bias (F{7), (t,)) = Fy(t,) [as (aVor + V3],

for i = 4-9,11,13.

The MSE of the suggested family of estimators F’E?,L (ty) up to the first order are given
below,

(422) MSE (B, (t,)) = FE(t,)Vao,
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(123) MSE (F ) = F(t) (Vo + Voo — 217 ),
(4.24) MSE ( BD, (ty)) =~ FY(ty) (Vg*o + Voz + 2\/1*1') ;
(1) =

)

(4.25) MSE FMJ (ty)
for i = 3,10, 12, and

xzf(ty) [Vﬁ) + a; {Oéz'Voz - 2‘/1*1,}] )
(4.26) MSE ( A, (ty) ) = FE(ty) [VQE) + o {aiVOQ + 2V1*1’H :
for i = 4-9,11,13.

4.2. Exponential family of estimators. A general family of exponential estimators
for estimating population distribution function is given by

[(cFx(te) + d) — (ch(tI) + d)
| (cFx(t) + d) + (CFX(tz) n d)

(4.27)  Fre(ty) = Fy(ty)exp

or

- e (Px(ta) ~ Px()
) el = B e | )+ ) + 24

)

Expressing (4.28) in terms of €’s, we have

(4.29)  Fro(t,) = Fy (t,) (1 + e0) (1 - %wel + gdﬂe'{) ,

: _ _cFx(ts)
with ¢ = 761?;((%”_(1.

Expanding the right hand side of (4.29) and retaining the terms up to the second order
of €'s, we have

. 1 3 1
(4.30)  Fre(ty) = Fy(ty) <1 +eq — §d)e1 + §¢Qe§ — §weoel) .

4.2.1. Situation I - Non-response on both the study and the auziliary variables: Fy (ty),
F%(t). For Situation I, (4.28) can be written as

o (Fx(t) = Fi(t))
¢ (FX (ta) + F‘;((tx)) +2d

(4.31) FRE(ty) = F;;(ty)exp

and from (4.30), we have
(432)  F (1) 2 Fy(ty) (1 Feh— bt + Swtet? - Lues ) .

where Fge) (ty) for case of Situation I.
The biases and MSE of the suggested family of estimators F}(QIS)J (ty) up to the first order
are given below.

. - 3 . 1 .
(433)  pias (P (1)) = Fe o) 30V - uvii ).
. o1, .
(4.34) MSE (Fz(zle)- (ty)) = F)Q/(ty) <V20 + 17/132“/02 - 1/}le1> ,

_ _ Fx (tz) _ Ba(Fx (ta))Fx (ta)
Y1 =0, = Fx () +Cryg V3 = Fx() 16 (Fx @)’ ¥4 = BalFx (1)1 Cr,




o Fx (tz)Cry _ Fx (tz) _ Fx (tz)
Y5 = Fx (te)B2(Fx (t2))+Cry Yo = Fx (ta)+p(Fy (ty), Fx (t2)) Yr = Fx () +P(Fy (ty),Fx (t2))
W = Fx (ta)p(ry (ty). Fx (t2) o = B2EX(t))Fx (te)

Fx (te)P(Fy (1), Fx (tz) TOFx B2(tz)+Cr,

B Fx (82)P(Fy (ty), Fx (tz))
Y10 = Fx (t2)P(Fy (ty),Fx (t) TA2(Fx (tz))”
Different estimators can be generated from suggested family by substituting the suitable
choices of (¢, d). The generated estimators are in Table 5.

Table 5. Some members of the suggested class of estimators F,%)J (ty) -

4 d Estimator
D\ _ (Fx (t) = Fx (t2))
! 0 Fre, (t) = By (W)exe (7605 00)
A 4\ _ (Fx (0)-Fj (t2))
! Crx(te)  Frey(t) = By (W)ew { (s ie ) o oo

(1 fr Fx ()= F% (ta)
1 B2(Fx (ta)) Fj(%e>3 (ty) = Iy (ty)exp (FX(t,,,)(+1):f;((t,,,)))iQBZ()FX(tI))>

B2 (Fx (t))(Fx (t2)— P (t2))

A ) _ f
Ba(Fx(t=)) Crx (t) Fre,(ty) = B (t)exp { 5o s 0 o+ P () 720y )

Cry (t2) BaFx(t:)) R (0) = Fy(t)exp (o opaia At st
L Py ey Frey(ty) = B (ty)exp (FX<tl.>+£§(X<f§:))li;f::}>i),FXm)
Cry (tz) PPy (ty) P () Fh (ty) = By (ty)exp cpr(pxc(fjii;i((iﬁ)t)z;: :;(::)),FXW)))
pry ety Crxlte) B (1) = B3 (ty)exp p(py(j;j;;;:ig;;>(;§fj g;gg;ggx m)
Ba(Fx (tz)) P(Fy (ty),Fx (tz)) F;?Iel (ty) = F¥(t,)exp ﬁ;(FX(tz))(ii(ﬁj))*(;}iEi:;}f;;)j(Ly),FX(LI))>
Prvimrxiny  Be(Fx(®)  FD () = Byt )exp (pwffii St §j§g;j;fj;;; D~

4.2.2. Situation IT - Non-response only on the study variable: Fy-(t,). For Situation II,
(4.28) can be written as

c (Fx(tm) - Fx(tz))
¢ (FX () + Fx(t,,)) +2d

(4.35) FRc(ty) = F{?(ty)ea:p

)

and from (4.30) we have,

~ N 1 3 1 .
(436) ()= Fr(e) { (14 ¢~ Jver + Sued — fueien ) }.

where F‘ge) (ty) for case of Situation II
The biases of the suggested family of estimators (Fz(z?] (ty)) up to first order are given

below.
(4.37) Bias (F}fl (t)) ~ Fy (L) {wj (gwjvm = %Vf‘{)} :

The MSE of the suggested family of estimators (F@J (ty)) up to first order are given
below.

(a38) MsE (F ) = Fhe) Vi + (03t - vy ).
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Different estimators can be generated from proposed class of estimators by substituting
the suitable choices of ¢, and d are listed in Table 6.

Table 6. Some members of the suggested class of estimators F,(EQS)J (ty) -

c d Estimator

1 N =)

! Cro(t) B0 = By (tewp (e tste) )

1 Ba(Fx(ta))  Frp, (ty) = Fy (ty)exp (FX(t,,,ff,ix(iljﬁii”;”ﬁ?ﬁm..»)
BalPx(t)  Crelt) FRL0) = B 0ew sttt e e
Gty BB HL) = Bt (o SR

1 e B = Frtesn (i) )
ot e F) = it (s )

P Ot PR () = Bty (o terense Bt )

B2 (Fx)(Fx ()=Fx (tz))
B2(Fx (t2)) (Fx (ta)+Fx (t2) ) 420y (1), Fx (t2))

(2 [
PRy (b Fx () Po(Fx(te)  FQ) (t) = Fy(ty)exp (

(2 [k
Ba(Fx(tz))  pry ) Fxita))  Froon(ty) = Fy(ty)exp

P(Fy(:y),FX(zm))(F){(tw)—ﬁx(tz))
P(Fy (ty), Fx (tz)) (Fx (tz)+Fx (tz))+2B2(Fx (tz))

5. Proposed generalized class of exponential ratio type estimators

We propose a generalized class of exponential ratio type estimators, given by
(5.1)  Fusp(ty) = Ki (FMJi (ty)) + (1 - Ki) (FRej (ty)) ;

for 1=1,2,3,...,13, j=1,2,3,...,10 and K is suitably chosen constant.

5.1. Situation I - Non-response on both the study and the auxiliary variables:
Fy(ty), Fx(tz). For Situation I, (5.1) can be written as

(5:2)  FDp(t) = K (B, () + (1= K (FR (1)),

where F](\})Jp(ty), Fﬁ)ﬁ(ty) and FJS/})J7 (ty) for the case of Situation I respectively.
Expressing (5.2) in terms of ¢’s, we have

x 1 1 _ x
€o + <§K1 5 agK1> ey + 3 (9+ P?) Kiga’ey?

(53)  Fihp(t) = Fy(ty) ) !
+3 (1+ K1) yPe}® + (5 + §K1 - Klag) bege]

The bias and MSE of FJSZP(ty), up to first order of approximation, is given by



<%T/J - 0491/)> Vi
K

e 1 1 3\
(5.4)  Bias (FJS?IP(ty)) HFy(ty) | |+ (590‘2 + 592042 - §) Vo2

3 * *
+ <§¢'2V02 - 1/1V11)
and

*
02

+(1-yK:)®
+4 (K1 — 1 8ag) ¥Vii
By differentiating (5.5) with respect to K1, we get the optimum value as
K(Opt) — 2V VoS
1 (2ag—1)pVgE "
The minimum MSE of Fz(v})JP (ty) at optimum value of K , up to first order of approxi-
mation is given by

(1 ~ *
(5.6)  MSEmin (Fifsp(t)) = F2(6)Vao (1= 0y 1), 1)

. 4 (K1 — K + agK?) agy?
FP(ty) [4Va0 + {

6.5)  MSB(FDp(t) = T2

) )2
where pipy 1), Py (ta)) = VG -

5.2. Situation IT - Non-response only on the study variable: F{? (ty). For Situ-
ation II, (5.1) can be written as,

(5.7 Fifpt) = Ki (B, 0) + 0 - K) (F20)

where Fz(j?,P(ty), Fﬁ}l(ty) and Fﬁ}] (ty) for the case of Situation II.

The bias and minimum MSE up to first order of approximation at optimum value K§°pt) =
«/\2 2

2(‘/“)727‘/02 is given by
V02

e N 5 1o o, 3 v
(5:8)  Bias (F{})p(t,)) = Py (t,) [(2Ver — ViK™ + SVer = Vi ]

(5.9) MSEmin (F]E/??IP(ty)) = FY (ty)Vao (1= playry (1), Fx (1)) 5

Vi)? N
where p%Q)(Fy(ty),FXm)) = % for Situation II .

5.2.1. Efficiency comparisons for general family of estimators. In this section, suggested
estimators under Situation I are compared in terms of MSEs.
Condition i: By Equation (4.11) and Equation (5.6)

MSE (F{fy (8,)) = MSEmin (F{D) () >0, if
VB ry (1), (1)) > O-
Condition ii: By Equations (4.12), (4.14) and Equation (5.6)
MSE (F{D), (t)) = MSBmin (F{)p(t)) > 0, for i=1,3, 10, 12, if

VaoP(ry (), Fx (ta)) + i (iVoz — 2Vi1) > 0.



Condition iii: By Equations (4.13), (4.15) and Equation (5.6)
MSE (B} () = MSBmin (F{1)p(t)) > 0, fori=2, 49, 11,13, if
V2*0P(2Fy(ty),FX(t1)) + i (iVoa +2V47) > 0.

Note that the proposed estimator (F]E/}?]P (ty)) is more efficient than the other suggested
estimators

(FJE/}?]l (ty)) s eees (Fﬁ?,m(ty)), when above conditions are satisfied.

The comparisons of estimators for Situation II are given below.

Condition i: By Equation (4.22) and Equation (5.9)

MSE (ng?,o (ty)) — MSEpin (FE?JP(ty)) > 0, if

* 2
VaoP@)(ry (1), Fx (t0)) > 0
Condition ii: By Equations (4.23), (4.25) and Equation (5.9)

MSE (F{7) () = MSBmin (F7)p(t,)) >0, fori=13,10, 12, if
V300 (2) (Fy (1), Fx (1)) T i (az‘Vo*Q - 2V1*1) > 0.

Condition iii: By Equations (4.24), (4.26) and Equation (5.9)

MSE (FA‘j?, (ty)) — MSEin (Fﬁ)JP(ty)) >0, fori=2, 4-9, 11, 13, if
V300(2) (Fy (1), Fx (1)) + i (aiVo*z + 2V1*1) > 0.

Note that the proposed estimator (Fﬁap(ty)) is more efficient than the other suggested

estimators
(FZ(;),1 (ty)) s oo (F]Ej?,lg(ty)), when above conditions are satisfied.

5.2.2. Efficiency comparisons for exponential family of estimators. In this section, sug-
gested estimators are compared under Situation I in terms of M SEs.
Condition (i—x): By Equation (4.11) and Equation (4.34)

MSE (13]‘}?]0 (ty)) — MSE (Fg; (ty)) >0, for j=1,2,.,10, if
1 2y 7% *
(ij Vo2 — z/)J'Vn) > 0.

Condition xi: By Equations (4.34) and Equation (5.6)

MSE (£, (t)) = MSBwin (P10 (1)) > 0.

* 1 * *
VQOP%Fy(ty),FX(tI)) + (51/)2"/02 - Vu) > 0.
Note that the proposed estimator (F](\}?,P(ty)) is more efficient than the other suggested
estimators
(F}(;zle)1 (ty)> sy (F(l) (ty)), when above conditions are satisfied.

Rejp
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Proposed and existing estimators Under Situation II are compared in terms of M SEs.
Condition (i—x): By Equation (4.11) and Equation (4.38)

MSE (F;j?,o (ty)) — MSE (F,;?j (ty)) > 0, forj=1,2,.10, if
1 * *
(Zw?VOQ - iju) > 0.

Condition xi: By Equations (4.38) and Equation (5.9)
MSE (F) (t,)) = MSEmin (P p(t)) > 0.

* 1 * *
Va0P(2)(Fy (1), Fx (t2)) + Wi <§1/h‘V02 - V11) > 0.

Note that the proposed estimator (F};?,P(ty)) is more efficient than the other suggested

estimators
(Fge)1 (ty)> s e (F(Q) (ty)), when above conditions are satisfied.

Reig

6. Numerical study

In this section, we consider the following data set for numerical comparisons of sug-
gested estimators considered here.
Population I: Source: Sarndal et al. [32], (P-662)
The CO 120 data is based on 120 countries across five continents.
Let Y = P—-83, 1983 population (in million) and X = P-80, 1980 population (in million).
N = 120, m = 50, Wi = 0.25, k = 2,3,4, f = 0.41667, \; = 0.0117, A2 = 0.0050,
Fy(ty) = 0.816667, Fx(tz) = 0.808333, N11 = 97, Ni2 = 01, Na; = 00, Naz = 22,
P(Fy (ty),Fx (tz)) = 0.9730, Cpy (1) = 0.47578, Cry (1,) = 0.48889, B1(Fx (t.)) = —1.5667,
Ba(Fx(ts)) = 3.454419. Let I(Y; <t,) = 1 for Y < 0.816667, I (Y; < t,) = 0 for all
Y > 0.816667 and I (X; < t5)=1for X <0.808333, I (X; < t;)=0forall X > 0.808333
The non-response rate in the given population is considered to be 25 percent, taken as
last 30 units of the population.
Nar = 30, F{(ty,) = 0.66667, FY (t.,) = 0.66667, N = 20, N3 = 00, N§) = 00,
NP =10.
Let I (Yi@) < tyg) = 1 for Ya < 0.66667 , I (Yj?’ < ty2> — 0 for all Ya > 0.66667 and

I (X}2> < tz2) — 1 for X5 < 0.66667 , T (X}” < tzz) — 0 for all X5 > 0.66667.
Population II: Source: Sarjinder Singh [38], P.1113

Let Y = Duration of sleep (in minutes) and X = Age of old persons(> 50) years.

N =30, m=12, Wy =0.25, k=2, f=0.400, A\, = 0.020, A\ = 0.0833, Fy (t) = 0.5000,
Fx(t) = 05333, N11 = 02, N12 = 13, N21 = 14, N22 = 017 p(nypy) = —080178,
Cryy = 1.00, Cpyy = 0.9355, B1(Fx(t)) = —0.1335, B2(Fx(t)) = 1.0177. Let
I(Y;<ty) =1for Y < 0.5000, I(Y;<t,) =0 for all Y > 0.5000 and I (X; < t,)
=1for X <0.5333 , I (X; <t;) =0 for all X > 0.5333

The non-response rate in the given population is considered to be 25 percent, taken as
last 08 units of the population.

N = 08, FP(t) = 0.25, F& (t) = 0.875, N2 = 01, N2 = 01, N{¥ = 06, N2 = 00.

We use the following expressions for Percentage Relative Efficiency (PRE).

F JE/.'()JO (ty)

i: PRE (F;ﬁ, (ty),F]&)J.(ty)) ==
0 B, (1)

x 100,



. SOy O Fi ()
ii: PRE (FIMJO(ty)7FR5j (ty)) = =0 oy X 100,
FREj (ty)

where (.) can be replaced by (1) and (2) under Situation I and Situation II respectively.
We have computed the Absolute Relative Bias (ARB) for different suggested estimators
by using the following expression, given by

|Bias (Ep), (8)) or |Bias (Fg) (1))
|Fy (ty)] ’
for 1=1,2,...,13 and for j=1,2,..,10.
MSE , PRE and ARB values based on given data set under both Situations I and II are
given in Tables 7-14.

ARBY) =
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From Tables 7-8, it is observed that MSE (ﬁ'ﬁi (ty)) and MSE (FJS)J? (ty)) in-
creases at increasing rate of (k) for the given data set. Percentage Relative Efficiencies
of (F‘(Q) (ty)) and (ﬁ’(l) (ty)) increases by increasing values

MJ(;=1-3,5,9,10,12,P) MJ(;=2,4-9,11,13)

of (k) and decreases for (F’(Q) (ty)), (F(l) (ty)), but having same

MJ(;—6,8,11,13) MJ(;=1,3,10,12,P)
values for (Fl(j?'u:u) (ty)) The PREs of ratio type of estimators having more values
in comparison with product type of estimators as there is positive correlation between
study and auxiliary variables here, but our proposed estimator F]E/'I)JP (ty) is more efficient
from all other suggested estimators considered here. As for as ARBs of FJ(V??I(izl,p) (ty)

and for F]S)J( (ty) increases at increasing rates of inverse sampling rate (k) but

=1,3-13)

having same values for FJ(V}?,U:Z . (ty)-

From Tables 9-10, we examined that MSE (F’E?,ﬁ (ty)) and MSE (F’IS‘)]Z (ty)) in-
creases at increasing rate of (k) for the given data set. By increasing values of k the

PREs of (Fl(?fze)(jzl_p) (ty)) increases, and decreases for (FI(%le)<j:1_p) (ty)) The ARBs of
(Fl(%i)(Fl,p) (ty)) increases and having same values for (Fgel (ty)) at increasing rates of

inverse sampling rates.
From Tables 11-12, we observed that MSE (ﬁ'lf/})h(ty)) decreases, as compared to

MSE (Fﬁ?,i (ty)), at fixed values of (k), and increases, at increasing rate of (k) for Popu-

. Lo (1) £(2)
lation II. Efficiencies increases for (FM(,UZLS’&mim) (ty)) and (FI\/[‘](izl,S.,S,lO—lz) (ty)> by
; fr(1) i(2)
increases (k) and decreases for (FMJ(i:2,4,7,9,13,P) (ty)), (FMJ(i:2,4—7,9,13,P) (ty)) Here,

efficiencies of product type of estimators having more values as compared to ratio type
of estimators because of negative correlation between study and auxiliary variables here,
but our proposed estimator F]E/'I)JP (ty) is more efficient from all suggested estimators.
As for as ARB of ﬁ'](\;?,(L (ty) and (FJ(\%@

A (1 £ (2 . A (2
FIEL)]U:?,Q) (ty) and (F1<\/I‘>](11:4—6,12,13) (ty) but having same values for F§4=>](1:2,P) (ty).

From Tables 15-16, we studied that MSE (F}j} (ty)) and MSE (F}V}} (ty)) de-
creases by increasing values of (m) for the given data set. For increasing the sample size

(ty) increases, decreases for

=1-6,8,10—P) =1,3,7—11)

(m), the Percentage Relative Efficiencies of (ﬁl(fe)(, or) (ty)) increases, and decreases
jm0—

for (FI(%lcg(j:O,p) (ty)). The ARBs decreases under both the situations of (F‘I(QJ (ty)) and
(ﬁ‘,(%le)] (ty)) by increasing the sample size (m) respectively.

From Tables 17-18, we see that MSE (Fge)] (ty)) increases, as compared to the
MSE (15}(32% (ty)), at fixed values of ( Was) for given Population, but increases under both

the situations at increasing rates of (Was). PREs of (ﬁ'}(;e)(_ o_p) (ty)) increases and de-
jm0—

creases for (131(1) (ty)) at increasing rates of (Was). The ARBs of (Fl(fg(j:km (ty))

Re(j=o0-p)

increases and having same values for (F,(;e)] (ty)) at increasing values of (Wus). Over-

all our proposed class of estimators FJ(\‘{)JP(ty) is more efficient than all other suggested
estimators considered here.
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6.1. Comparison through percentage loss in efficiency. To judge the effect of
non-response in simple random sampling, we obtain the percent relative loss in efficiency
of proposed estimator Fz(z2e)1 (ty) with respect to the same situation as discussed earlier

but without of non-response. For this we modify Fge)j
population distribution function. The MSE of Fzge)j (ty) is given by

(ty) as FIE’,e)J (ty) for estimating

(61) MSE (F,Q (@)) = F(t,) [vm + (iwfvog - %v{‘{)} .

The Percentage Relative Loss in Precision (PRLP) of F}(%e)j (ty) with respect to Fﬁ?jo(ty)
is given by
wsp ({1, 0)) - w5 (£ 1)

5 x 100
MSE (F{7), (1)

(6.2) PRLP (F}Q)J (ty)> _
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From Table 15, it is observed that, if non-response is considered, there is loss in
precision. The percent relative loss in precision increases by increasing the values of &
and m respectively. It is also observed that for fixed values of k and m with the increasing
values of Was, PRLP also increase, so more values of k and m, taken more loss in precision
is to be observed due to presence of non-response.

7. Cost of the survey

Following Hansen and Hurwitz [11], for attaining the better precision at minimum
cost, we consider here the case, for determining the number of questionnaires to be
sent out and the personal interviews to take in follow ups for non-responses to the mail
questionnaires. For this, we assume that questionnaires are sent to 30 people, randomly
drawn from 120 countries of a given data set. Further assume that 50 percent or 15
respond, and from other 15 which are non-respondents, 10 percent or 3 visited for insuring
some representation of the class of non-respondents. An unbiased estimate is given by:
(71 B () = wrF) () + wn FY7 (1),
where w; = m;/m for i = R, M.

N = 120 = Total number of people in population;

m =30 = Total mailed out questionnaires;

F‘)((D(tz): The average of people to the mailed out questionnaires;

mp = 15 = The number of respondents;

F)((Qr) (tz) = The average number of peoples for personal interviewing;

muy= 3 = Not reply through mailed questionnaires which are personally interviewed.
It is noted that the actual processed sample size would be 15 +3 = 18. The sample
variance of F)(: )(t), is given by

N —m
Py (a)(1 = Fx(ts)
an vEew)- PR
e S FO ) (1- PO ()

where Fx (tz)(1 — Fx(tz)) is the variance of whole population and
F)(f) (tz) (1 — F§<2>(tm)) is the variance from not respondents. N is the number of people

in the population having no response; r is personally visited numbers; and k = ™2,
ma is the number of non-respondents in the sample. By using Equation (7.2), we
can see that there are wide range of different sample sizes which will give us the same
reliability and finally we reached at that point the sample size m alone give us the

poor indicator for sampling reliability. For example, assume that Fx (t,)(1 — Fx(t)) =
F)@(tz) (1 — F)((Z)(tz)) and that N and Nj; are so large that is % and NILM tends to

—1
one. Further assume that the accuracy we required is such that, the average value of (e =
standard error) would be given by m = 30 people when Wr = 100%. If questionnaires
were mailed to a random sample of m people with Wi = 100%, the variance of the
auxiliary variable Fx () estimated from sample would be

73) vV (F0) = %Fx(tz)(l — Fx(ta)),
Thus,

» N-30
(14) = iy Px(t)(1 = Fx())

By substituting different numerical values at different response rate of mailed returns
along with personal interviews in (7.2), we see that, although m which differs in size but
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each one will give us same reliability.

Table 20. Some Cost under different sample sizes at Wgr = 50% for
Situation I.

m mr my ="M Scheduled Tabulated Cost=com + cimg + comu

(mR + 7")
16 8 8 8 16 1040
20 10 10 5 15 800
26 13 13 5 18 890
30 15 15 4 19 850
40 20 20 4 24 1000
60 30 30 3 33 1200

Let co = Rs 5= Overhead cost,
c1 = Rs 20 = Cost per unit for responding stratum, and
co = Rs100,= Cost per unit for non-responding stratum.
Generally co having more values than ¢, as extra effort is required for making contact
with non-respondents and obtained responses from them.
From Table 20, Column 5 shows that for different sample sizes m each one give us the same
required precision. For instance, sending 20 questionnaires, obtaining (10 by mail and
05 by personal interviewing) give us the same (¢) as for sending out 60 questionnaires
and obtaining a total of 33 questionnaire (30 by mail and 03 by visited personally).
Therefore at some point it would be at a loss to put extra money for having additional
mail returns. Sensibly, it will be better to spend extra effort for those which are non-
respondents. Column 6 gives us the total cost for each of the sample sizes under the unit
cost. Since in Table 20, for different schedules tabulated all give us same precision, so
logically it will be better for us to choose that particular value of m which would give
us minimum cost. Consequently, by sending 20 schedules, 10 of them are returned by
mail (at 50 per cent response rate) and 5 are personally interviewed which were non-
respondents.
Now instead of suggested procedure for Table 20, we obtain an optimum number of
schedules mailed out and choose personal interviews accordingly, the optimum values of
m and r are given by:

(7.5)  mP =m{l+ (k—1)Wun},

and

mam
7.6 = —
(16) r="]
where, k= , /%
and

R NTy

7.7 =
0 =N et
where

T1 = Fy (ty)(1 = Fy (ty)) + Fx(tz)(1 = Fx(tz)) — 2 (e el
Wr is the response rate obtained through mailed questionnaire, Wr = 1 — Wy, Ex-
pressions in (7.5) and (7.6) are obtained under the assumptions that Fx (t)(1 — Fx(¢)) =
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F)((Q)(t) (1 — F)((Q)(t)) and 5 :NZAL 2 1. But when the above assumption is elimi-

nated the optimum values of m and r are given by

(7.8)  mP) =m {1 +(k—1) WME} ,

Ty
where
T = PO (0)(1 = FP(0)) + F(0)(1— PP 1)) - 2 (M0 M0 ),
and ’
(7.9) r= mTM
where k= CUTK@R {(g‘/};’;);;l - 1}.

Of course, at different response rate mg and r varies for achieving the specified precision.
In practice we do not know what will be the approximate response rate but for estimating
optimum values and by using (7.8) and (7.9), there must be an approximate known value
of Wgr in advance.

For the case, when Wg is not known in advance, suggesting to design the survey for
achieving at least definite specified precision at minimal cost, and parallel to these must
know about total cost of the survey. Under such circumstances, it is possible for obtaining
optimum values of mpr and k. For example, instead of using 50% response rate in Table
20, we compute optimum values of mgr and r at different values of Wgr (10% to 90%)
respectively for achieving same precision. The optimum values of Equations (7.5) and
(7.6) along with their cost are given in Table 21.

Table 21. Comparison of minimum cost for various response rates of Wgr

Wr m ‘mr My = % Optimum Cost of Increase
Cost Strategy 1  in Cost
0.10 35 4 31 26 2855 2910 055
0.20 42 8 34 23 2670 2710 040
0.30 44 13 31 19 2380 2430 050
0.40 44 18 26 15 2080 2190 110
0.50 42 21 21 12 1830 1950 120
0.60 40 24 16 9 1600 1710 110
0.70 38 27 11 6 1330 1470 140
0.80 35 28 7 4 1135 1230 095
0.90 33 30 3 2 965 990 025

Table 21, Column 6 gives us the optimum cost at specified response rate, but for
unknown response rate, we give Strategy 1 by sending 30 questionnaires and follow up
on all non-respondents whatever the value of Wg is. Therefore for specified response
rate Wg, the cost for Strategy 1 will always be more than the optimum cost as shown in
Table 21.

It is interesting to note that how costly this strategy is, as compared to the optimum
cost method by using different response rates Wr. The comparison between Column 6
and Column 7 is presented in Column 8 which shows that at smaller response rates give
low cost since less questionnaires have been received. For at least 30% response rate,
increase in cost from 09% to 22% is to be expected for this strategy.

When an approximate value of Wg is not known in advance, the Strategy 2 is preferable
as compared to Strategy 1. There are two steps involved in Strategy 2 as:
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(¢) Determine the maximum number of m, whatever the size for Wg,

(#¢) Determine r for achieving the required precision and value of Wr is actually
determined from the sample results. Hence r will change its value with the
actual Wg;

In Table 21 as there are maximum number (44) questionnaires to be sent out for Wg =
40% then by using formula, r = T2, we get 7= 15.

Table 22. Comparison between optimum cost for known values of Wgr
and Strategies 1 and 2.

Wr m mr my T= % Cost of Cost of Optimum
Strategy 2 Strategy 1 cost
0.10 44 4 40 33 3600 2910 2855
0.20 4 9 35 23 2700 2710 2670
0.30 44 13 31 19 2380 2430 2380
0.40 44 18 26 15 2080 2190 2080
0.50 44 22 22 12 1860 1950 1830
0.60 44 26 18 10 1740 1710 1600
0.70 44 31 13 7 1540 1470 1330
0.80 44 35 9 5 1420 1230 1135
0.90 44 40 4 2 1220 990 965

Table 22, show the number of mailed questionnaires and number of personal inter-

viewed r at varying values of Wg for achieving the required precision, along with their
total cost of the survey. The optimum costs are also given at known values of Wgr. Of
course at high value of Wg, the optimum cost of any survey will give us the small values
accordingly.
Thus from the above discussions, we conclude that it is not necessarily found that an
optimum value of m and r but an optimum procedure (Strategy) is also vital even when
we have nothing in hand about values of Wr in advance and consequently it will give us
in any case at least a precise procedure at slightly low cost.

8. Conclusion

In this article, we proposed an improved generalized class of ratio type exponential
estimators F&)Jp(ty). Expressions for bias and MSE of the proposed class of estima-
tors 13’1(\;[) p(ty) are compared with two suggested families of estimators theoretically and
numerically under Situations I and II. From Tables 7-15, it is observed that proposed
class of estimators Ffv',)J p(ty) is preferable in both the Situations and is recommended for
precise estimation for population distribution function in the presence of non-response.
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Appendix A
For finding the Cov (ﬁ‘}(,*)(ty)7 ﬁ’;*)(tz)), we have
(81) = Cov (waF{"(t,) + war 7 (bya), wr P (t2) + wa FE7 ()

(8.1) can also be written as

= Cov { Py (t,) + war (B () = B (1))
82) 2 f(2r) (2)

Fx(te) +war (FE7 (tey) = PP (622)) }

By applying covariance on (8.2), we have

Cov (B (t,), Fx(t)) + Cov (war (P () = B2 (1)), Px (t) )

(83) = | +Cov (Fy(ty), wnr(FE" (t2y) = Y (1))

C (tan) = B (t))

+ Cov (war (B () = B (842)), 0

Since . R R
Cou (Fy (t,) war (FE7 () = B (t2,)))

=Cov (wM(F;(/ZT)(tyz) ~ F2(ty,)), Fx (tz)) =0
Hence (8.3) becomes

Cov (FY (t,), Fx (tz))

(8.4) = R R A R
+ Cov (war B (1) = BP (ba) war FE7 (b)) = B (t))

Following Garcia and Cebrian [9], it is easy to obtain

_ N-—-mm (N11N22 — N12N21>

Cov (Fy(t,), Fx(tz)) = <% —

If we consider N — 1= N, then we can write above as

(8.5) Cov (FY(ty)»FX(tz)) B f (N11N22 — N12N21> ’

m N2

m

where f = % and now consider last term of (8.3),

Cov (war (B (t4) = B2 (42)), war (B (tar) = FE (12,)))

ByCovs (war (17 (t4) = B (), wis (FE7 (t0,) = FID (82,)) )
®6) = A(2r) £(2) A (2r) £(2)

+ CourBa (war (B2 (t4) = B (1)), was (B (t2) = FP (1))

Since,
Bs (w2(B7 (ty2) — B (02)), ws (FL7 (1) = B (t2))) = 0.
Hence (8.6), becomes

(8.7) = [ExCova (war (B (1) = By () ot (7 (by) = B (8, )| -
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Now consider
~(2r (2 ~(2r (2
Covs (war (B (1) = B (1)), was (FE” (ta) = FP (£2)))

—(2r (2 ~(2r (2
BaCovs (war (P (ty2) = PP (42)), war (FE7 (te,) = B (22,)))

(8.8) = . . . .
+ CovaBs (war (B (t4) = B (1)), war (B (t2) = F (82,))
(89) = [BaCovs (war (B (t2) = B () wns (FE7 (ta) = PP (122)))] -

Consider Covs (war (B (by2) = B (t42)), war (FE7 (teg) = FY (1)) )

(810) = Covs (B (t4), P (t0r))
By taking r sample points out of mas and after some simplifications, (??7) becomes

(2) A7(2) (2) A7(2)
fr(2r) fr(2r) _ (k—1) Ni1T Ny’ — Ny’ Ny
(811)  Coua (P (t,0), FE7 (t,)) = T :
M

mar — 1
E>Couvs (wMF)(’QT)(tyz) - F}(/Q)(tyz)v wMF)((zT) (tzz) - F)((Q)(tw)) )

oy w1 [(SOSD - NN
' m2(mar — 1) (m'2)? '

Applying expectations on (8.12), we have
2) A7(2 2) A7(2
_ (k* 1)WM (Nl(l)N2(2) - NI(Z)N2(1)>

(8.13)

m NM(NM—l)

For considering, Nas — 1 2 Ny, Equation (8.13) becomes,

(8.14)

_ Wu(k—1) ( NMPNE — NP NS
(N3 '
Using (8.5) and (8.14) in (8.2) we have following result given as
(1= f) [ N11N22 — N12Noy
m (N)?
L Wak=1) (NN — NP NG
m (N37)?

m

(8.15) Cov (F}S*)(ty),ﬁ)((*)(tx)) =







