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Abstract. Many problems that are often encountered in fields like engineering, mechanics, electronic, as-
trophysics, chemistry and control theory, yield initial value problems involving systems of ordinary differential
equations which exhibit a phenomenon which has come to be known as stiffness. In this work, a new four-step
exponentially-fitted predictor-corrector method involving the second derivative for solving system of stiff differen-
tial equations is constructed using a combination of the extended backward differentiation formula and the technique
of exponential fitting. The constructed method is well-suited for systems with pronounced stiffness. The stability
property of the constructed scheme is also considered. To investigate the accuracy of the constructed method, three
standard numerical examples with pronounced stiffness are considered. A comparison of the results obtained by
implementing the proposed methods on the numerical problems compared with those of existing standard method
show that the constructed method is efficient and accurate for solving stiff systems of ordinary differential equations.

2010 AMS Classification: 65L05, 65L06, 65L20.

Keywords: Exponentially fitted, multi-step, stiff system, stability, predictor-corrector.

1. Introduction

Many problems that are often encountered in fields like engineering, mechanics, electronic, astrophysics, chemistry
and control theory, yield initial value problems involving systems of ordinary differential equations which exhibit a
phenomenon which has come to be known as ’stiffness’.

Definition 1.1. The linear system y′ = Ay + φ(x) is said to be stiff if
(i): Re λt < 0, t = 1, 2, · · · ,m, and
(ii): maxt=1,2,··· ,m |Re λt | >> mint=1,2,··· ,m |Re λt |,

where λt, t = 1, 2, · · · ,m are the eigenvalues of A. The ratio[
max

t=1,2,··· ,m
|Re λt |

]
:
[

min
t=1,2,··· ,m

|Re λt |

]
is called the stiffness ratio [11].
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Non-linear systems y′ = f(x, y) exhibit stiffness if the eigenvalues of the Jacobian ∂f/∂y behave in a similar fashion.
The eigenvalues are no longer constant but depend on the solution, and therefore vary with x. Accordingly we say that
the system y′ = f(x, y) is stiff in an interval I of x, if, for x ∈ I, the eigenvalues λt(x) of ∂f/∂y satisfy (i) and (ii) above.

Early attempts to tackle the problem of stiffness with the use of classical methods and techniques encountered
very substantial difficulties. The difficulty of solving stiff initial value problems was clearly identified in early 1950s
when Curtiss and Hirschfelder [7] published one of the first papers in which the problem of stiffness was stated.
Subsequently, a whole lot of methods and algorithms have been proposed for solving problems that exhibit stiffness.
The author in [4] introduced a class of extended backward differentiation formulae suitable for the integration of stiff
systems of autonomous initial value problems. In a later work [5], the author proposed classes of predictor-corrector
method involving the second derivative using the extended backward differentiation formulae.

Exponential fitting are numerical methods which are very robust for the integration of differential equations whose
Jacobian has large imaginary eigenvalues [6, 12]. Obtaining the solution of stiff differential equations using exponen-
tially fitted formula was first proposed by Liniger and Willoughby [12]. Integration formulae (which are shown to be
A-stable) containing free parameters were derived and these parameters were chosen so that a given function exp(q)
where q is real, satisfies the integration formulae exactly.

In the work of Jackson and Kenue [10], the authors derived 2-step fourth-order exponentially fitted formulae in-
volving the second derivative that are also shown to be A-stable. Based on the concept proposed by Cash [4–6],
Okunuga [13, 14], in his works derived composite 2-step methods of order four which contain a’built-in’ local error
estimate. The methods derived by Okunuga [13, 14] gave better accuracy compared with those of Cash [5, 6]. Ab-
hulimen [1, 2], using the idea of Okunuga [13, 14] in his works derived a 3-step composite scheme of order six and an
exponentially fitted two-step third derivative methods of order eight respectively.

Recently, Ehigie et. al. [8], derive a class of 2-step exponentially fitted predictor-corrector method involving the
second derivative using the extended backward differentiation formula. The method of Ehigie et. al. [8] was constructed
as an hybrid of extended backward differentiation formula of Cash [4,5] and the exponential fitting of Okunuga [13,14].

Following [3, 8, 13, 14], we construct a class of 4-step exponentially fitted predictor-corrector method involving the
second derivative. The qualitative properties of the constructed method are investigated. Numerical experiments on
prominent stiff problem that show the accuracy of the constructed method compare with the methods of Abhulimen [3],
Okunuga [14] and Ehigie et. al. [8] are also presented.

2. Derivation of The Proposed Scheme

Consider the initial value problem for a first-order system, which we may write as

y′1(x) = f1(x, y1, y2, · · · , yr); y1(a) = η1
y′2(x) = f2(x, y1, y2, · · · , yr); y2(a) = η2

...
...

y′r(x) = fr(x, y1, y2, · · · , yr); yr(a) = ηr

 (2.1)

Introducing the vector notation, y = [y1, y2, · · · , yr]T , f = [ f1, f2, · · · , fr]T = f(x, y) and η = [η1, η2, · · · , ηr]T , we
may write the initial value problem (2.1) in the form

y′ = f(x, y), y(a) = η

The general multiderivative multistep scheme for solving (2.1) is given by

s∑
i=0

αiyn+i =

t∑
j=1

h j
u∑

k=0

γ j,k f ( j−1)
n+k (2.2)

where yn+i ≡ y(xn+i) and f ( j−1)
n+k ≡ f ( j−1)(xn+k).

Setting s = 4, t = 2 and u = 4 in (2.2), the following is obtained:

yn+4 + α3yn+3 + α2yn+2 + α1yn+1 + α0yn = h
(
β0y′n + β1y′n+1 + β2y′n+2 + β3y′n+3 + β4y′n+4

)
+h2

(
γ0y′′n + γ1y′′n+1 + γ2y′′n+2 + γ3y′′n+3 + γ4y′′n+4

)
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By setting α3 = 0, α2 = 0, α1 = 0, α0 = −1, β1 = 0, β3 = 0, γ1 = 0, γ3 = 0, in (2.3), it reduces to:

yn+4 − yn = h
(
β0y′n + β2y′n+2 + β4y′n+4

)
+ h2

(
γ0y′′n + γ2y′′n+2 + γ4y′′n+4

)
(2.3)

Equation (2.3) is the predictor scheme for the proposed method, while the proposed corrector scheme takes the form

yn+4 − yn = h
(
λ0y′n + λ2y′n+2 + λ4y′n+4 + λ5y′n+5

)
+ h2

(
ρ0y′′n + ρ2y′′n+2 + ρ4y′′n+4

)
(2.4)

where β0, β2, β4, γ0, γ2, γ4, λ0, λ2, λ4, λ5, ρ0, ρ2, ρ4 are constants to be determined. Equations (2.3) and (2.4)
combine is the proposed predictor-corrector method. In order to obtain the constants of (2.3), we set β4 = a, which
is the free parameter associated with the predictor scheme, (2.3) is then expanded in Taylor’s series and the resulting
system of equation is given below

4 − a − β0 − β2 = 0
8 − 4a − 2β2 − γ0 − γ2 − γ4 = 0
32
3
− 8a − 2β2 − 2γ2 − 4γ4 = 0

32
3
−

32a
3
−

4β2

3
− 2γ2 − 8γ4 = 0

128
15
−

32a
3
−

2β2

3
−

4γ2

3
−

32γ4

3
= 0

Solving the above system of equation, we have

β0 =
28
15
− a, β2 =

32
15
, γ0 =

8
9
−

2a
3
, γ2 =

112
45
−

8a
3
, γ4 =

16
45
−

2a
3

Thus, the predictor integrator is

yn+4 − yn = h
((

28
15
− a

)
y′n +

32
15

y′n+2 + ay′n+4

)
+h2

((
8
9
−

2a
3

)
y′′n +

(
112
45
−

8a
3

)
y′′n+2 +

(
16
45
−

2a
3

)
y′′n+4

)
(2.5)

Applying (2.5) to the test function

y′ = λy, y(x0) = y0, λh = q (2.6)

we have

yn+4

yn
=

1 +
(

28
15 − a

)
q +

(
8
9 −

2a
3

)
q2 + e2q

((
112
45 −

8a
3

)
q2 + 32

15 q
)

1 − aq −
(

16
45 −

2a
3

)
q2

= R̄(q) (2.7)

from (2.7), the free parameter a, of the predictor integrator is obtained as

a(q) =
45 − 45e4q + 84q + 96qe2q + 40q2 + 112q2e2q + 16q2e4q

15q
(
3 − 3e4q + 2q + 8qe2q + 2qe4q) (2.8)

Similarly, the corrector formula (2.4) with λ5 = r set as the free parameter, gives the set of coefficient equations to
be determined as follows:

4 − r − λ0 − λ2 − λ4 = 0
8 − 5r − 2λ2 − 4λ4 − ρ0 − ρ2 − ρ4 = 0

32
3
−

25r
2
− 2λ2 − 8λ4 − 2ρ2 − 4ρ4 = 0

32
3
−

125r
6
−

4λ2

3
−

32λ4

3
− 2ρ2 − 8ρ4 = 0

128
15
−

625r
24
−

2λ2

3
−

32λ4

3
−

4ρ2

3
−

32ρ4

3
= 0

256
45
−

625r
24
−

4λ2

15
−

128λ4

15
−

2ρ2

3
−

32ρ4

3
= 0
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solving the above system of equations we have,

λ0 =
1792 − 2295r

1920
, λ2 =

1
240

(512 − 375r), λ4 =
14
15

+
225r
128

, ρ0 =
4

15
−

45r
64

, ρ2 = −
75r
16

, ρ4 = −
4
15
−

225r
64

Thus our corrector integrator is

yn+4 − yn = h
((

1792 − 2295r
1920

)
y′n +

1
240

(512 − 375r)y′n+2 +

(
14
15

+
225r
128

)
y′n+4 + ry′n+5

)
+h2

((
4

15
−

45r
64

)
y′′n −

75r
16

y′′n+2 −

(
4

15
+

225r
64

)
y′′n+4

)
(2.9)

Applying (2.9) to the test function (2.6), we have

yn+4

yn
=

1 +
(

1792−2295
1920 r

)
q +

(
4

15 −
45
64 r

)
q2 +

(
1

240 (512 − 375r) q − 75
16 rq2

)
R̄(q)1/2 + rqR̄(q)5/4

1 −
(

14
15 + 225

128 r
)

q +
(

4
15 + 225r

64

)
q2

= R(q) (2.10)

from (2.10), the free parameter r, of the corrector integrator is obtained as

r(q) = −
128

(
−15 + 15e4q − 14q − 32qe2q − 14qe4q − 4q2 + 4q2e4q

)
15q

(
153 + 200e2q − 225e4q − 128e5q + 90q + 600qe2q + 450qe4q) (2.11)

Equation (2.10) is the proposed composite integration formula for stiff problems which allow exponential fittings.
We shall denote this scheme by ”EF4SPC”

3. Stability of The Proposed Composite Integration Scheme

Definition 3.1. A numerical method is said to be A-stable if its region of absolute stability (RAS), contains the whole
of the left-half of the complex plane [11].

In order to investigate the stability of the proposed method, we need to determine the range of values of the free
parameters a and r as given by (2.8) and (2.11) respectively in the left-half hλ-plane (−∞, 0]. Now, we need to find the
conditions that a(q) and r(q) satisfy respectively such that |R̄(q)| < 1 and |R(q)| < 1.

To achieve this, we must show that a(q) and r(q) both have finite limits

lim
q→−∞

a(q) =
4
3

and lim
q→0

a(q) =
14
15

Therefore, for q ∈ (−∞, 0], a ∈
(

14
15 ,

4
3

)
. Similarly,

lim
q→−∞

r(q) =
256
675

and lim
q→0

r(q) =
2048

23625

Also, for q ∈ (−∞, 0], r ∈
(

2048
23625 ,

256
675

)
. By plotting the graphs of a(q) and r(q) over the range q ∈ (−∞, 0], we see

that as q decreases, parameters a and r are monotonic increasing as given in Figure 1. This shows that the porposed
”EF4SPC” method is A-stable for values of a and r in the intervals

(
14
15 ,

4
3

)
and

(
2048

23625 ,
256
675

)
respectively.

To obtain the stability function of the proposed method, there is need to unite the stability functions of both the
predictor integrator (2.5) and the corrector integrator (2.9). Applying the predictor (2.5) to the test problem (2.6) and
simplifying the result, we obtain the stability function R̄(q) of (2.5) as given by (2.7). Now, to obtain the desired
stability function, the corrector integrator (2.9) is applied to the test problem (2.6) and using the facts that(

yn+2

yn

)
= R̄(q)1/2 and

(
yn+5

yn

)
= R̄(q)5/4,

we obtain
yn+4

yn
= R(q)

=
1 +

(
1792−2295

1920 r
)

q +
(

4
15 −

45
64 r

)
q2 +

(
1

240 (512 − 375r) q − 75
16 rq2

)
R̄(q)1/2 + rqR̄(q)5/4

1 −
(

14
15 + 225

128 r
)

q +
(

4
15 + 225r

64

)
q2
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Figure 1. Graphs of the free parameters (a(q) and r(q)) and truncated region of absolute stability of
the proposed method

The function R(q) unites the predictor integrator (2.5) and the corrector integrator(2.9) is the desired stability func-
tion of the proposed ”EF4SPC” method. The absolute stability region of the proposed ”EF4SPC” method is the
whole of the left-half plane x ∈ [−∞, 0] × y ∈ [−∞,∞] as seen from Figure 1. Therefore, our composite integration
formula (2.5, 2.9), is A-stable within the range of values specified for the choices of parameters a(q) and r(q). Also,
the proposed scheme is absolutely stable for q ∈ (−∞, 0]

Remark: The predictor integrator of the proposed method is of order 5, and the corrector integrator of the proposed
method is of order 6, hence, the proposed ”EF4SPC” method is of order 6.
Proof: Suppose that the exact solution at the point xn+4 is given by y(xn+4) = y(xn + 4h), then, it can easily be verified
that for the predictor:

yn+4 − y(xn+4) =

(
16a
45
−

224
675

)
h6y(6)(x) + O(h7)

If a , 14/15, then the integrator is of order 5. Moreover, since limq→0 a(q) = 14
15 and q , 0, then, the integrator of the

proposed method has order 5. In a similar manner, for the corrector, it can easily be seen that:

yn+4 − y(xn+4) =

(
128
4725

−
5r
16

)
h7y(7)(x) + O(h8)

the corrector integrator is of order 6 if r , 2048
23625 . Hence our proposed method ”EF4SPC” is of order 6. Therefore, we

conclude that our composite integration formula (2.10) is A-stable within the range of values specified for the choices
of parameters a and r. Also, the proposed scheme is absolutely stable for q ∈ (−∞, 0].

4. Computational Analysis

The aim of the computational analysis carried out in this section is to investigate the accuracy and efficiency of the
proposed ”EF4SPC” method compared with some existing methods. The proposed scheme is implemented on three
standard problems that have been studied in the literatures [1–3,6,8,10,13,14]. Since our proposed method is of order
6, then it becomes logical to compare it with methods of orders greater or equal to 6. We shall compare the proposed
”EF4SPC” method with the following schemes: the sixth-order scheme F(6) derived by [3]; the methods of order seven
AB7, and nine NM9 proposed by [2].

For all computations, we used the steplengths that were used in the literatures [1–3, 8, 13, 14] in order to have a
proper comparison.

4.1. Problem 1. Consider the linear problem

y′1(x) = −y1 + 95y2, y1(0) = 1
y′2(x) = −y1 − 97y2, y2(0) = 1 x ∈ [0, 1]



On A Four-Step Exponentially Fitted Scheme 34

with exact solution
1
47

e−96t
(
95e94t − 48

)
,

1
47

e−96t
(
48 − e94t

)
.

The eigenvalues of the Jacobian matrix are λ1 = −2 and λ2 = −96.

Table 1. The absolute error of the proposed ”EF4SPC” method compared with some existing meth-
ods at x=1 on problem 1

Step Method y(1) (|error|) z(1) × 10−2 (|error|)

0.0625

AB7 0.27354004 (4.0 × 10−5) −0.28796321 (6.0 × 10−5)
NM9 0.27354004 (7.9 × 10−5) −0.28794740 (8.3 × 10−7)

F6 27354004 (3.2 × 10−10) −0.28794748 (2.4 × 10−10)
”EF4SPC” 27354004 (0.6 × 10−16) −0.28794741 (0.7 × 10−18)

0.03125

NM9 0.27354004 (3.7 × 10−5) −0.28794744 (4.0 × 10−5))
F6 0.27355005 (1.2 × 10−10) −0.28794741 (8.1 × 10−10)

”EF4SPC” 0.27355004(0.2 × 10−14) −0.28794741 (0.2 × 10−16)
Exact Solution at x=1 y(1) = 0.27355004 z(1) = −0.28794741 × 10−2

From the results shown in Table 1, our proposed method gave better accuracy compared with the existing method.
Though our proposed method is of order 6, it performs better than methods of order 7 and order 9 derived by [2].

4.2. Problem 2. We also consider the Chemical Kinetic Problem, which is a non-linear stiff problem

y′1(x) = −0.013y1 + 1000y1y3, y1(0) = 1
y′2(x) = 2500y2y3, y2(0) = 1
y′3(x) = 0.013y1 − 1020y1y3 − 2500y2y3, y3(0) = 0, x ∈ [0, 1].

The eigenvalues of the linearized system are given as λ1 = 0, λ2 = −0.00928572 and λ3 = −3500.003714. For this
problem, the results of our proposed ”EF4SPC” method is compared with the results obtained by the eighth-order
method of Abhulimen [2].

Table 2. The absolute error of the proposed ”EF4SPC” method compared with some existing meth-
ods at x=1 on problem 2

Step Method y1(1) (|error|) y2(1) (|error|) y3(1) (|error|)

0.0625 AB8 0.5884667145 (1.8 × 10−4) 1.0090563343 (1.8 × 10−4) −2.7919757498 (5.2 × 10−4)
”EF4SPC” 0.59166648 (0.2 × 10−14) 1.00924 (0.2 × 10−14) −2.76777747 (0.5 × 10−14)

0.1 AB8 0.5882826902 (2.2 × 10−8) 1.0092403584 (2.2 × 10−9) −2.7914604809 (6.3 × 10−9)
”EF4SPC” 0.59166648 (0.1 × 10−14) 1.00924 (0.1 × 10−14) −2.76777747 (0.3 × 10−14)

Exact Solution at x=1 y1(1) = 0.59166648 y2(1) = 1.00924 y3(1) = −2.76777747

From Table 3, our proposed method gave very accurate solutions compared with the method of Abhulimen [2].

4.3. Problem 3. Another problem considered in this paper is the stiff problem from [9],

y′1(t) = −104y1 + 100y2 − 10y3 + y4; y1(0) = 1
y′2(t) = −1000y2 + 10y3 − 10y4; y2(0) = 1

y′3(t) = −y3 + 10y4; y3(0) = 1
y′4(t) = −0.1y4; y4(0) = 1
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Table 3. The absolute error of the proposed ”EF4SPC” method compared with the methods of of [3]
and [2] at x=1 on problem 3

Step Method Absolute error (
∣∣∣yE

i (1)
∣∣∣)at t=1 for yi; i = 1, 2, 3, 4∣∣∣yE

1 (1)
∣∣∣ ∣∣∣yE

2 (1)
∣∣∣ ∣∣∣yE

3 (1)
∣∣∣ ∣∣∣yE

4 (1)
∣∣∣

0.05

AB7 3.2 × 10−2 3.2 × 10−2 3.3 × 10−1 3.7 × 10−5

NM9 2.2 × 10−3 3.5 × 10−2 3.2 × 10−5 3.2 × 10−6

F6 3.5 × 10−5 3.8 × 10−4 3.5 × 10−7 3.7 × 10−8

”EF4SPC” 0.2 × 10−16 0.2 × 10−15 0.2 × 10−13 0.2 × 10−14

0.1

AB7 2.5 × 10−2 2.1 × 10−3 2.4 × 10−3 2.7 × 10−5

NM9 2.7 × 10−3 2.4 × 10−3 2.2 × 10−4 2.5 × 10−6

F6 2.9 × 10−5 2.7 × 10−4 2.6 × 10−6 2.6 × 10−8

”EF4SPC” 0.3 × 10−16 0.3 × 10−15 0.3 × 10−13 0.3 × 10−14

Table 4. The absolute error of the proposed ”EF4SPC” method compared with the method of [8] at
x=20 on problem 3

Step Method Absolute error (
∣∣∣yE

i (20)
∣∣∣)at t=20 for yi; i = 1, 2, 3, 4∣∣∣yE

1 (20)
∣∣∣ ∣∣∣yE

2 (20)
∣∣∣ ∣∣∣yE

3 (20)
∣∣∣ ∣∣∣yE

4 (20)
∣∣∣

0.05 ”SDEBDF” 5.31 × 10−12 7.27 × 10−11 5.90 × 10−9 1.34 × 10−9

”EF4SPC” 0.62 × 10−16 0.62 × 10−15 0.68 × 10−13 0.62 × 10−14

0.1 ”SDEBDF” 2.25 × 10−10 2.29 × 10−9 2.50 × 10−7 2.06 × 10−8

”EF4SPC” 0.91 × 10−16 0.92 × 10−15 0.10 × 10−12 0.91 × 10−14

The eigenvalues of the system are given as λ1 = −0.1, λ2 = −1, λ3 = −1000 and λ4 = −10000. The analytical solution
of problem 3 is given as

y1(t) =
60651229e−10000t

61276991
+

9989911e−1000t

899010090
+

20579099e−t

2261464832
−

23634663e−
t

10

2363466565

y2(t) =
60651229e−10000t

61276991
+

9989911e−1000t

899010090
+

20579099e−t

2261464832
−

23634663e−
t

10

2363466565

y3(t) = −
e−10000t

4044502215687230
−

e−1000t

3790038290900910
−

19295083149241e−t

1908304926848
+

21203388076089e−
t

10

1908304926848

y4(t) = −
e−10000t

4044502215687230
−

e−1000t

3790038290900910
−

19295083149241e−t

1908304926848
+

21203388076089e−
t

10

1908304926848
.

This problem is solved within the range x ∈ [0, 20] with steplengths h = 0.05 and h = 0.1. For this problem, we
compare the results (at t = 1) of our proposed method with the sixth-order scheme F(6) of [3]; the methods of order
seven AB7, and nine NM9 proposed by [2]. Similarly, at x=20, we compare the results of our method with those of [8].

5. Conclusion

Evidently, the newly derived scheme is more accurate as seen from the computational results presented above,
since its absolute error is the least of all the methods presented in this paper. It therefore follows that the scheme is
quite efficient. We therefore conclude that the proposed EF4SPC method is reliable, stable and with high accuracy in
computation.
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