Research article

Two new Helotiales records for the mycobiota of Türkiye

Faruk YESİLYURT¹, Yasin UZUN^{3*}, Yakup KARADUMAN², Abdullah KAYA⁴

¹Yenice quarter, Yeşilyurt street, No: 4, Trabzon, Türkiye

²Karamanoğlu Mehmetbev University, Ermenek Uvsal and Hasan Kalan Health Services Vocational School, Department of Pharmacy Services, 70400 Karaman, Türkiye

³Çubuklu quarter, Engürübağı avenue, Katar street, No: 17/3, Beykoz, İstanbul, Türkive

⁴Gazi University, Science Faculty, Department of Biology, 06560 Ankara, Turkiye

yuclathrus@gmail.com, ¹farukyy@hotmail.com, ³yakupkaraduman86@gmail.com, ⁴kayaabad@hotmail.com*

Received: 11.07.2025 Accepted: 25.08.2025

Türkiye mikobiyotası için iki yeni Helotiales kaydı

Abstract: Two ascomycete taxa, Chloroscypha alutipes (W. Phillips) Dennis (Gelatinodiscaceae) and Rutstroemia bolaris (Batsch) Rehm (Rutstroemiaceae), belonging to the order Helotiales were reported as new records for the mycobiota of Türkiye. The former represent the first record of the genus Chloroscypha Seaver in Türkiye, while the latter constitutes the fifth record of Rutstroemia P. Karst. in the country. A brief description of each species is provided, along with the photographs illustrating their macroscopic and microscopic features.

Key words: Biodiversity, Chloroscypha alutipes, Rutstroemia bolaris, new record

Özet: Helotiales takımına ait iki tür, Chloroscypha alutipes (W. Phillips) Dennis (Gelatinodiscaceae) ve Rutstroemia bolaris (Batsch) Rehm (Rutstroemiaceae), Türkiye mikobiyotası için yeni kayıt olarak rapor edilmiştir. Birincisi Chloroscypha Seaver cinsinin Türkiye'deki ilk kaydıdır, sonraki ise Rutstroemia P. Karst cinsinin Türkiye'deki beşinci kaydıdır. Her bir türün kısa bir betimlemesi, makroskobi ve mikroskobilerine ilişkin fotoğraflarıyla birlikte verilmiştir.

Anahtar Kelimeler: Biyoçeşitlilik, Chloroscypha alutipes, Rutstroemia bolaris, yeni kayıt

Citation: Yeşilyurt F, Uzun Y, Karaduman Y, Kaya A (2025). Two new Helotiales records for the mycobiota of Türkiye. Anatolian Journal of Botany 9(2): 157-162.

1. Introduction

Helotiales Nannf is one of the largest order within the class Leotiomycetes. The order includes 10 families, (including Gelatinodiscaceae S.E. Carp. and Rutstroemiaceae Holst-Jensen, L.M. Kohn & T. Schumach.), 501 genera and approximately 3880 taxa which are saprophytic, plant parasites and few lichenized or lignicolous (Hansen and Knudsen, 2000; Kirk et al., 2008; Kaya et al., 2018).

Chloroscypha Seaver (Gelatinodiscaceae) and Rutstroemia P. Karst. (Rutstroemiaceae) are two genus within the order Helotiales. Members of Chloroscypha are characterized by small, sessile or stipitate, fleshy, yellow, yellow-green to blackish-green apothecia; broadly clavate, 8-spored asci with a more or less distinct apical apparatus; large, fusiform to broadly ellipsoidal ascospores; slender, simple or branched paraphyses (Petrini, 1982; Butin, 1984). The genus Rutstroemia P. Karst. (Rutstroemiaceae) is characterized by brown to dark olivaceous, discoid to cupshaped, stipitate apothecia with smooth to distinctly toothed margin; ectal excipulum usually with prismatic cells; cylindrical and 8-spored asci generally with broadly rounded Sclerotinia-type apex bluing in iodine; cylindrical to filiform paraphyses usually thickening toward to apex; ellipsoid to cylindrical, straight or allantoid, hyaline, uni to biseriate ascospores with lipid content (Hansen and Knudsen, 2000; Perić and Baral, 2019).

During routine field studies in İstanbul Province, two small stipitate ascomycete specimens were collected, one from fallen Cupressus L. sp. leaves and the other from a dead

Carpinus L. sp. twig. Following detailed mycological examination, the specimens were determined as Chloroscypha alutipes (W. Phillips) Dennis and Rutstroemia bolaris (Batsch) Rehm, both belonging to the order Helotiales Nannf.

A review of the recent checklists and additional taxonomic studies on list of Turkish Helotiales (Akata and Erdoğdu, 2020; Sesli et al., 2020; Akçay et al., 2023; Kaya and Uzun, 2023; Uzun et al., 2023; Acar and Karabıyık, 2024a,b; Acar and Uzun, 2024; Uzun and Kaya, 2024; Acar and Karabıyık 2025) revealed that neither of these species has been previously recorded in Türkiye. Therefore, we report Chloroscypha alutipes and Rutstroemia bolaris as new records for the mycobiota of Türkiye.

2. Materials and Method

Fresh ascomata of Chloroscypha alutipes and Rutstroemia bolaris were collected from the Beykoz district of İstanbul Province during field surveys conducted in 2024 and 2025. The fresh ascocarps were photographed in situ, and relevant ecological notes were recorded at the time of collection. The specimens were carefully placed into specially prepared paper bags. Then the samples were transferred to the fungarium, and dried in an air conditioned room. Micromorphological examinations were perpormed on dried materials. A Leica DM 2500 trinocular light microscope was used for these investigations. For each microscopic structure, at least 15-20 measurements were performed after mounting in water, 10% KOH, Congo Red, Lugol's solution, and/or lacto phenol cotton blue (LPCB).

A Risingcam Sony imx 1" 20 mp digital camera was used for the photography of the microscopic components. Macromorphological and micromorphological features were compared with relevant literature sources (Seaver, 1951; Petrini, 1982; Breitenbach and Kränzlin, 1984; Ellis and Ellis, 1997; Van Vooren, 2012; Desjardin, 2014; Martinez-Gil and Caballero, 2015; Krisai-Greilhuber et al., 2017), and the specimens were identified accordingly.

Voucher specimens are kept at Karamanoğlu Mehmetbey University, Science Faculty, Department of Biology.

3. Results and Discussion

Ascomycota Caval.-Sm.

Leotiomycetes O.E. Erikss. & Winka

Helotiales Nannf.

Gelatinodiscaceae S.E. Carp.

Chloroscypha alutipes (W. Phillips) Dennis, Persoonia 3(1): 34 (1964)(Fig. 1)

Syn: [Hymenoscyphus alutipes (W. Phillips) Kuntze, Kriegeria alutipes (W. Phillips) Seaver, Peziza alutipes W. Phillips, Phialea alutipes (W. Phillips) Sacc.]

Macroscopic and microscopic features: Apothecia stipitate, disc up to 2 mm in diameter, cup- to goblet-shaped when young, becoming disc- or saucer-shaped at maturity; hymenium smooth, initially bright yellow to orange-yellow, becoming somewhat paler to light brownish-yellow with age; external surface concolorous with the hymenium; stipe 3 - $6(7) \times 0.4$ - 0.6 mm, cylindrical, straight to curved, tapering sligtly towards the base, concolorous with the cup, sometimes finely pulverulent, flesh thin, yellow. Ascomata turn black when dried. Asci 110- 130×11 - $14 \mu m$, cylindrical, somewhat narrowing toward the base, containing 8 spores arranged biseriately or irregularly (Fig.

2 a,b). Paraphyses filiform, septate, some bifurcated, thickened toward the apex usually surrounded by a yellowish gelatinous sheat. Ascospores (19.3-) 21.5 - 23.8 (-24.1) \times (5.2-) 5.8 - 7.1 (-8.1) μ m, fusiform, hyaline, foamy with 1-2 (3) large droplets and many small droplets (Fig. 2c).

Chloroscypha alutipes has been reported to grow in the litter layer on fallen dead needles or twigs of Calocedrus decurrens (Torr.) Florin, Cupressus macrocarpa Hartw. ex Gordon, Juniperus occidentalis Hook, and J. sabina L. (Petrini, 1982; Krisai-Greilhuber et al., 2017; Desjardin, 2014; Van Vooren, 2012).

Specimen examined: Istanbul, Beykoz, Burunbahçe place, mixed forest, on decaying leaves of *Cupressus* sp., 41.112651N, 29.086249E, 75 m, 25.01.2025, YKaraduman 041

Suggested Turkish name for this genus and the species is "civimantari".

Comments: Chloroscypha alutipes is well characterized by its bright colour, long stipe, gelatinous context, and large fusiform spores. It is most likely distributed predominantly within the Mediterranean-Atlantic climate zone Due to its specific substrate preference and the color change from orange-yellow to black upon drying, it is unlikely to be confused with other tiny orange cup fungi. Chloroscypha sabinae (Fuckel) Dennis may also occur on Juniperus, but the ascospores of this species are very different from C. alutipes. Similarly, Pithya cupressina (Batsch) Fuckel resembles Chloroscypha alutipes in general size, coloration, and substrate preference; however, it can be readily distinguished by its globose, hyaline ascospores, which are clearly different in shape from the fusiform spores of C. alutipes (Petrini, 1982; Van Vooren, 2012; Desjardin, 2014; Martinez-Gil and Caballero, 2015; Krisai-Greilhuber et al., 2017).

Figure 1. Ascocarps of Chloroscypha alutipes (bar 2 mm)



Figure 2. Asci, paraphyses (a,b) and ascospores (c) of Chloroscypha alutipes (bars 20 µm) (a,b in Congo Red, c in LPCB)

According to IndexFungorum (2025), there are currently present 16 conformed species within the *Chloroscypha*, none of which have previously been reported from Türkiye. *Chloroscypha alutipes* thus represents the first member of the genus in the country.

Rutstroemiaceae Holst-Jensen, L.M. Kohn & T. Schumach.

Rutstroemia bolaris (Batsch) Rehm, Rabenh. Krypt.-Fl., Edn 2 (Leipzig) 1.3(lief. 39): 765 (1893) [1896](Fig. 3)

Synonymy: Calycina bolaris (Batsch) Seaver, Ciboria bolaris (Batsch) Fuckel, C. bolaris var. explanata (Holmsk.) Fuckel, Helotium bolare (Batsch) Massee, Hymenoscyphus bolaris (Batsch) W. Phillips, Lachnea bolaris (Batsch) Gillet, Peziza bolaris Batsch, P. bolaris var. explanata (Holmsk.) Fr., P. explanata Holmsk., Phialea bolaris (Batsch) Quél., Phialea bolaris var. explanata (Holmsk.) Boud.

Macroscopic and microscopic features: Apothecia stipitate, disc 5-7 mm in diameter, goblet- to cup-shaped

Figure 3. Ascocarps of Rutstroemia bolaris (bar 5 mm)

when young, later expanding to a saucer-shaped form with a slightly raised margin; hymenium smooth to slightly wrinkled at the center, yellowish-brown, reddish, reddish-orange to somewhat brick-colored; outer surface and margin concolorous to somewhat paler than the hymenium, often slightly downy; attached to the substrate by a central stipe of $3\text{-}4 \times 0.6\text{-}1$ mm, almost concolorous with the outer surface of the disc or somewhat darker toward the base. Ectal excipulum is composed of subspherical or globose

cells. Asci cylindrical, 130-195 \times 12-14 μm , uniseriate eight-spored, with an apical pore (Fig. 4a,b,c). Paraphyses filiform, cylindrical, septate, some slightly with clavate and thickened toward the apex. Ascospores (18.1) 18.6 - 22 (23.9) \times (7.8) 8.3 - 9.5 (9.8) μm , cylindrical to elongate-elliptical, some slightly curved, smooth, hyaline, often with few drops, some with 1-2 septa, some with a short hyaline appendage at one or each end. Excipulum of textura globulosa.

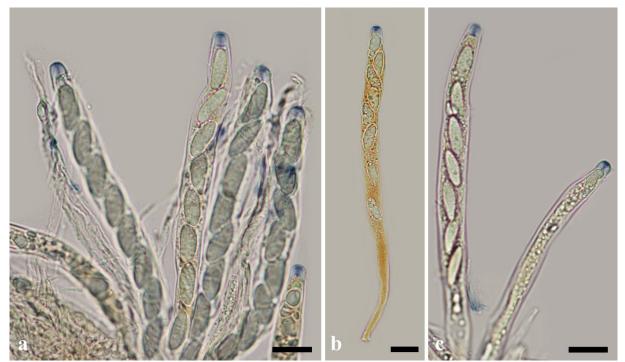


Figure 4. Asci, paraphyses and ascospores (a,b,c) of Rutstroemia bolaris (bars 20 µm) (a,c in Lugol, b in Melzer)

Rutstroemia bolaris was previously reported from deciduous forest, on dead branches or twigs of Alnus viridis (Chaix) DC., Carpinus betulus L., Castanea sativa Mill., and Fagus L. and Quercus L. spp. singly to gregariously or in cluster (Seaver, 1934; Breitenbach and Kränzlin, 1984; Ellis and Ellis, 1997).

Specimen examined: Istanbul, Beykoz, Polonezköy forest, in decidious forest composed of *Carpinus betulus* L., *Alnus glutinosa* (L.) Gaertn., and *Quercus* L. spp, on dead *C. betulus* twigs, 41.107541 N- 29.175008E, 150 m, 17.03. 2024. YKaraduman 033.

Suggested Turkish name for this species is "Gürgen kuşdüdüğü".

Comments: Rutstroemia bolaris may be confused with some other members of the genus, especially of R. alni L. Rémy, R. firma (Pers.) P. Karst. and R. microsperma (Speg.) Gamundí, but they may be distinguished from R. bolaris by some macro-and micromorphological and ecological properties. Ectal excipulum of R. alni and R. firma are composed of prismatic cells, while the ectal excipulum of R. bolaris is composed of globose cells

(Martines-Gil et al., 2022). On the other hand, the smaller ascospores (4.5-5.8 \times 2.5-2.8) of *R. microsperma* easily distinguishes it from *R. bolaris* (Medardi, 2007). Breitenbach and Kränzlin (1984) mentions about the development of secondary spores, but we did not observe a distinct secondary spore formation of ascospores, except some short hyaline appendages.

Four *Rutstroemia* species (*Rutstroemia conformata* (P. Karst.) Nannf., *Rutstroemia coracina* (Durieu & Lév.) Dennis, *Rutstroemia elatina* (Alb. & Schwein.) Rehm, *Rutstroemia firma* (Pers.) P. Karst.) have so far been reported from Türkiye (Öztürk et al., 2010; Işık and Türkekul, 2018; Akata and Erdoğdu, 2020; Uzun and Kaya, 2024). *Rutstroemia bolaris* is the fifth member of the genus from Türkiye.

Conflict of Interest

Authors have declared no conflict of interest.

Authors' Contribution

Authors contributed equally.

References

- Acar İ, Karabıyık H (2024a). Brunnipila calyculiformis (Schumach.) Baral: A Novel Record for Türkiye. Cumhuriyet Science Journal 45(3): 486-489. https://doi.org/10.17776/csj.1478560
- Acar İ Karabıyık H (2024b). *Lasiobelonium lonicerae* (Alb. & Schwein.) Raitv.: A Novel Record for Türkiye. Turkish Journal of Agricultural and Natural Sciences 11(3): 791-796. https://doi.org/10.30910/turkjans.1488594
- Acar İ, Karabıyık H (2025). Contributions to the family *Arachnopezizaceae* from Çanakkale (Türkiye). Biological Diversity and Conservation 18(2): 235-242. https://doi.org/10.46309/biodicon.2025.1632955
- Acar İ., Uzun Y (2024). A new record of vibrisseaceous fungus from Hakkari (Türkiye). Anatolian Journal of Botany 8(2): 138-141. https://doi.org/10.30616/ajb.1472486
- Akata I, Erdoğdu M (2020). First report of *Rutstroemia elatina* (Ascomycota) from Turkey. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi 23(2): 391-395. https://doi.org/10.18016/ksutarimdoga.vi.626466
- Akçay ME, Acar İ, Uzun Y (2023). Three New Records of *Helotiales* for the Mycobiota of Türkiye. Anatolian Journal of Botany 7(2): 117-121. https://doi.org/10.30616/ajb.1289077
- Breitenbach J, Kränzlin F (1984). Fungi of Switzerland. Vol 1. Ascomycetes. Luzern: Verlag Mykologia.
- Butin H (1984). Two new species of Chloroscypha (Discomycetales) on South American Cupressaceae. Sydowia 37: 15-20.
- Desjardin DE, Wood MG, Stevens FA (2014). California Mushrooms: The comprehensive identification guide. Portland: Timber Press.
- Ellis MB, Ellis JP (1997). Microfungi on land plants, an identification handbook. England. The Richmond Publishing Co. Ltd.
- Hansen L, Knudsen H (2000). Nordic Macromycetes (Ascomycetes). Vol.1. Copenhagen: Nordsvamp.
- Index Fungorum (2025). http://www.indexfungorum.org/names/Names.asp / [accessed 05 July 2025].
- Işık H, Türkekul İ (2018). New additions to Turkish macrofungi from Tokat and Yozgat Provinces. Mycotaxon 133(4): 697-709. https://doi.org/10.5248/133.697
- Kaya A, Uzun Y (2023). New locality records in Türkiye for two rare members of *Ascomycota*. Türler ve Habitatlar 4(2): 91-97. https://doi.org/10.53803/turvehab.1348466
- Kaya A, Uzun Y, Karacan İH, Yakar S (2018). New additions to Turkish *Helotiales* and *Orbiliales*. Kastamonu University Journal of Forestry Faculty 18(1): 46-52.
- Kirk PM, Cannon PF, Minter DW, Stalpers JA (2008). Dictionary of the Fungi. 10th ed. Wallingford, UK: CAB International.
- Krisai-Greilhuber I, Flechtmann S, Friebes G, Koller G, Kresitschnic P, Stoik O (2017). Bemerkenswerte Pilzarten aus Österreich. Austrican Journal of Mycology 26: 269-281.
- Martinez-Gil R, Caballero A (2015). Ascomicetos raros o interesantes de La Rioja, Espana (I). Boletin Micológico de FAMCAL 10: 73-88.
- Martines-Gil R, Perez Del Amo CM, Ezquerro A (2022). Ascomicetos raros o interesantes de La Rioja, España (VIII). Boletin Micologico de FAMCAL 17: 15-55.
- Medardi G (2007). Boudiera dennisii, Discinella boudieri and Rutstroemia microsperma found in Austria. Österreichische Zeitschrift für Pilzkunde 16: 5-10.

- Öztürk Ö, Doğan HH, Yıldırımlı Ş (2010). Macrofungi of Eldivan dağ (Çankırı). The Herb Journal of Systematic Botany 17(2): 141-154.
- Perić B, Baral HO (2019). Two species of the genus *Rutstroemia (Rutstroemiaceae, Helotiales)* new for Montenegro: *R. fruticeti* and *R. punicae* sp. nov. Mycologia Montenegrino 20: 167-189.
- Petrini O (1982). Notes on some Species of *Chloroscypha* Endophytic in Cupressaceae of Europe and North America. Sydowia 35: 206-222.
- Seaver FJ (1934). Photographs and Descriptions of Cup-Fungi: XXI. The Genus Calycina. Mycologia 26(4): 344-347.
- Seaver FJ (1951). The North American cup-fungi (Inoperculates). New York: Fred Jay Seaver.
- Sesli E, Asan A, Selçuk F (edlr.) Abacı Günyar Ö, Akata I, Akgül H, Aktaş S, Alkan S, Allı H, Aydoğdu H, Berikten D, Demirel K, Demirel R, Doğan HH, Erdoğdu M, Ergül CC, Eroğlu G, Giray G, Halikî Uztan A, Kabaktepe Ş, Kadaifçiler D, Kalyoncu F, Karaltı İ, Kaşık G, Kaya A, Keleş A, Kırbağ S, Kıvanç M, Ocak İ, Ökten S, Özkale E, Öztürk C, Sevindik M, Şen B, Şen İ, Türkekul İ, Ulukapı M, Uzun Ya, Uzun Yu, Yoltaş A (2020). Türkiye Mantarları Listesi. Ali Nihat Gökyiğit Vakfı Yayını. İstanbul.
- Uzun Y, Acar İ, Çavuşoğlu Ş (2023). A New *Mollisia* record from Bingöl, Türkiye (*Mollisia viridula* Svrček). Ases International Van Scientific Research Conference September 22-24, 2023, Van, Türkiye, proceeding book pp. 28-33.
- Uzun Y, Kaya A (2024). *Rutstroemia coracina*, a new ascomycete record for the mycobiota of Türkiye. Türler ve Habitatlar 5(2): 44-48. https://doi.org/10.53803/turvehab.1554598
- Van Vooren N (2012). Discomycètes rares ou remarquables récoltés en 2011 2e partie : Helotiales. Ascomycete.org 4(5): 109-118.