\int Hacettepe Journal of Mathematics and Statistics Volume 47 (1) (2018), 37–45

Strongly g^* -closed sets and Strongly $T_{\frac{1}{2}}^*$ spaces in bitopological spaces

H. S. Al-Saadi *

Abstract

This paper introduces with a new class of sets called ij-strongly g^* -closed. We prove that this lies between the class of τ_j -closed sets and the class of ij- g^* -closed sets. Also we find some basic properties and applications of ij-strongly g^* -closed sets. We also introduce and study a new class of spaces, namely ij- $ST^*_{\frac{1}{2}}$ spaces.

Keywords: ij- g^* -closed sets, ij-strongly g^* -closed sets, ij- $T_{\frac{1}{2}}^*$ spaces, ij- $ST_{\frac{1}{2}}^*$ spaces.

2000 AMS Classification: 54E55, 54A05, 54D10

Received: 09.12.2016 Accepted: 24.02.2017 Doi: 10.15672/HJMS.2017.462

1. Introduction

In 1970, Levine [14] introduced generalized closed sets. Kelly [9] initiated the study of bitopological spaces in 1963. A nonempty set X equipped with two topologies τ_1 and τ_2 is called a bitopological space and is denoted by (X, τ_1, τ_2) . Fukutake [7] introduced the concept of g-closed set in bitopological spaces and several toplogists [3, 4, 6, 11] generalized many of the results in topological spaces to bitopological spaces. John and Sundarum [8] introduced and studied the concepts of g*-closed set, $T_{\frac{1}{2}}^*$ -space and g^* -continuity for bitopological spaces. The aim of this paper is to introduce the concepts of strongly g^* -closed set, $ST_{\frac{1}{2}}^*$ -space and $S^*T_{\frac{1}{2}}^*$ -space for a bitopological space and to study about their properties.

^{*}Mathematics Department, Faculty of Applied Sciences, Umm Al-Qura University, Makkah 21955, P. O Box 11155, Saudi Arabia

Email : hasa112@hotmail.com

2. Preliminaries

Let (X, τ) be a topological space. For a subset A of X, $\tau - cl(A)$, $\tau - int(A)$ represent the closure of A with respect to τ , the interior of A with respect to τ , respectively and complement of A in X is denoted by A^c .

2.1. Definition. A subset A of a topological space (X, τ) is called

- (i) a generalized closed set (briefly g-closed set) [14] if $cl(A)\subseteq U$ whenever $A\subseteq U$ and U is open in X.
- (ii) a generalized open set (briefly g-open set) [14] if A^c is g-closed in X.
- (iii) a pre open (pre closed) set [14] if $A \subseteq int(cl(A))(cl(int(A)) \subseteq A)$.
- (iv) a semi-open (semi-closed) set [13] if $A \subseteq cl(int(A))(int(cl(A)) \subseteq A)$.
- (v) a semi-pre open (semi-pre closed) set [1] if $A \subseteq cl(int(cl(A)))(int(cl(int(A))) \subseteq A)$.
- (vi) a regular open (regular closed) set [16] if A = int(cl(A))(A = cl(int(A))).

2.2. Definition. The intersection of all semi-pre closed sets containing A is called the semi-pre closure of A and it is denoted by $\tau - spcl(A)$.

Throughout this paper, X and Y always represent nonempty bitopological spaces (X, τ_1, τ_2) on which no separation axioms are assumed unless explicitly mentioned. We denote the family of all g-open subsets of X with respect to the topology τ_i by $\tau_i - GO(X)$ and the family of all τ_j -closed sets is denoted by F_j . By (i, j) we mean the pair of topologies (τ_i, τ_j) .

2.3. Definition. A subset A of a bitopological space (X, τ_1, τ_2) is called

- (i) *ij*-semi-open (*ij*-semi-closed) set [4] if $A \subseteq j$ -cl(*i*-int(A)) (*j*-int(*i*-cl(A)) $\subseteq A$)
- (ii) *ij*-preopen (*ij*-preclosed) set [10] if $A \subseteq j$ -int(*i*-cl(A)) (*j*-cl(*i*-int(A)) $\subseteq A$)
- (iii) *ij*-semi-preopen set [12] if $A \subseteq i\text{-}cl(j\text{-}int(i cl(A)))$
- (iv) *ij*-regular open (*ij*-regular closed) set [15] if A = j-*int*(*i*-*cl*(A)) (A = j-*cl*(*i*-*int*(A))
- (v) $ij{-}\delta$ -closed set [3] if $A = ij{-}\delta cl(A)$ where $ij{-}\delta cl(A) = \{x \in X : i{-}int(j{-}cl(U)) \cap A \neq \phi, U \in \tau_i \text{ and } x \in U\}.$
- (vi) ij- θ -closed set [5] if A = ij- $\theta cl(A)$ where ij- $\theta cl(A) = \{x \in X : j$ - $cl(U) \cap A \neq \phi, U \in \tau_i \text{ and } x \in U\}$
- **2.4. Definition.** Let (X, τ_1, τ_2) be a bitopological space. A subset A of X is called
 - (i) *ij-g*-closed [7] if j- $cl(A) \subseteq U$ whenever $A \subseteq U$ and $U \in \tau_i$
 - (ii) *ij-gs*-closed [11] if *ji-scl*(A) $\subseteq U$ whenever $A \subseteq U$ and $U \in \tau_i$
 - (iii) *ij-gsp*-closed [6] if *ji-spcl*(A) $\subseteq U$ whenever $A \subseteq U$ and $U \in \tau_i$
 - (iv) *ij-rg*-closed [2] if *j*-cl(A) $\subseteq U$ whenever $A \subseteq U$ and U is regular open in τ_i
 - (v) $ij \cdot g^*$ -closed [8] if $j \cdot cl(A) \subseteq U$ whenever $A \subseteq U$ and $U \in \tau_i \cdot GO(X)$

2.5. Definition. A bitopological space (X, τ_1, τ_2) is said to be

- (i) $ij T_{\frac{1}{2}}^{*}$ [8] if every $ij g^{*}$ -closed set is *j*-closed.
- (ii) $ij^{-*}T_{\frac{1}{2}}$ [8] if every ij-g-closed set is ij-g*-closed.

2.6. Theorem. [8] Every ij-g*-closed set is ij-g-closed.

2.7. Theorem. [8] A bitopological space (X, τ_1, τ_2) is an ij- $T_{\frac{1}{2}}^*$ -space if and only if every singleton space $\{x\}$ is either τ_i -open or τ_i -g-closed.

38

3. Basic Properties of Pairwise Strongly g^* -closed set

We will start with the following definition

3.1. Definition. A subset A of a bitopological space (X, τ_1, τ_2) is called *ij*-strongly g^* -closed (briefly ij-S g^* -closed) if j-cl(*i*-int(A)) $\subseteq U$ whenever $A \subseteq U$ and U is τ_i -g-open set.

The complement of an ij-Sg^{*}-closed set is called ij-Sg^{*}-open. If $A \subset X$ is 12-Sg^{*}-closed and 21-Sg^{*}-closed, then A is called pairwise Sg^{*}-closed.

We denote the family of all ij-Sg^{*}-closed sets in (X, τ_1, τ_2) by ij-SD^{*}.

3.2. Theorem. Every *j*-closed set is *ij*-Sg^{*}-closed set.

Proof. Let $A \subset X$ be a *j*-closed set and $A \subset U$ where U is τ_i -g-open set of X. Since A is *j*-closed, j-cl(A) = A for every subset A of X. Therefore, j-cl(i-int $(A)) \subseteq U$ and hence A is ij-Sg*-closed set.

3.3. Remark. An ij-Sg^{*}- closed set need not be τ_j -closed as shown in the following example.

3.4. Example. Let $X = \{a, b, c\}, \tau_1 = \{X, \phi, \{a\}, \{a, b\}, \{a, c\}\}$ and $\tau_2 = \{X, \phi, \{a\}, \{a, b\}\}$. Let $A = \{a, c\}$, then A is 12-Sg*-closed but not 2-closed in (X, τ_1, τ_2)

3.5. Theorem. Every *ij*-*g*^{*}-closed set is *ij*-S*g*^{*}-closed.

Proof. Let A be an ij- g^* -closed set and U be any τ_i -g-open set containing A. Since j- $cl(i-int(A)) \subset j$ -cl(A) and A is ij- g^* -closed, j- $cl(A) \subset U$ for every subset A of (X, τ_1, τ_2) . Therefore, j-cl(i- $int(A)) \subset U$ and hence A is ij- Sg^* -closed.

3.6. Remark. An ij-Sg^{*}-closed set need not be ij-g^{*}-closed set as shown in the following example.

3.7. Example. Let $X = \{a, b, c\}, \tau_1 = \{X, \phi, \{a\}, \{a, c\}\}$ and $\tau_2 = \{X, \phi, \{b\}, \{b, c\}\}$. Then the subset $\{b\}$ is $12-Sg^*$ -closed but not $12-g^*$ -closed set.

3.8. Theorem. Every *ij*-Sg^{*}-closed set is *ij*-gs-closed set.

Proof. Let A be an ij-Sg^{*}-closed set and U be a τ_i - open set such that $A \subseteq U$. Since every τ_i -open set is τ_i -g-open, and A is ij-Sg^{*}-closed, we have j-cl(i-int $(A)) \subseteq U$. Therefore, $A \cup (j$ -cl(i-int $(A))) \subseteq A \cup U$. Hence ji-scl $(A) \subseteq U$, and so A is ij-gs-closed set in X. \Box

3.9. Remark. An ij-gs-closed set need not be ij-Sg*-closed as shown in the following example.

3.10. Example. Let $X = \{a, b, c\}, \tau_1 = \{X, \phi, \{a\}\}$ and $\tau_2 = \{X, \phi, \{a\}, \{a, b\}\}$. Then the subset $\{a, c\}$ is 12-gs-closed but not 12-Sg*-closed set.

3.11. Theorem. Every *ij*-Sg^{*}-closed set is *ij*-rg-closed set.

Proof. It follows from the fact that every τ_i -g-closed set is ij-rg-closed set .

3.12. Remark. An ij-rg-closed set need not be ij- Sg^* -closed as shown in the following example.

3.13. Example. Let $X = \{a, b, c\}, \tau_1 = \{X, \phi, \{a\}, \{a, b\}\}$ and $\tau_2 = \{X, \phi, \{a\}, \{b, c\}, \{a, c\}\}$. Then the set $A = \{a, b\}$ is 12-rg-closed but not 12-Sg^{*}-closed set.

3.14. Theorem. Every *ij*-Sg^{*}-closed set is *ij*-gsp-closed set.

Proof. Let A be an ij-Sg*-closed set and U be an τ_i - open set such that $A \subseteq U$. Since every τ_i -open set is τ_i -g-open, and A is ij-Sg*-closed, we have i-int(j-cl(i- $int(A))) \subseteq U$. Therefore, $A \cup (i$ -int(j-cl(i- $int(A)))) \subseteq A \cup U$. Hence ji-spcl $(A) \subseteq U$, and so A is ij-gspclosed set in X.

3.15. Remark. An ij-gsp-closed set need not be ij-Sg^{*}-closed as shown in the following example.

3.16. Example. Let $X = \{a, b, c\}$, $\tau_1 = \{X, \phi, \{b\}, \{b, c\}\}$ and $\tau_2 = \{X, \phi, \{a\}\}$. Let $A = \{b\}$, then A is 12-gsp-closed but not 12-Sg^{*}-closed.

3.17. Theorem. Every ij- δ -closed set is an ij- Sg^* -closed.

Proof. It follows from the definition.

3.18. Remark. An ij-Sg^{*}-closed set need not to be ij- δ -closed as shown in the following example.

3.19. Example. Let $X = \{a, b, c\}$, $\tau_1 = \{X, \phi, \{a\}, \{a, c\}\}$ and $\tau_2 = \{X, \phi, \{a\}, \{b, c\}\}$. Let $A = \{a\}$. Then A is 12-Sg^{*}-closed but not 12- δ -closed.

3.20. Theorem. Every ij- θ -closed set is an ij-Sg^{*}-closed set .

Proof. The proof of the theorem is immediate from the definition.

3.21. Example. An ij-Sg^{*}-closed set need not be ij- θ -closed as shown in the following example.

Let $X = \{a, b, c\}, \tau_1 = \{x, \phi, \{c\}, \{a, c\}\}$ and $\tau_2 = \{x, \phi, \{a\}, \{a, b\}, \{a, c\}\}$. If $A = \{c\}$, then A is 12-Sg*-closed but not 12- θ -closed.

3.22. Remark. The following diagram shows the relationships of ij-Sg^{*}-closed set with the other known existing set, $A \rightarrow B$ represent, A implies B but not conversely.

1. ij- Sg^* -closed 2. ij- θ -closed 3. ij- g^* -closed 4. ij-rg-closed 5. ij-g-closed 6. ij-gs-closed 7. ij-gs-closed 8. ij-pr-closed 9. ij-sp-closed 10. ji-semi-closed 11. ij- α -closed 12. ij- δ -closed 13. j-closed

3.23. Theorem. Let (X, τ_1, τ_2) be a bitopological space. If A is τ_i - open and ij-Sg^{*}-closed subset of X then it is τ_j -closed.

40

Proof. Let A be a subset of X. If it is τ_i -open and ij-Sg*- closed, then j-cl(A) $\subseteq j$ -cl(i-int(A)) $\subseteq A$. Since $A \subseteq j$ -cl(A), we have A = j-cl(A). Thus A is τ_j -closed.

3.24. Corollary. If A is τ_i -open and ij-Sg^{*}-closed in X, then it is both ji-regular open and ij-regular closed in X.

Proof. Suppose a subset A of X is both τ_i -open and ij-Sg*-closed. Then A = i-int(jcl(A)). Since A is τ_i -open and τ_j -closed, A is ji-regular open. Therefore A is τ_i -open and j-cl(i-int(A)) = j-cl(A). As A is τ_j -closed and j-cl(i-int(A)) = A, A is ij-regular closed.

3.25. Corollary. If A is both τ_i - open and ij-Sg^{*}-closed, then it is ij-rg-closed.

Proof. This follows from Corollary 3.24.

3.26. Theorem. If A is both ij-Sg^{*}-closed and ij-semi-open in a bitopological space (X, τ_1, τ_2) , then it is ij-g^{*}-closed.

Proof. Let A be both ij-Sg*-closed and ij-semi open in X such that $A \subset U$ where U is an τ_i -g-open. Since A is ij-Sg*-closed, j-cl(i-int $(A)) \subseteq U$. Since A is ij-semi open, j-cl $(A) \subset U$. Thus A is ij-g*-closed set.

3.27. Corollary. If A is both ij-Sg^{*}-closed and τ_i -open set, then it is ij-g^{*}-closed set.

Proof. By the above theorem and the fact that every τ_{i} - open set is *ij*-semi-open the proof follows.

4. Basic properties of ij-Sg^{*}-closed sets

4.1. Theorem. If $A, B \in ij$ -SD^{*}, then $A \cup B \in ij$ -SD^{*}.

Proof. Let A, B be ij- Sg^* -closed sets in X and let $A \cup B \subseteq U$ with U is τ_i -g-open set. Then $j - cl(i - int(A \cup B)) = j - cl(i - int(A)) \cup j - cl(i - int(B)) \subseteq U$ and hence $A \cup B$ is ij- Sg^* -closed set.

4.2. Remark. The intersection of two ij- Sg^* -closed sets need not be ij- Sg^* -closed set as seen from the following example.

4.3. Example. If $X = \{a, b, c\}, \tau_1 = \{\phi, \{b\}, \{c\}, \{a, c\}, \{b, c\}, X\}$ and $\tau_2 = \{\phi, \{a\}, \{b, c\}, X\}$, then $\{a, b\}$ and $\{b, c\}$ are 12-Sg*-closed sets but $\{a, b\} \cap \{b, c\} = \{b\}$ is not 12-Sg*-closed.

4.4. Remark. In general $12-SD^*$ is not equal to $21-SD^*$.

4.5. Example. In Example 2.24, $12-SD^* = \{\phi, \{a\}, \{a, b\}, \{a, c\}, \{b, c\}, X\}$ and $21-SD^* = \{\phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, X\}$, then $12-SD^* \neq 21-SD^*$.

4.6. Theorem. If $\tau_1 \subseteq \tau_2$ in (X, τ_1, τ_2) , then 21-SD^{*} $\subseteq 12$ -SD^{*}.

Proof. The proof of the theorem is immediate from the definition.

П

4.7. Remark. If $21-SD^* \subseteq 12-SD^*$, then τ_1 need not be contained in τ_2 as seen from the following example.

4.8. Example. Let X ={a,b,c}, $\tau_1 = \{\phi, \{b\}, \{b,c\}, X\}$ and $\tau_2 = \{\phi, \{b\}, X\}$. Then $21-SD^* = \{\{a\}, \{c\}, \{a,c\}\} \subseteq \{\{a\}, \{c\}, \{a,b\}, \{a,c\}\} = 12-SD^*$ but τ_1 is not contained in τ_2 .

4.9. Theorem. For each $x \in X$, the singleton $\{x\}$ is τ_i -g-closed or $\{x\}^c$ is ij-Sg^{*}-closed.

Proof. Suppose $\{x\}$ is not τ_i -g-closed, then $\{x\}^c$ will not be τ_1 -g-open. Then X is the only τ_i -g-open set containing $\{x\}^c$ and j-cl(i-int $(\{x\}^c)) \subset X$. Hence $\{x\}^c$ is ij-Sg*-closed set and $\{x\}$ is 12-g-open set.

4.10. Theorem. If A is ij-Sg*-closed set of (X, τ_1, τ_2) , then j-cl(*i*-int(A)-A does not contain a non-empty τ_i -g-closed set.

Proof. Suppose that A is ij-Sg*-closed, let F be an τ_i -g-closed set contained in j-cl(i-int(A))-A, i.e. $F \subseteq j$ -cl(i-int(A))-A. This implies $F \subseteq j$ -cl(i-int(A)) $\cap A^c$. Thus $F \subseteq j$ -cl(i-int(A)) and so F^c is τ_i -g-open set such that $A \subseteq F^c$. Since A is ij-Sg*-closed, then j-cl(i-int(A)) $\subseteq F^c$. Thus $F \subseteq (j$ -cl(i-int(A))^c. Also we have $F \subseteq j$ -cl(i-int(A))-A. Therefore $F \subseteq j$ -cl(i-int(A)) $\cap (j$ -cl(i-int(A)))^c = ϕ and so, $F = \phi$.

The converse of the above theorem is not true as seen from the following example.

4.11. Example. Let $X = \{a, b, c\}$, $\tau_1 = \{\phi, \{a\}, \{c\}, \{a, c\}, X\}$ and $\tau_2 = \{\phi, \{b\}, X\}$. If $A = \{a\}$, then 2-*cl*(1-*int*(A))-A = $\{c\}$ does not contain any nonempty τ_1 -*g*-closed set. But A is not 12-Sg^{*}-closed.

4.12. Corollary. An ij-Sg^{*}- closed set A is ij-regular closed iff j-cl(i-int(A))-A is τ_i -g-closed and $A \subseteq j$ -cl(i-int(A)).

Proof. Let A be *ij*-regular closed set. Since j-cl(*i*-int(A)) = A, j-cl(*i*-int(A))- $A = \phi$ is *ij*-regular closed set and hence τ_i -g-closed set.

Conversely, suppose that j-cl(i-int(A))-A is τ_i -g-closed. Then j-cl(i-int(A))-A contains no nonempty τ_i -g-closed set. Therefore j-cl(i-int(A))- $A = \phi$ and so A is ij-regular closed.

4.13. Theorem. If A is an ij-Sg^{*}-closed set, then i-cl $(x_i) \cap A \neq \phi$ for each $x_i \in j$ -cl(i-int(A)).

Proof. Let $x_i \in j\text{-}cl(i\text{-}int(A))$ and A be an $ij\text{-}Sg^*\text{-}closed$ set. Suppose that $i\text{-}cl(x_i) \cap A = \phi$. Then $A \subset X - \tau_i - cl(x_i)$ where $X - \tau_i - cl(x_i)$ is τ_i -g-open set. Thus $x_i \in X - \tau_i - cl(x_i)$ which is contradiction.

4.14. Remark. The converse of the above Theorem is not true. The subset $A = \{a\}$ in Example 4.11 is not $12-Sg^*$ -closed. However τ_i - $cl(x_i) \cap A \neq \phi$ for each $x_i \in j$ -cl(i-int(A)).

4.15. Theorem. If A is an ij-Sg^{*}-closed set and $A \subseteq B \subseteq j$ -cl(*i*-int(A)), then B is also an ij-Sg^{*}-closed.

Proof. Let U be τ_i -open set such that $B \subseteq U$, then $A \subseteq U$. Since A is ij-Sg^{*}-closed set, then j-cl(i-int(A)) $\subseteq U$. Since $B \subseteq j$ -cl(i-int(A)), then j-cl(i-int(B)) $\subseteq j$ -cl(i-int(A)) $\subseteq U$. Therefore, B is ij-Sg^{*}-closed.

4.16. Theorem. Let $A \subseteq Y \subseteq X$ and suppose that A is ij-Sg^{*}-closed in X. Then A is ij-Sg^{*}-closed relative to Y.

Proof. Suppose that $A \subseteq Y \subseteq X$ and A is ij-Sg^{*}-closed, $A \subseteq U$ implies j-cl(i-int(A)) $\subseteq U$. Thus $Y \cap j$ -cl(i-int(A)) $\subseteq Y \cap U$. Thus A is ij-Sg^{*}-closed relative to Y.

4.17. Theorem. In a bitopological space (X, τ_1, τ_2) , the inclusion i- $GO(X) \subseteq ij$ -RC(X) is true if every subset of X is an ij- Sg^* -closed set.

Proof. Suppose that i- $GO(X) \subseteq ij$ -RC(X). Let A be a subset of X such that $A \subseteq U$, where $U \in i$ -GO(X). Then j-cl(i- $int(A)) \subseteq j$ -cl(i-int(U)) = U and hence A is ij- Sg^* -closed.

5. *ij*- strongly $T_{\frac{1}{2}}^*$ -space

We start with the following definition.

5.1. Definition. A bitopological space (X, τ_1, τ_2) is said to be an ij- $ST_{\frac{1}{2}}^*$ -space if every ij- Sg^* -closed set is τ_j -closed.

5.2. Theorem. If (X, τ_1, τ_2) is ij-ST^{*}_{1/2}-space, then it is an ij-T^{*}_{1/2}-space.

Proof. The proof is straightforward since every ij- Sg^* -closed set is ij- g^* -closed set. \Box

5.3. Remark. The converse of the above theorem is not true as it can be see from the following example.

5.4. Example. Let $X = \{a, b, c\}, \tau_1 = \{\phi, \{a\}, \{a, b\}, X\}$ and $\tau_2 = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$. Then (X, τ_1, τ_2) is a $12 - T_{\frac{1}{2}}^*$ -space but not a $12 - ST_{\frac{1}{2}}^*$ -space.

5.5. Theorem. For a bitopological space (X, τ_1, τ_2) , the following conditions are equivalent.

- (i) (X, τ_1, τ_2) is an ij-ST^{*}₁-space.
- (ii) Every singleton space $\{x\}$ is either τ_j -open or τ_i -g-closed.

Proof. (i) \Longrightarrow (ii) Let $x \in X$. Suppose $\{x\}$ is not τ_i -g-closed. Then $\{x\}^c$ is not τ_i -g-open set. Thus $\{x\}^c$ is an ij-Sg^{*}-closed by Theorem 4.9. Since (X, τ_1, τ_2) is ij-ST $\frac{1}{2}$ -space, $\{x\}^c$ is τ_j -closed set of X, i.e $\{x\}$ is τ_j -open set of (X, τ_1, τ_2) .

(ii) \implies (i) Let A be an ij-Sg^{*}-closed set of (X, τ_1, τ_2) . Take $x \in j$ -cl(*i*-int(A)). By (ii), $\{x\}$ is either τ_j -open or τ_i -g-closed.

case (i) Let $\{x\}$ be a τ_j -open. Since $x \in j$ -cl(i-int(A)), $\{x\} \cap A \neq \phi$. This shows that $x \in A$.

case (ii) Let $\{x\}$ be a τ_j -g-open. If we assume that $x \notin A$, then we would have $x \in j$ cl(*i*-int(A))-A, which can not happen according to Theorem 4.10. Hence $x \in A$.

So, in both cases we have that F is τ_j -closed. Hence (X, τ_1, τ_2) is an ij-ST^{*}₁-space. \Box

5.6. Remark. If (X, τ_1, τ_2) is $12-ST_{\frac{1}{2}}^*$ -space, then the space (X, τ_1) is not generally ST_1^* -space as shown in the following example.

5.7. Example. Let $X = \{a, b, c\}, \tau_1 = \{\phi, \{a\}, \{b\}, \{a, b\}, \{b, c\}, X\}$ and $\tau_2 = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}, X\}$. Then (X, τ_1, τ_2) is $12 \cdot ST_{\frac{1}{2}}^*$ -space but (X, τ_1) is not $ST_{\frac{1}{2}}^*$ -space.

5.8. Remark. If both (X, τ_1) and (X, τ_2) are $ST_{\frac{1}{2}}^*$ -space, then (X, τ_1, τ_2) is not generally 12- $ST_{\frac{1}{2}}^*$ -space as shown in the following example.

5.9. Example. Let $X = \{a, b, c\}, \tau_1 = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$ and $\tau_2 = \{\phi, \{a\}, \{a, b\}, \{a, c\}, X\}$. Then both (X, τ_1) and (X, τ_2) are $ST_{\frac{1}{2}}^*$ -spaces but (X, τ_1, τ_2) is not 12- $ST_{\frac{1}{2}}^*$ -space.

5.10. Definition. A bitopological space (X, τ_1, τ_2) is said to be strongly pairwise $ST_{\frac{1}{2}}^*$ -space if it is both 12- $ST_{\frac{1}{2}}^*$ and 21- $ST_{\frac{1}{2}}^*$ -space.

5.11. Theorem. If (X, τ_1, τ_2) is strongly pairwise $ST_{\frac{1}{2}}^*$ -space, then it is strongly pairwise $T_{\frac{1}{2}}^*$ -space.

5.12. Remark. The converse of the above theorem is not true as it can be see from the following example.

5.13. Example. Let $X = \{a, b, c\}, \tau_1 = \{\phi, \{a\}, X\}$ and $\tau_2 = \{\phi, \{a\}, \{b, c\}, X\}$. Then (X, τ_1, τ_2) is both 12- $T_{\frac{1}{2}}^*$ -space and 21- $T_{\frac{1}{2}}^*$ -space, therefore it is strongly pairwise $T_{\frac{1}{2}}^*$ -space. But (X, τ_1, τ_2) is not strongly pairwise $ST_{\frac{1}{2}}^*$ -space.

5.14. Definition. A bitopological space (X, τ_1, τ_2) is said to be an $ij-S^*T_{\frac{1}{2}}$ -space if every ij-g-closed set is $ij-Sg^*$ -closed.

5.15. Theorem. Every ij- $S^*T_{\frac{1}{2}}$ -space is an ij- $T_{\frac{1}{2}}^*$ -space.

Proof. The proof follows since every $ij-g^*$ -closed set is $ij-Sg^*$ -closed.

5.16. Remark. The converse of the above theorem is not true as it can be see from the following example.

5.17. Example. Let $X = \{a, b, c\}, \tau_1 = \{\phi, \{a\}, \{b, c\}, X\}$ and $\tau_2 = \{\phi, \{a\}, X\}$. Then (X, τ_1, τ_2) is $12 \cdot T_{\frac{1}{2}}^*$ -space but not $12 \cdot S^* T_{\frac{1}{2}}$ -space.

5.18. Theorem. Every $ij^{*}T_{\frac{1}{2}}$ -space is an ij- $S^{*}T_{\frac{1}{2}}$ -space.

Proof. The proof follow by Theorem 2.7 and Theorem 5.5.

5.19. Remark. The converse of the above theorem is not true as it can be seen from the following example.

5.20. Example. Let X, τ_1 and τ_2 be as in Example 5.13. Then (X, τ_1, τ_2) is $12-ST_{\frac{1}{2}}^*$ -space but not a $12-^*T_{\frac{1}{2}}$ -space.

5.21. Remark. $ij-ST_{\frac{1}{2}}^*$ and $ij-S^*T_{\frac{1}{2}}$ -spaces are independent as seen from the following two examples.

5.22. Example. Let $X = \{a, b, c\}, \tau_1 = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$ and $\tau_2 = \{\phi, \{a\}, \{a, b\}, \{a, c\}, X\}$. Then (X, τ_1, τ_2) is $12-ST_{\frac{1}{2}}^*$ -space but $12-S^*T_{\frac{1}{2}}^-$ space.

5.23. Example. Let $X = \{a, b, c\}, \tau_1 = \{\phi, \{a\}, \{a, c\}, X\}$ and $\tau_2 = \{\phi, \{a, b\}, X\}$. Then (X, τ_1, τ_2) is $12 \cdot S^* T_{\frac{1}{2}}$ -space but not $12 \cdot ST_{\frac{1}{2}}^*$ -space.

5.24. Theorem. A bitopological space (X, τ_1, τ_2) is an $ij T_{\frac{1}{2}}^*$ space if and only if it is both $ij - ST_{\frac{1}{2}}^*$ and $ij - S^*T_{\frac{1}{2}} - space$.

Proof. Suppose that (X, τ_1, τ_2) is an $ij - T_{\frac{1}{2}}^*$ -space. Let A be $ij - g^*$ -closed set of (X, τ_1, τ_2) . Then by Theorem 3.5, A is an $ij - Sg^*$ -closed set. Since (X, τ_1, τ_2) is an $ij - T_{\frac{1}{2}}^*$ -space, A is τ_j -closed set. Hence X is $ij - ST_{\frac{1}{2}}^*$ -space. Therefore, A is ij - g-closed set, by Theorem 2.6. Thus A is $ij - Sg^*$ -closed set, by assumption. Hence (X, τ_1, τ_2) is $ij - ST_{\frac{1}{2}}^*$ -space. In this case, (X, τ_1, τ_2) is $ij - S^*T_{\frac{1}{2}}$ -space and so, $ij - ST_{\frac{1}{2}}^*$ -space.

Conversely, suppose that (X, τ_1, τ_2) is both $ij - \tilde{S}^* T_{\frac{1}{2}}$ and $ij - ST_{\frac{1}{2}}^* - space$. Then by Theorem 5.2 and Theorem 5.15, (X, τ_1, τ_2) is $ij - T_{\frac{1}{2}}^*$ -space.

References

- [1] D. Andrijevic, Semi-preopen sets, Mat. Vesnik, 38 (1986), 24-32.
- [2] I. Arockiarani, Studies on generalizations of generalized closed sets and maps in topological spaces, Ph.D. Thesis, Bharathiar Univ., Coimbatore, 1997.
- [3] G. K. Banerjee, On pairwise almost strongly θ-continuous mappings, Bull. Calcutta Math. Soc. 79(1987), 314-320.
- [4] S. Bose, Semi open sets, semi-continuity and semi open mappings in bitopological spaces, Bull. Calcutta Math. Soc. 73(1981), 237-246.
- [5] J. Dontchev and H. Maki, On θ-generalized closed sets, Int. J. Math. Sci. 22(1999), 239-249.
- [6] O. A. El-Tantawi and H. M. Abu-Donia, Generalized separation axioms in bitopological spaces, Arab. J. Sci. Eng., 1(2005), 117-129.
- [7] T. Fukutake, On generalized closed sets in bitopological spaces, Bull. Fukuka. Univ. of Educ. , 35(1985), 19-28.
- [8] M. S. John, P. Sundaram, g*-closed sets in bitopological spaces, Indian J. Pure Appl. Math., 35(1) (2004), 71-80.
- [9] J. C. Kelly, Bitopological spaces, Proc. London. Math. Soc. 13(1963), 71-89.
- [10] F. H. Khedr, $C\alpha$ -continuity in bitopological space, Arab. J. Sci. Eng., 17(1) (1992), 85-89.
- [11] F. H. Khedr and H. S. Al-Saadi, Generalized semi-closed functions in bitopological spaces, J. Egyptian Math. Soc. 20(2012), 14-19.
- [12] S. S. Kumar, On a decomposition of pairwise continuity, Bull. Calcutta Math. Soc. 89(1997), 441-446.
- [13] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963), 36-41.
- [14] N. Levine, Generalized closed sets in topology, Rend. Circ. Math. Palermo, 19(1970), 89-96.
- [15] A. S. Singal and A. S. Arya, On pairwise almost regular spaces, Glasnik Math. 6(26) (1971), 335-343.
- [16] M. Stone, Application of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc., 41(1937), 374-481.