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On the duality of frames and fusion frames
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Abstract

Optimal frame bounds play a key role in many applications of frame
theory, such as filter banks. In this paper, we study the relation between
the bounds of a frame and its alternate dual and then present some
approach to construct a family of Parseval frames. Also, we survey
some problems on duals of fusion frames. In particular, we discuss on
some essential differences between duals of ordinary frames and fusion
frames. Finally, we characterize duals of some fusion frames.

Keywords: Frame bounds; dual frames; fusion frames; dual fusion frames.

2000 AMS Classification: Primary 42C15; Secondary 41A58.

Received : 27.11.2016 Accepted : 03.05.2017 Doi : 10.15672/HJMS.2017.452

1. Introduction and preliminaries
Although frames were first introduced by Duffin and Schaeffer in 1952 [12], today they

have been developed rapidly in mathematics and have achieved successful applications
in various areas of pure and applied sciences and engineering [2, 3, 4, 5, 6]. Recently, due
to applications and theoretical goals, some generalizations of frames have been presented
[1, 7, 14, 18, 19]. Fusion frames are one of the most important extension of frames. In fact,
fusion frames are created to model sensor networks perfectly and provide a mathematical
frame work to design and analyze applications under distributed processing requirements,
which share many properties with discrete frames. However, they are very different in
the duality.
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Let H be a separable Hilbert space and I be a countable index set. A sequence
{fi}i∈I ⊆ H is called a frame for H if there exist the constants 0 < A ≤ B < ∞ such
that

A‖f‖2 ≤
∑
i∈I

|〈f, fi〉|2 ≤ B‖f‖2, (f ∈ H).(1.1)

The constants A and B are called frame bounds that are not unique. Supremum of all
lower frame bounds is called the optimal lower frame bound and likewise, the optimal
upper frame bound is defined as the infimum of all upper frame bounds. If A = B, we
call {fi}i∈I a tight frame, and in the case of A = B = 1 we call it a Parseval frame. We
say that {fi}i∈I is a Bessel sequence whenever in equation of (1.1), the right-hand side
holds. Given a frame F = {fi}i∈I , the frame operator is defined by

SF f =
∑
i∈I

〈f, fi〉fi.

It is a bounded, invertible, and self-adjoint operator [11]. For a Bessel sequence {fi}i∈I ,
the synthesis operator TF : l2 → H is defined by TF {ci} =

∑
i∈I cifi. If {fi}i∈I is a

frame, then SF = TFT
∗
F where T ∗F : H→ l2 the adjoint of T , given by T ∗F f = {〈f, fi〉}i∈I ,

is called the analysis operator. Moreover, the optimal bounds A and B for a frame
F = {fi}i∈I of H are given by

A = ‖S−1
F ‖

−1 = ‖T †F ‖
−2, B = ‖SF ‖ = ‖TF ‖2,

where T †F is the pseudo inverse of TF , see [11].
Since the frame operator is invertible, we can reconstruct vectors in the space by

f = S−1
F SF f =

∑
i∈I

〈f, S−1
F fi〉fi, (f ∈ H).

The family {S−1
F fi}i∈I is also a frame for H, so called the canonical dual frame. In

general, Bessel sequence {gi}i∈I ⊆ H is called an alternate dual or simply a dual for
Bessel sequence {fi}i∈I if

f =
∑
i∈I

〈f, gi〉fi, (f ∈ H).(1.2)

There are some characterizations of dual frames [10, 11]. For example there exists a
one-to-one correspondence between duals a frame F and the left bounded inverses of T ∗F .
Also, the following proposition describes a characterization of alternate dual frames.

1.1. Proposition. [2] Let F = {fi}i∈I be a frame for H and {δi}i∈I the standard
orthonormal basis of `2. Then {gi}i∈I is a dual for {fi}i∈I if and only if gi = S−1

F fi+ψ
∗δi

for some operator ψ ∈ B(H, `2) such that TFψ = 0.

The structure of this paper is as follows: In Section 2, we discuss on the relation
between the optimal bounds of a frame and its duals also we present some approaches
for constructing of Parseval frames. Section 3 is devoted to survey some properties of
dual fusion frames and characterizes duals of some fusion frames in Hilbert spaces.

2. Dual frame bounds
The relation between optimal bounds of a frame and its canonical dual is a well known

dependency [11]. In fact, if F = {fi}i∈I is a frame for H with the optimal bounds A
and B, respectively. The canonical dual {S−1fi}i∈I is a frame for H with the optimal
bounds 1/B and 1/A, respectively. In this section, we survey the relationship between
optimal bounds of a frame and its alternate dual.
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2.1. Proposition. Let F = {fi}i∈I be a tight frame with the optimal bound A, and
let {gi}i∈I be a tight dual of {fi}i∈I with the optimal bound 1/A. Then {gi}i∈I is the
canonical dual of F .

Proof. Since {gi}i∈I is a dual of {fi}i∈I , by the Proposition 1.1 there exists a mapping
ψ ∈ B(H, l2) such that gi = S−1

F fi + ψ∗δi where {δi}i∈I is the standard orthonormal
basis of l2. Therefore

1

A
f =

∑
i∈I

〈f, gi〉gi =
∑
i∈I

〈f, S−1
F fi + ψ∗δi〉(S−1

F fi + ψ∗δi)

= S−1
F

∑
i∈I

〈f, S−1
F fi〉fi +

∑
i∈I

〈f, ψ∗δi〉S−1
F fi

+
∑
i∈I

〈f, S−1
F fi〉ψ∗δi +

∑
i∈I

〈f, ψ∗δi〉ψ∗δi

= S−1
F f + ψ∗ψf =

1

A
f + ψ∗ψf.

It implies that ψ∗ψ = 0, i.e ψ = 0 and so {gi}i∈I is the canonical dual of F . �

The following example shows that the condition tightness cannot be removed in the
above proposition.

2.2. Example. Let {ei}i∈I be an orthonormal basis of Hilbert space H, and also let
{fi}i∈I = {e1, e1, e2, e2, e3, e4, ...}. Then {fi}i∈I is a frame forH with the optimal bounds
1 and 2, respectively. Its canonical dual is

{S−1
F fi}i∈I = {1/2e1, 1/2e1, 1/2e2, 1/2e2, e3, e4, ...},

with the optimal bounds 1/2 and 1, respectively. Now, it is not difficult to check that
{gi}i∈I = {1/2e1, 1/2e1, 0, e2, e3, ...} is also an alternate dual frame of {fi}i∈I with the
same optimal bounds.

Now, we are going to distinct a relation between the bounds of a frame and its alternate
dual, to this end, first we recall the following definition.

2.3. Definition. Suppose that X and Y are Banach spaces and T ∈ B(X,Y ), the
minimum modulus of T is defined as the following

γ(T ) = inf{‖Tf‖ : f ∈ X, ‖f‖ = 1}.

It is well known that γ(T ) > 0 if and only if T is injective and has closed range, see
for instance [16].

2.4. Theorem. Let F = {fi}i∈I be a frame with the optimal bounds A and B. If
G = {gi}i∈I is a dual of F with the optimal bounds C and D then

(2.1)
1

B
+ (γ(ψ))2 ≤ C ≤

(
‖ψ‖+

1√
B

)2

,

(2.2)
1

A
≤ D ≤ 1

A
+ ‖ψ‖2,

where ψ ∈ B(H, l2) is associated with G given by Proposition 1.1.

Proof. First, we show the lower bound in 2.1,

C = inf‖f‖=1〈SGf, f〉 = inf‖f‖=1〈S−1
F f, f〉+ ‖ψf‖2

≥ inf‖f‖=1〈S−1
F f, f〉+ inf‖f‖=1‖ψf‖2

=
1

B
+ (γ(ψ))2.
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Also, for each f ∈ H,∑
i∈I

|〈f, gi〉|2 =
∑
i∈I

|〈f, S−1
F fi + ψ∗δi〉|2

≤
∑
i∈I

|〈f, S−1
F fi〉|2 +

∑
i∈I

|〈f, ψ∗δi〉|2 + 2
∑
i∈I

|〈f, S−1
F fi〉||〈f, ψ∗δi〉|

≤
∑
i∈I

|〈f, S−1
F fi〉|2 + ‖ψf‖2 + 2‖ψf‖

(∑
i∈I

|〈f, S−1
F fi〉|2

)1/2

.

Hence

C = inf‖f‖≤1

∑
i∈I

|〈f, gi〉|2 ≤
(
‖ψ‖+

1√
B

)2

.

Moreover, for every dual frame G = {gi}i∈I of F by Lemma 5.3.6 of [11] we have∑
i∈I

|〈f, S−1
F fi〉|2 ≤

∑
i∈I

|〈f, gi〉|2,

so applying the fact that the canonical dual {S−1
F fi}i∈I has optimal bounds

1

B
and

1

A
,

we obtain the lower bound in (2.2). Finally, for computing of the upper bound of D,
by using of Proposition 1.1 there exists a bounded operator ψ such that TFψ = 0 and
gi = S−1

F fi + ψ∗δi for each i ∈ I. Therefore

〈SGf, f〉 =

〈∑
i∈I

〈f, S−1
F fi + ψ∗δi〉(S−1

F fi + ψ∗δi), f

〉

=

〈
S−1
F

∑
i∈I

〈S−1
F f, fi〉fi, f

〉
+ 〈ψ∗ψf, f〉

=
〈
S−1
F f, f

〉
+ ‖ψf‖2,

for each f ∈ H. Now, we obtain

D = ‖SG‖
= sup‖f‖≤1|〈SGf, f〉|
= sup‖f‖≤1|

〈
S−1
F f, f

〉
+ ‖ψf‖2|

≤ 1

A
+ ‖ψ‖2.

�

2.5. Remark.
(i) However the operator ψ in Theorem 2.4 may not be injective in general, there are
dual frames for which the corresponding operator ψ is injective and has closed range.
For example, consider H = R3 with the standard orthonormal basis {ei}3i=1, also let
F = {e1, e1, 1√

2
e2,

1√
2
e2,

1√
3
e3,

1√
3
e3,

1√
3
e3}. Then F is a frame of H, with the canonical

dual

S−1
F F = {1

2
e1,

1

2
e1,

1√
2
e2,

1√
2
e2,

1√
3
e3,

1√
3
e3,

1√
3
e3}.

On the other hand, the sequense G = {e1, 0,
√

2e2, 0,
√

3e3, 0, 0} is a dual frame of F , and
we have

G− S−1
F F = {1

2
e1,−

1

2
e1,

1√
2
e2,−

1√
2
e2,

2√
3
e3,−

1√
3
e3,−

1√
3
e3}.
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Since G − S−1
F F is a frame for H, so ψ = T ∗G − T ∗FS−1

F is an injective operator and has
closed range, i.e., γ(ψ) > 0.

(ii) There are some frames in Hilbert spaces for which there exist dual frames with ar-
bitrary large optimal bounds. For example, let {ei}i∈I be an orthonormal basis of H.
Then F = {e1, 0, e2, 0, e3, 0, ...} is a Parseval frame for H and the sequence
G = {e1, ne1, e2, ne2, e3, ne3, ...} is a dual of F , for each n ∈ N. Moreover,∑

i∈I

|〈f, gi〉|2 = (1 + n2)‖f‖2 →∞, (n→∞).

The following proposition, for a frame F = {fi}i∈I , characterizes all operators U ∈
B(H), where {Ufi}i∈I is a Parseval frame. As a particular case, when U = S

−1/2
F

we obtain the well-known Parseval frame {S−1/2
F fi}i∈I . The proof is obtained by a

straightforward calculation.

2.6. Proposition. Let {fi}i∈I be a frame for H with the operator frame S, and U ∈
B(H). Then {Ufi}i∈I is a Parseval frame if and only if USFU

∗ = IH.

In the end of this section we are going to construct a family of Parseval frames from
an alternate dual. In fact let {gi}i∈I be a dual frame of {fi}i∈I . Take

ψ = T ∗G − T ∗FS−1
F .

Then

SG = S−1
F + ψ∗ψ.

Hence {(S−1
F + ψ∗ψ)−1/2gi}i∈I is a Parseval frame. By replacing ψ with ψSF , we can

obtain the following family of Parseval frames as,{
(S−1

F + Sn
Fψ
∗ψSn

F )−1/2(S−1
F fi + Sn

Fψ
∗δi)

}
i∈I

, (n ∈ N).

3. Fusion frames

In this section, we first briefly recall the basic definitions and notations of fusion
frames. Then we give some results on dual fusion frames. Throughout this section, πV

denotes the orthogonal projection from H onto a closed subspace V .

3.1. Definition. Let {Wi}i∈I be a family of closed subspaces of H and {ωi}i∈I be a
family of weights, i.e. ωi > 0, i ∈ I. Then {(Wi, ωi)}i∈I is called a fusion frame for H if
there exist the constants 0 < A ≤ B <∞ such that

A‖f‖2 ≤
∑
i∈I

ω2
i ‖πWif‖

2 ≤ B‖f‖2, (f ∈ H).(3.1)

The constants A and B are called fusion frame bounds. If we only have the upper
bound in (3.1) we call {(Wi, ωi)}i∈I , a Bessel fusion sequence. A fusion frame is called
tight, if A = B, and Parseval if A = B = 1. Also if ωi = ω for all i ∈ I, the col-
lection {(Wi, ωi)}i∈I is called ω-uniform. A fusion frame {(Wi, ωi)}i∈I is said to be an
orthonormal fusion basis if H =

⊕
i∈I Wi. Recall that for each sequence {Wi}i∈I of

closed subspaces in H, the space∑
i∈I

⊕Wi =

{
{fi}i∈I : fi ∈Wi,

∑
i∈I

‖fi‖2 <∞

}
,

with the inner product 〈{fi}i∈I , {gi}i∈I〉 =
∑

i∈I〈fi, gi〉 is a Hilbert space. For a Bessel
fusion sequence {(Wi, ωi)}i∈I of H, the synthesis operator TW :

∑
i∈I ⊕Wi → H is
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defined by

TW ({fi}i∈I) =
∑
i∈I

ωifi,

(
{fi} ∈

∑
i∈I

⊕Wi

)
.

Its adjoint operator T ∗W : H →
∑

i∈I ⊕Wi, which is called the analysis operator, is
obtained by T ∗W f = {ωiπWif}i∈I . If {(Wi, ωi)}i∈I is a fusion frame, the fusion frame
operator SW : H → H defined by SW f = TWT ∗W f =

∑
i∈I ω

2
i πWif is a bounded,

invertible as well as positive. A connection between local and global properties is given
in the next result, see [7].

3.2. Theorem. For each i ∈ I, let Wi be a closed subspace of H and ωi > 0. Also let
{fi,j}j∈Ji be a frame for Wi with frame bounds αi and βi such that

0 < α = infi∈Iαi ≤ β = supi∈Iβi <∞.(3.2)

Then the following conditions are equivalent.
(i) {(Wi, ωi)}i∈I is a fusion frame of H with bounds C and D.
(ii) {ωifi,j}i∈I,j∈Ji is a frame of H with bounds αC and βD, .

For every fusion frame as {(Wi, ωi)}i∈I , there exist frames {fi,j}j∈Ji forWi, such that
satisfy (3.2), [7]. These frames are called the local frames of {(Wi, ωi)}i∈I .

A Bessel fusion sequence {(Vi, νi)}i∈I is called a dual of {(Wi, ωi)}i∈I if [13]

f =
∑
i∈I

ωiνiπViS
−1
W πWif, (f ∈ H).(3.3)

Every fusion frame W = {(Wi, ωi)}i∈I has a dual as {(S−1
W Wi, ωi)}i∈I , so called the

canonical dual. Also, it is not difficult to see that a Bessel fusion sequence {(Vi, υi)}i∈I
is a dual of fusion frame {(Wi, ωi)}i∈I if and only if TV φvwT

∗
W = IH, where the bounded

operator φvw :
∑

i∈I
⊕
Wi →

∑
i∈I
⊕
Vi is given by

(3.4) φvw({fi}i∈I) = {πViS
−1
W fi}i∈I .

In [15], it is proved that for a fusion frameW = {(Wi, ωi)}i∈I with the frame operator
SW , a Bessel fusion sequence V = {(Vi, ωi)}i∈I that Vi = S−1

W Wi ⊕ Ui, is dual of W
in which Ui is a closed subspace of H for all i ∈ I. Although, there is no complete
characterization of dual fusion frames.

3.1. Opposite relations between duals of frames and fusion frames. In the
sequel, we present some discussions on duals of fusion frames. In particular, we show
that unlike ordinary frames, there is no one-to-one correspondence between duals of a
fusion frame and the bounded left inverses of its analysis operator. In the following
proposition, we investigate a relation between dual fusion frames and some their local
frames.

3.3. Proposition. Let W = {(Wi, ωi)}i∈I be a fusion frame for H and {ej}j∈J be an
orthonormal basis for H. Then a Bessel sequence V = {(Vi, υi)}i∈I is a dual of W if and
only if G = {υiπViej}i∈I,j∈J is a dual frame of F = {ωiπWiS

−1
W ej}i∈I,j∈J . In particular,

W is also a dual of V if SW = SV .

Proof. The result is obtained from the following equalities∑
i∈I,j∈J

〈f, ωiπWiS
−1
W ej〉υiπViej =

∑
i∈I,j∈J

ωiυiπVi〈S
−1
W πWif, ej〉ej

=
∑
i∈I

ωiυiπViS
−1
W πWif.
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Moreover, since F is also a dual of G, we have

f =
∑

i∈I,j∈J

〈f, υiπViej〉ωiπWiS
−1
W ej

=
∑

i∈I,j∈J

ωiυiπWiS
−1
W 〈πVif, ej〉ej

=
∑
i∈I

ωiυiπWiS
−1
V πVif = TWϕw,vT

∗
V f,

for each f ∈ H. This means that W is also a dual of V . �

It is worthwhile to mention that two fusion frames are not dual of each other in general.
As an easy consequence of Proposition 3.3, the result holds if fusion frames are Parseval.

Now, we are going to discuss on some differences between fusion frames and ordinary
frames. First, let {(Wi, ωi)}i∈I be a fusion frame of H and T ∈ B(H) be an invertible
operator. It is well known that {(TWi, ωi)}i∈I is also a fusion frame of H, see [8].
However, in fusion frames unlike ordinary frames a surjective operator T ∈ B(H) may
not preserve Besselian property. The next example shows this fact.

3.4. Example. Let {ei}n∈I be an orthonormal basis of H and Wi = span{ei}, for all
i ∈ I. Clearly {(Wi, 1)} is an orthonormal fusion basis for H. Define

Tei =


1

m
e1 i = 2m− 1,

em i = 2m.

Then the mapping T can be extended to a bounded and surjective linear operator on H,
i.e T ∈ B(H). Also

TWi =

{
span{e1} i = 2m− 1,

span{em} i = 2m.

Hence, we can easily see that for f = e1
n∑

i=1

‖πTWif‖
2 →∞, (n→∞),

i.e. {(TWi, 1)} is not a Bessel fusion sequence.

See [17] for more examples. Also, the construction of Parseval fusion frames, which
have a key role in fusion frame theory is different from ordinary frames. More precisely, let
{(Wi, ωi)}i∈I be a fusion frame with bounds A and B, we can see that {(S−1/2

W Wi, ωi)}i∈I
is not a Parseval fusion frame, in general. Moreover, there exists some fusion frames for
H such that for every invertible operator U ∈ B(H), {UWi}i∈I fails to be a Parseval
fusion frame, see Example 7.6 of [17].

Now, we show that Proposition 1.1 for fusion frames fails. Let W = {(Wi, ωi)}i∈I
be a fusion frame with a dual as {(Vi, υi)}i∈I . Then there exists an operator Ψ ∈
B(H,

∑
i∈I
⊕
Wi) such that TW Ψ = 0. In fact there exists a bounded operator φvw,

given by (3.4), such that TV φvwT
∗
W = IH. Take

Ψ = φ∗vwT
∗
V − T ∗WS−1

W .(3.5)

Then it is easy to see that Ψ ∈ B(H,
∑

i∈I
⊕
Wi) and TW Ψ = 0. However, the con-

verse is not true. Indeed, consider W1 = span{(1, 1, 0)} and W2 = {0} × R2, then
W = {Wi}2i=1 is a 1-uniform fusion frame for R3. Now let TW Ψ = 0, then for every
f = (a, b, c) ∈ R3 we have Ψ∗T ∗W f = 0 so Ψ∗ {((a+ b)/2, (a+ b)/2, 0), (0, b, c)} = 0.
This implies that Ψ∗{f1, f2} = 0, for every {f1, f2} ∈

∑2
i=1

⊕
Wi. Hence the only
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operator Ψ ∈ B(H,
∑2

i=1

⊕
Wi) such that TW Ψ = 0 is Ψ = 0. While, there ex-

ist more than one dual for W , such as V = {S−1
W W1 ⊕ span{(0, 1/2, 1)}, S−1

W W2} and
Z = {S−1

W W1, S
−1
W W2 ⊕ span{(1, 0, 3/2)}}, which are 1-uniform alternate duals of W .

Hence, unlike discrete frames, the corresponding assertion in Proposition 1.1 for fusion
frames fails. This also shows that there is no one-to-one correspondence between du-
als of a fusion frame and bounded left inverses of T ∗W . However, we show that for
the mapping Ψ ∈ B(H,

∑
i∈I
⊕
Wi) such that TW Ψ = 0 we can construct a dual for

F = {ωifi,j}i∈I,j∈Ji , where {fi,j}j∈Ji is a local frame for Wi for each i ∈ I. Define
ψF : H→ l2 by ψF f = {ci,j}i∈I,j∈Ji where {Ψf}i∈I = {

∑
j∈Ji

ci,jfi,j}i∈I and {ci,j}j∈Ji

is a unique sequence whose elements represent the components of Ψf in Wi with mini-
mal l2-norm, see Lemma 5.3.6 of [11]. The mapping ψF is well defined since {ci,j}j∈Ji is
unique. Thus

TFψF f =
∑

i∈I,j∈Ji

ωici,jfi,j =
∑
i∈I

ωi(Ψf)i = TW Ψf = 0.

Therefore, we obtain a dual frame {gi,j}i∈I,j∈Ji for {ωifi,j}i∈I,j∈Ji by Proposition 1.1.
Hence, characterization of all dual fusion frames is an intricate problem.

3.2. Characterization of duals of some fusion frames. In the following, we try to
characterize duals of some fusion frames in Hilbert spaces. First, we need to the following
lemma.

3.5. Lemma. [9] Let W1 and W2 be closed subspaces of H, and ω1, ω2 > 0. The following
conditions are equivalent;

(i) W = {(Wi, ωi)}2i=1 is a Parseval fusion frame for H.
(ii) Either W1 = W2 = H and ω2

1 + ω2
2 = 1 or W1 ⊥W2 and ω1 = ω2 = 1

3.6. Theorem. Let W = {(Wi, ωi)}2i=1 be a Parseval fusion frame and V = {(Vi, υi)}2i=1

be a dual of W . Then one of the following conditions are hold:
(i) V1 = V2 = H and ω1υ1 + ω2υ2 = 1.
(ii) V1 ⊥ V2 and ω1υ1 = ω2υ2 = 1.
(iii) V1 ⊇W1, V2 ⊇W2 and υ1 = υ2 = 1.

Proof. Since W is a Parseval fusion frame, therefore by Lemma 3.5 either we have W1 =
W2 = H and ω2

1 +ω2
2 = 1 or we have W1 ⊥W2 and ω1 = ω2 = 1. Now if W1 = W2 = H,

and ω2
1 + ω2

2 = 1, then easily we can see that ({Vi,
√
ωiυi}2i=1) is a Parseval fusion frame

and so we have either (i) or (ii). On the other hand, let W1 ⊥W2, and ω1 = ω2 = 1. In
this case, for every f ∈ W1 we have υ1πV1f = f and so W1 ⊆ V1 and υ1 = 1, similarly
W2 ⊆ V2 and υ2 = 1, i.e., (iii) holds. �

3.7. Theorem. Suppose that W = {(Wi, ωi)}∞i=1 is a fusion frame for H such that
W1 ⊆ W2 ⊆ W3 ⊆ ..., then a Bessel fusion sequence V = {(Vi, ωi)}∞i=1 is a dual of W if
and only if Vi ⊇ S−1

W Wi, for all i.

Proof. Let V = {(Vi, ωi)}∞i=1 be a dual of W . If S−1
W W1 is not a subspace of V1, then

there exists f0 ∈W1 such that S−1
W f0 ∈ S−1

W W1 \V1 and so ‖πV1S
−1
W f0‖ < ‖S−1

W f0‖. Also
∞∑
i=1

ω2
i πViS

−1
W πWif0 = f0 =

∞∑
i=1

ω2
i S
−1
W πWif0.

Therefore,
∞∑
i=1

ω2
i ‖πViS

−1
W f0‖2 =

∞∑
i=1

ω2
i ‖S−1

W f0‖2,
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which is a contradiction. Now let S−1
W W1 ⊆ V1, ... , S−1

W Wj−1 ⊆ Vj−1 we show that
S−1
W Wj ⊆ Vj . Otherwise, as the above there exists an element f0 ∈ Wj such that
S−1
W f0 ∈ S−1

W Wj \ Vj . So we can write
∞∑
i=j

ω2
i πViS

−1
W f0 =

∞∑
i=j

ω2
i S
−1
W f0.

Hence
∑∞

i=1 ω
2
i ‖πViS

−1
W f0‖2 =

∑∞
i=1 ω

2
i ‖S−1

W f0‖2 which is a contradiction, therefore
S−1
W Wi ⊆ Vi for all i.

�

It is worth noticing that, if W = {(Wi, ωi)}ni=1 is a fusion frame for H such that
W1 ⊇W2 ⊇ ... ⊇Wn, then similar to the proof of Theorem 3.7 we can see that a Bessel
fusion sequence V = {(Vi, ωi)}ni=1 is a dual of W if and only if Vi ⊇ S−1

W Wi, for all
1 ≤ i ≤ n. Also, this condition that the weights of dual V is equal to weights of fusion
frame W is necessary. For example, consider H = C3, Wi = C3 and ωi = 1/

√
3, for

each 1 ≤ i ≤ 3. Clearly W = {(Wi, ωi)}3i=1 is a Parseval fusion frame with a dual as
V = {(Vi, νi)}3i=1, where V1 = C3 and V2 = V3 = {0} and υi =

√
3 for each 1 ≤ i ≤ 3.
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