
Hacettepe Journal of Mathematics and Statistics
Volume 47 (1) (2018), 203 � 221

Di�erent estimation methods and joint con�dence
regions for the parameters of a generalized

inverted family of distributions

Wenhao Gui∗† and Lei Guo ‡

Abstract

In this paper, we deal with the problem of estimating the parameters of
a generalized inverted family of distributions. We propose the inverse
moment and modi�ed inverse moment estimators of the parameters.
The existence and uniqueness of inverse moment and modi�ed inverse
moment estimators is derived. Monte Carlo simulations are conducted
to compare their performances with maximum-likelihood estimators.
Two methods for constructing joint con�dence regions for the two pa-
rameters are also proposed and their performances are discussed. A
numerical example is presented to illustrate the methods.
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1. Introduction

In mathematical statistics, a scale family of distributions is a family of univariate
distributions G(·) parameterized by a scale parameter λ. It plays an important role in
lifetime data analysis. Some representations are Exponential distribution, Half logistic
distribution, Rayleigh distribution etc.

By adding a shape parameter, [6] generalized exponential distribution as an alterna-
tive to the gamma and Weibull distributions and studied its di�erent properties. The
cumulative distribution function is simply the αth power of the standard exponential
cumulative distribution. Some references on generalized exponential distribution are [7],
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[14], [8], [4], [11] etc. In a similar manner, [5] and [12] proposed the exponentiated types
of distributions such as the exponentiated gamma, exponentiated Fréchet and exponen-
tiated Gumbel distributions.

If Y is a random variable, then X = 1/Y follows an inverted distribution. [1] in-
troduced a generalized version of inverted exponential distribution and used it to model
various failure rates, and hence di�erent shapes of aging criteria. They derived statistical
and reliability properties of the generalized inverted exponential distribution. Maximum
likelihood estimation and least square estimation are used to evaluate the parameters
and reliability of the distribution. [10] considered reliability estimation in generalized
inverted exponential distribution with progressively type II censored sample.

In this article, we deal with the problem of estimating the parameters of a generalized
inverted family of distributions. A random variable X is said to belong to the generalized
inverted family of distributions(GIFD) if its cumulative distribution function (cdf) and
probability density function (pdf) are respectively given by

(1.1) F (x;λ, α) = 1−
[
G

(
λ

x

)]α
, x > 0,

and

(1.2) f(x;λ, α) =
αλ

x2
g

(
λ

x

)[
G

(
λ

x

)]α−1

, x > 0,

where g(·) = G′(·), α > 0 is the shape parameter and λ > 0 is the scale parameter.
When α = 1, the generalized inverted family of distributions reduces to the inverted
distribution.

Some examples of such models are:
(i) Generalized inverted exponential distribution: GIED(λ, α) with

G(x) = 1− e−x, x > 0,

and the cdf is given by

F (x) = 1−
[
1− e−

λ
x

]α
, x > 0.

(ii) Generalized inverted Rayleigh distribution: GIRD(λ, α) with

G(x) = 1− e−x
2

, x > 0,

and the cdf is given by

F (x) = 1−
[
1− e−

λ
x2

]α
, x > 0.

(iii) Generalized inverted half-logistic distribution: GIHD(λ, α) with

G(x) =
1− e−x

1 + e−x
, x > 0,

([3]) and the cdf is given by

F (x) = 1−

[
1− e−

λ
x

1 + e−
λ
x

]α
, x > 0.

In this paper, we consider the problem of estimating the two parameters of the gen-
eralized inverted family of distributions. The rest of this paper is organized as follows:

In Section 2, we brie�y review the maximum-likelihood estimation of the generalized
inverted family of distributions. In Section 3, we propose inverse moment and modi�ed
inverse moment estimations and study their properties. The conditions for the existence
and uniqueness of inverse moment and modi�ed inverse moment estimators of the pa-
rameters are established. Joint con�dence regions for the two parameters are discussed in
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Section 4. Section 5 conducts simulations to compare the estimators and the joint con-
�dence regions for the parameters of the generalized inverted half-logistic distribution
which is a member of the family considered. Finally, in Section 6, a numerical example
is presented to illustrate the validity of the proposed methods.

2. Maximum likelihood estimation

In this section, we brie�y review the classical MLEs of the parameters of GIFD dis-
tribution based on a complete sample. Let X1, X2, · · · , Xn be a random sample from
GIFD(λ, α) with pdf and cdf as (1.2) and (1.1), respectively. The log-likelihood function
is given by

`(λ, α) = n logα+ n log λ− 2

n∑
i=1

log xi +

n∑
i=1

log g

(
λ

xi

)
+ (α− 1)

n∑
i=1

logG

(
λ

xi

)
(2.1)

We obtain the score equations as

∂`(λ, α)

∂λ
=

n

λ
+

n∑
i=1

g′
(
λ
xi

)
xig

(
λ
xi

) + (α− 1)

n∑
i=1

g
(
λ
xi

)
xiG

(
λ
xi

) = 0,(2.2)

∂`(λ, α)

∂α
=

n

α
+

n∑
i=1

logG

(
λ

xi

)
= 0.(2.3)

From (2.3) we obtain the MLE of α as a function of λ,

α̂ = − n∑n
i=1 logG

(
λ
xi

) .(2.4)

The MLE of λ is the root of the following equation

G(λ) =
n

λ
+

n∑
i=1

g′
(
λ
xi

)
xig

(
λ
xi

) −
 n∑n

i=1 logG
(
λ
xi

) + 1

 n∑
i=1

g
(
λ
xi

)
xiG

(
λ
xi

) = 0.

(2.5)

Such non-linear equation does not have closed form solution. We can apply numerical
method such as Newton-Raphson to compute λ. For more details, see [13].

3. Inverse moment estimation

In general, the moment estimation does not work for estimating the parameters of
the GIFD. For example, as for the GIED, the population moments do not exist. In
this section, we propose an inverse moment estimation of parameters. Di�erent from
the regular method of moments, the idea of the inverse moment estimation (IME) is as
follows:

Suppose X1, · · · , Xn form a sample from a distribution with unknown parameters,
�rst transform the original sample to a quasi-sample Y1, · · · , Yn, where Yi contains the
unknown parameters but its distribution does not depend on the unknown parameters,
that is, Yi is a pivot variable, i = 1, · · · , n. The population moments of the new sample
do not dependent on the unknown parameters while the sample moments do. Let the
population moments of the quasi-sample equal to the sample moments and solve for the
unknown parameters.

Let X1, · · · , Xn form a sample from GIFD(λ, α) with pdf given in (1.2), it is known
that F (Xi), 1 − F (Xi), i = 1, · · · , n follow uniform distribution U(0, 1), and − log[1 −
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F (Xi)], i = 1, · · · , n follow standard exponential distribution Exp(1). By the method of
inverse moment estimation, we let

1

n

n∑
i=1

{− log[1− F (Xi)]} = 1,(3.1)

that is,

−α
n

n∑
i=1

log

[
G

(
λ

xi

)]
= 1.(3.2)

Thus, the IME of α is obtained as a function of λ,

α̂ =
n∑n

i=1 log
[
G
(
λ
xi

)] ,(3.3)

which is identical to the MLE of α.

3.1. Lemma. Let Z(1) ≤ Z(2) ≤ · · · ≤ Z(n) be the order statistics from the standard
exponential distribution. Then, the random variables W1,W2, · · · ,Wn, where

Wi = (n− i+ 1)(Z(i) − Z(i−1)), i = 1, 2, · · · , n(3.4)

with Z(0) ≡ 0, are independent and follow standard exponential distributions.

Proof. The proof can be found in [2]. �

3.2. Lemma. Let W1,W2, · · · ,Wn be i.i.d. standard exponential variables, Si = W1 +
· · ·+Wi, Ui = (Si/Si+1)

i, i = 1, 2, · · · , n− 1, Un =W1 + · · ·+Wn, then
(1) U1, U2, · · · , Un are independent;
(2) U1, U2, · · · , Un−1 follow the uniform distribution U(0, 1);
(3) 2Un follows χ2(2n).

Proof. The proof can be found in [17]. �

Now we determine the IME of λ. For the sample X1, · · · , Xn from GIFD(λ, α),
consider the order statistics X(1) ≤ · · · ≤ X(n), we have

− log
[
1− F (X(1))

]
≤ · · · ≤ − log

[
1− F (X(n))

]
,(3.5)

are n order statistics from standard exponential distribution.

Let Z(i) = −α logG
(

λ
x(i)

)
, i = 1, · · · , n. Thus, Z(1) ≤ Z(2) ≤ · · · ≤ Z(n) are the �rst

n order statistics from the standard exponential distribution. By Lemma 3.1, Wi = (n−
i+1)(Z(i)−Z(i−1)), i = 1, 2, · · · , n form a sample from standard exponential distribution.

Let Si =W1 + · · ·+Wi, Ui = (Si/Si+1)
i, i = 1, 2, · · · , n− 1, Un =W1 + · · ·+Wn, by

Lemma 3.2, we have

−2
n−1∑
i=1

logUi = −2
n−1∑
i=1

i log(Si/Si+1) = 2

n−1∑
i=1

log(Sn/Si) ∼ χ2(2n− 2),(3.6)

where

Sn
Si

=
W1 + · · ·+Wn

W1 + · · ·+Wi

=
Z(1) + Z(2) + · · ·+ Z(n)

Z(1) + Z(2) + · · ·+ Z(i−1) + (n− i+ 1)Z(i)

=
logG

(
λ
x(1)

)
+ logG

(
λ
x(2)

)
+ · · ·+ logG

(
λ

x(n)

)
logG

(
λ
x(1)

)
+ · · ·+ logG

(
λ

x(i−1)

)
+ (n− i+ 1) logG

(
λ
x(i)

) .
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Noting that the mean of χ2(2n − 2) is 2n − 2. Thus, we obtain an inverse moment
equation for λ as follows:

n−1∑
i=1

log

 logG
(

λ
x(1)

)
+ logG

(
λ
x(2)

)
+ · · ·+ logG

(
λ

x(n)

)
logG

(
λ
x(1)

)
+ · · ·+ logG

(
λ

x(i−1)

)
+ (n− i+ 1) logG

(
λ
x(i)

)


= n− 1.(3.7)

Solve the equation and we obtain the inverse estimate λ̂IME of λ. Plugging λ̂IME into
(3.3), we obtain the inverse estimate α̂IME . In addition, considering that the mode of
χ2(2n− 2) is 2n− 4, we can obtain a modi�ed equation for λ:

n−1∑
i=1

log

 logG
(

λ
x(1)

)
+ logG

(
λ
x(2)

)
+ · · ·+ logG

(
λ

x(n)

)
logG

(
λ
x(1)

)
+ · · ·+ logG

(
λ

x(i−1)

)
+ (n− i+ 1) logG

(
λ
x(i)

)


= n− 2.(3.8)

Solve the equation and we obtain the modi�ed inverse estimate λ̂MIME of λ. Plugging

λ̂MIME into (3.3), we obtain the modi�ed inverse estimate α̂MIME .
In the following, we prove the existence and uniqueness of the root in the equation

(3.7) and (3.8).

3.3. Theorem. Let Wi = (n − i + 1)(Z(i) − Z(i−1)), i = 1, 2, · · · , n form a sample
from standard exponential distribution, Si = W1 + · · · +Wi, then for t > 0, equation∑n−1
i=1 log(Sn/Si) = t has a unique positive solution if the following conditions are satis-

�ed: 

(1) limλ→0+
logG(λa )
logG(λb )

= 1, for a > 0, b > 0.

(2) limλ→∞
logG(λa )
logG(λb )

= +∞, for a > b > 0.

(3) limλ→∞
logG(λa )
logG(λb )

= 0, for b > a > 0.

(4)For t > 0, f(t) = t[g′(t)G(t)−g2(t)]
g(t)G(t)

is a decreasing function of t.

(3.9)

Proof.

lim
λ→0

Sn
Si

= lim
λ→0

logG
(

λ
x(1)

)
+ logG

(
λ
x(2)

)
+ · · ·+ logG

(
λ

x(n)

)
logG

(
λ
x(1)

)
+ · · ·+ logG

(
λ

x(i−1)

)
+ (n− i+ 1) logG

(
λ
x(i)

)
= lim

λ→0

[logG
(

λ
x(1)

)
+ logG

(
λ
x(2)

)
+ · · ·+ logG

(
λ

x(n)

)
]/ logG

(
λ

x(n)

)
[logG

(
λ
x(1)

)
+ · · ·+ logG

(
λ

x(i−1)

)
+ (n− i+ 1) logG

(
λ
x(i)

)
]/ logG

(
λ

x(n)

)
= 1.

Thus, limλ→0

∑n−1
i=1 log(Sn/Si) = 0. On the other hand,
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lim
λ→∞

Sn
Si

= 1 + lim
λ→∞

Wi+1 + · · ·+Wn

W1 +W2 + · · ·+Wi

= 1 + lim
λ→∞

logG
(

λ
x(i+1)

)
+ · · ·+ logG

(
λ

x(n)

)
− (n− i) logG

(
λ
x(i)

)
logG

(
λ
x(1)

)
+ · · ·+ logG

(
λ
x(i)

)
+ (n− i) logG

(
λ
x(i)

)
= 1 + lim

λ→∞

[logG
(

λ
x(i+1)

)
+ · · ·+ logG

(
λ

x(n)

)
− (n− i) logG

(
λ
x(i)

)
]/ logG

(
λ
x(i)

)
[logG

(
λ
x(1)

)
+ · · ·+ logG

(
λ
x(i)

)
+ (n− i) logG

(
λ
x(i)

)
]/ logG

(
λ
x(i)

)
= +∞.

Thus, limλ→∞
∑n−1
i=1 log(Sn/Si) =∞. Therefore, for t > 0, equation

∑n−1
i=1 log(Sn/Si) =

t has one positive solution. For the uniqueness of the solution, we consider the derivative
of Sn/Si with respect to λ.

Noting that, for i = 1, · · · , n,

Wi = (n− i+ 1)α

{
logG

(
λ

x(i−1)

)
− logG

(
λ

x(i)

)}
,

dWi

dλ
= (n− i+ 1)α

 g
(

λ
x(i−1)

)
x(i−1)G

(
λ

x(i−1)

) − g
(

λ
x(i)

)
x(i)G

(
λ
x(i)

)


= Wi

g

(
λ

x(i−1)

)
x(i−1)G

(
λ

x(i−1)

) − g

(
λ
x(i)

)
x(i)G

(
λ
x(i)

)
logG

(
λ

x(i−1)

)
− logG

(
λ
x(i)

) .
Therefore, (

Sn
Si

)′
=

(
1 +

Wi+1 + · · ·+Wn

W1 + · · ·+Wi

)′
=

1

(
∑i
k=1Wk)2

n∑
j=i+1

i∑
k=1

[W ′jWk −WjW
′
k]

=
1

λ(
∑i
k=1Wk)2

n∑
j=i+1

i∑
k=1

WjWk[A(λ)−B(λ)],

where

A(λ) =

λg

(
λ

x(j−1)

)
x(j−1)G

(
λ

x(j−1)

) − λg

(
λ
x(j)

)
x(j)G

(
λ
x(j)

)
logG

(
λ

x(j−1)

)
− logG

(
λ
x(j)

) ,
and

B(λ) =

λg

(
λ

x(k−1)

)
x(k−1)G

(
λ

x(k−1)

) − λg

(
λ

x(k)

)
x(k)G

(
λ

x(k)

)
logG

(
λ

x(k−1)

)
− logG

(
λ
x(k)

) .
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By Cauchy's mean-value theorem, for j = i + 1, · · · , n, k = 1, · · · , i, there exist ξ1 ∈
( λ
X(j)

, λ
X(j−1)

) and ξ2 ∈ ( λ
X(k)

, λ
X(k−1)

) such that

A(λ) = 1 +
ξ1[g

′(ξ1)G(ξ1)− g2(ξ1)]
g(ξ1)G(ξ1)

,

B(λ) = 1 +
ξ2[g

′(ξ2)G(ξ2)− g2(ξ2)]
g(ξ2)G(ξ2)

.

Note that ξ1 < ξ2, therefore, A(λ) − B(λ) > 0,
(
Sn
Si

)′
> 0, thus

∑n−1
i=1 log(Sn/Si) is a

strictly increasing function of λ,
∑n−1
i=1 log(Sn/Si) = t has a unique positive solution. �

3.1. Remark. For general scale family of distributions G(·), the conditions (3.9) in
Theorem 3.3 are satis�ed. For example, as for the Generalized inverted exponential
distribution: GIED(λ, α) with G(x) = 1− e−x, x > 0. It is easy to verify the following
conditions:

(1) limλ→0+
log[1−e−

λ
a ]

log[1−e−
λ
b ]

= 1, for a > 0, b > 0.

(2) limλ→∞
log[1−e−

λ
a ]

log[1−e−
λ
b ]

= +∞, for a > b > 0.

(3) limλ→∞
log[1−e−

λ
a ]

log[1−e−
λ
b ]

= 0, for b > a > 0.

(4) For t > 0, f(t) = t[g′(t)G(t)−g2(t)]
g(t)G(t)

= ett
1−et is a decreasing function of t.

4. Joint con�dence regions for λ and α

Let X1, X2, · · · , Xn form a sample from the GIFD distribution GIFD(λ, α), and
X(1) ≤ X(2) ≤ · · · ≤ X(n) are the order statistics from this sample. Let Z(i) =

−α logG
(

λ
x(i)

)
, i = 1, · · · , n. Thus, Z(1) ≤ Z(2) ≤ · · · ≤ Z(n) are the �rst n order

statistics from the standard exponential distribution. By Lemma 3.1, Wi = (n − i +
1)(Z(i) − Z(i−1)), i = 1, 2, · · · , n form a sample from standard exponential distribution.

Let Si =W1+ · · ·+Wi, Ui = (Si/Si+1)
i, i = 1, 2, · · · , n−1, Un =W1+ · · ·+Wn. Hence,

V = 2S1 = 2W1 = 2nZ(1) = −2nα log

(
λ

x(1)

)
∼ χ2(2),(4.1)

and

U = 2(Sn − S1) = 2

n∑
i=2

Wi = 2[Z(1) + · · ·+ Z(n) − nZ(1)] ∼ χ2(2n− 2).(4.2)

We can �nd that U and V are independent. De�ne

T1 =
U/(2n− 2)

V/2
=

Sn − S1

(n− 1)S1
∼ F (2n− 2, 2),(4.3)

and

T2 = U + V = 2Sn ∼ χ2(2n).(4.4)

We obtain that T1 and T2 are independent using the known bank-post o�ce story ([15])
in statistics.

Let Fγ(v1, v2) denote the percentile of F distribution with left-tail probability γ and
v1 and v2 degrees of freedom. Let χ2

γ(v) denote the percentile of χ2 distribution with
left-tail probability γ and v degrees of freedom.
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By using the pivotal variables T1 and T2, a joint con�dence region for the two param-
eters λ and α can be constructed as follows.

4.1. Theorem. (Method 1) Let X1, X2, · · · , Xn form a sample from the GIFD dis-
tribution GIFD(λ, α), then, based on the pivotal variables T1 and T2, a 100(1 − γ)%
joint con�dence region for the two parameters λ and α is determined by the following
inequalities: 

λL ≤ λ ≤ λU
χ2

1−
√

1−γ
2

(2n)

−2
∑n
i=1 logG

(
λ
x(i)

) ≤ α ≤ χ2
1+
√

1−γ
2

(2n)

−2
∑n
i=1 logG

(
λ
x(i)

) ,(4.5)

where λL is the root of λ for the equation T1 = F 1−
√

1−γ
2

(2n − 2, 2) and λU is the root

of λ for the equation T1 = F 1+
√

1−γ
2

(2n− 2, 2).

Proof. T1 = 1
n−1

logG

(
λ
x(1)

)
+··· logG

(
λ

x(n)

)
−n logG

(
λ
x(1)

)
n logG

(
λ
x(1)

) is a function of λ and does not

depend on α. From Theorem 3.3, we have limλ→0 T1 = 1
n−1

limλ→0(
Sn
S1
− 1) = 0,

limλ→∞ T1 = 1
n−1

limλ→∞(Sn
S1
− 1) = ∞, T ′1 = 1

n−1
(Sn
S1

)′ > 0. Therefore, for any t > 0,

equation T1 = t has a unique positive root of λ.

1− γ = P (F 1−
√

1−γ
2

(2n− 2, 2) ≤ T1 ≤ F 1+
√

1−γ
2

(2n− 2, 2))

×P (χ2
1−
√

1−γ
2

(2n) ≤ T2 ≤ χ2
1+
√

1−γ
2

(2n))

= P
(
F 1−

√
1−γ
2

(2n− 2, 2) ≤ T1 ≤ F 1+
√

1−γ
2

(2n− 2, 2)),

χ2
1−
√

1−γ
2

(2n) ≤ T2 ≤ χ2
1+
√

1−γ
2

(2n)

)

= P

λL ≤ λ ≤ λU , χ2
1−
√

1−γ
2

(2n)

−2
∑n
i=1 logG

(
λ
x(i)

) ≤ α ≤ χ2
1+
√

1−γ
2

(2n)

−2
∑n
i=1 logG

(
λ
x(i)

)
 .

�

On the other hand, by Lemma 3.2, we have

T3 = −2
n−1∑
i=1

logUi = −2
n−1∑
i=1

i log(Si/Si+1) = 2

n−1∑
i=1

log(Sn/Si) ∼ χ2(2n− 2).(4.6)

T2 and T3 are also independent. By using the pivotal variables T2 and T3, a joint
con�dence region for the two parameters λ and α can be constructed as follows.

4.2. Theorem. (Method 2) Let X1, X2, · · · , Xn form a sample from the GIFD distri-
bution GIFD(λ, α), then, based on the pivotal variables T2 and T3, a 100(1− γ)% joint
con�dence region for the two parameters λ and α is determined by

λ∗L ≤ λ ≤ λ∗U
χ2

1−
√

1−γ
2

(2n)

−2
∑n
i=1 logG

(
λ
x(i)

) ≤ α ≤ χ2
1+
√

1−γ
2

(2n)

−2
∑n
i=1 logG

(
λ
x(i)

) ,(4.7)

where λ∗L is the root of λ for the equation T3 = χ2
1−
√

1−γ
2

(2n − 2) and λ∗U is the root of

λ for the equation T3 = χ2
1+
√

1−γ
2

(2n− 2).
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Proof. T3 = 2
∑n−1
i=1 log(Sn/Si) is a function of λ and does not depend on α. From

Theorem 3.3, for any s > 0, equation T3 = s has a unique positive root of λ.

1− γ =
√

1− γ
√

1− γ
= P (χ2

1−
√

1−γ
2

(2n− 2) ≤ T3 ≤ χ2
1+
√

1−γ
2

(2n− 2))

×P (χ2
1−
√

1−γ
2

(2n) ≤ T2 ≤ χ2
1+
√

1−γ
2

(2n))

= P

(
χ2

1−
√

1−γ
2

(2n− 2) ≤ T3 ≤ χ2
1+
√

1−γ
2

(2n− 2),

χ2
1−
√

1−γ
2

(2n) ≤ T2 ≤ χ2
1+
√

1−γ
2

(2n)

)

= P

λ∗L ≤ λ ≤ λ∗U , χ2
1−
√

1−γ
2

(2n)

−2
∑n
i=1 logG

(
λ
x(i)

) ≤ α ≤ χ2
1+
√

1−γ
2

(2n)

−2
∑n
i=1 logG

(
λ
x(i)

)
 .

�

5. Application to generalized inverted half-logistic distribution

and simulation study

In this section, we consider a member of the generalized inverted family distributions,
namely generalized inverted half-logistic distribution GIHD(λ, α). Its cdf and pdf are
respectively given by

F (x) = 1−

[
1− e−

λ
x

1 + e−
λ
x

]α
, x > 0,(5.1)

and

f(x) =
2αλeλ/x

x2
(
e

2λ
x − 1

) (eλ/x − 1

eλ/x + 1

)α
, x > 0.(5.2)

The log-likelihood function is given by

L(λ, α) = α

n∑
i=1

log
(
e
λ
xi − 1

)
− α

n∑
i=1

log
(
e
λ
xi + 1

)
+ λ

n∑
i=1

1

xi
−

n∑
i=1

log
(
e

2λ
xi − 1

)
−2

n∑
i=1

log xi + n logα+ n log λ+ n log 2(5.3)

The score equations are as follows:

∂L(λ, α)

∂λ
= α

n∑
i=1

2e
λ
xi

xi
(
e

2λ
xi − 1

) − n∑
i=1

2e
2λ
xi

xi
(
e

2λ
xi − 1

) +

n∑
i=1

1

xi
+
n

λ
= 0,(5.4)

∂L(λ, α)

∂α
=

n∑
i=1

log
(
e
λ
xi − 1

)
−

n∑
i=1

log
(
e
λ
xi + 1

)
+
n

α
= 0.(5.5)

From (5.5) we obtain the MLE of α as a function of λ,

α̂ =
n∑n

i=1 log

(
e
λ
xi +1

e
λ
xi −1

) .(5.6)
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The MLE of λ is the root of the following equation

n∑n
i=1 log

(
e
λ
xi +1

e
λ
xi −1

) n∑
i=1

2e
λ
xi

xi
(
e

2λ
xi − 1

) − n∑
i=1

2e
2λ
xi

xi
(
e

2λ
xi − 1

) +

n∑
i=1

1

xi
+
n

λ
= 0.

(5.7)

The IME of α is obtained as a function of λ,

α̂ =
n∑n

i=1 log

(
e
λ
xi +1

e
λ
xi −1

) .(5.8)

which is identical to the MLE of α. The inverse estimate λ̂IME of λ is the root of the
following equation:

n−1∑
i=1

log[

log

(
1−e
− λ
x(1)

1+e
− λ
x(1)

)
+ log

(
1−e
− λ
x(2)

1+e
− λ
x(2)

)
+ · · ·+ log

(
1−e
− λ
x(n)

1+e
− λ
x(n)

)

log

(
1−e
− λ
x(1)

1+e
− λ
x(1)

)
+ · · ·+ log

(
1−e
− λ
x(i−1)

1+e
− λ
x(i−1)

)
+ (n− i+ 1) log

(
1−e
− λ
x(i)

1+e
− λ
x(i)

) ]

= n− 1.

(5.9)

The modi�ed inverse estimate λ̂MIME of λ is the root of the following equation:

n−1∑
i=1

log[

log

(
1−e
− λ
x(1)

1+e
− λ
x(1)

)
+ log

(
1−e
− λ
x(2)

1+e
− λ
x(2)

)
+ · · ·+ log

(
1−e
− λ
x(n)

1+e
− λ
x(n)

)

log

(
1−e
− λ
x(1)

1+e
− λ
x(1)

)
+ · · ·+ log

(
1−e
− λ
x(i−1)

1+e
− λ
x(i−1)

)
+ (n− i+ 1) log

(
1−e
− λ
x(i)

1+e
− λ
x(i)

) ]

= n− 2.

(5.10)

For G(x) = 1−e−x
1+e−x , x > 0, it is easy to verify that the conditions (3.9) are satis�ed.

The proposed estimators exist and are unique.
Based on method 1, the 100(1− γ)% joint con�dence region for the parameters (λ, α)

is determined by the following inequalities:
λL ≤ λ ≤ λU

χ2
1−
√

1−γ
2

(2n)

−2
∑n
i=1 log

 1−e
− λ
x(i)

1+e

− λ
x(i)


≤ α ≤

χ2
1+
√

1−γ
2

(2n)

−2
∑n
i=1 log

 1−e
− λ
x(i)

1+e

− λ
x(i)


,(5.11)

where λL is the root of λ for the equation T1 = F 1−
√

1−γ
2

(2n − 2, 2) and λU is the root

of λ for the equation T1 = F 1+
√

1−γ
2

(2n− 2, 2). Here

T1 = 1
n−1

log

 1−e
− λ
x(1)

1+e

− λ
x(1)

+··· log

 1−e
− λ
x(n)

1+e

− λ
x(n)

−n log

 1−e
− λ
x(1)

1+e

− λ
x(1)


n log

 1−e
− λ
x(1)

1+e

− λ
x(1)


.
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Based on method 2, the 100(1− γ)% joint con�dence region for the parameters (λ, α)
is determined by the following inequalities:

λ∗L ≤ λ ≤ λ∗U
χ2

1−
√

1−γ
2

(2n)

−2
∑n
i=1 log

 1−e
− λ
x(i)

1+e

− λ
x(i)


≤ α ≤

χ2
1+
√

1−γ
2

(2n)

−2
∑n
i=1 log

 1−e
− λ
x(i)

1+e

− λ
x(i)


.(5.12)

where λ∗L is the root of λ for the equation T3 = χ2
1−
√

1−γ
2

(2n − 2) and λ∗U is the root of

λ for the equation T3 = χ2
1+
√

1−γ
2

(2n− 2). Here

T3 = 2
∑n−1
i=1 log


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1+e

− λ
x(1)
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1+e

− λ
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

 .

5.1. Comparison of the three estimation methods. In this section, we conduct
simulations to compare the performances of the MLEs, IMEs and MIMEs mainly with
respect to their biases and mean squared errors (MSE's), for various sample sizes and
true parametric values. R source code for the simulations is available upon request.

The random data X from the GIHD(λ, α) distribution can be generated as follows:

X = −λ/ log
(

1−U1/α

1+U1/α

)
, where U follows uniform distribution over [0, 1]. We obtain

λ̂MLE by solving equation (5.7) and α̂MLE by (5.6). The λ̂IME and λ̂MIME can be
obtained by solving (5.9) and (5.10) respectively. The α̂IME and α̂MIME can be obtained
from (5.8).

We consider sample sizes n = 30, 40, 50, 60, 80, 100 and α = 2.0, 2.5, 3.0, 3.5, 4.0. We
take the scale parameter λ = 1 in all our computations without loss of generality. For
each combination of sample size n and parameter α, we generate a sample of size n
from GIHD(λ = 1, α), and estimate the parameters λ and α by the MLE, IME, MIME

methods. The average values of α̂/α and λ̂/1 = λ̂ as well as the corresponding MSEs
over 1000 replications are computed and reported.

For di�erent cases, Table 1 reports the average values of α̂/α and the corresponding
MSE is reported within parenthesis. Figure 1a, 1b 1c and 1d show the relative biases
and the MSEs of the three estimators of α for sample sizes n = 40 and n = 80. Figure
1e and 1f show the relative biases and the MSEs of the three estimators of α for α = 3.0.
The other cases are similar.

For di�erent cases, Table 2 reports the average values of λ̂/λ = λ̂ and the correspond-
ing MSE is reported within parenthesis. Figure 2a, 2b 2c and 2d show the relative biases
and the MSEs of the three estimators of λ for sample sizes n = 40 and n = 80. Figure
2e and 2f show the relative biases and the MSEs of the three estimators of λ for α = 3.0.
The other cases are similar.

From Table 1 and 2, we �nd that

• The average biases and relative MSEs of α̂/α increase as α goes up. The average

biases and relative MSEs of λ̂ decrease as α goes up.
• Considering only MSE's, the estimation of α′s are more accurate for smaller
values.

• The average relative biases and MSEs for the three methods decrease as sample
size n increases as expected. The asymptotic unbiasedness of all the estimators
are veri�ed.
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Table 1. Average relative estimates and MSEs of α

n Methods α = 2.0 α = 2.5 α = 3.0 α = 3.5 α = 4.0

30
MLE 1.1388 ( 0.1374 ) 1.1386 ( 0.1750 ) 1.1565 ( 0.2045 ) 1.1689 ( 0.2303 ) 1.1897 ( 0.2769 )
IME 1.1066 ( 0.1182 ) 1.1027 ( 0.1506 ) 1.1157 ( 0.1710 ) 1.1236 ( 0.1930 ) 1.1405 ( 0.2288 )
MIME 1.0626 ( 0.0985 ) 1.0542 ( 0.1250 ) 1.0624 ( 0.1399 ) 1.0661 ( 0.1562 ) 1.0783 ( 0.1830 )

40
MLE 1.0954 ( 0.1025 ) 1.0950 ( 0.0960 ) 1.1164 ( 0.1251 ) 1.1274 ( 0.1370 ) 1.1336 ( 0.1504 )
IME 1.0722 ( 0.0914 ) 1.0696 ( 0.0849 ) 1.0889 ( 0.1112 ) 1.0957 ( 0.1221 ) 1.0978 ( 0.1281 )
MIME 1.0410 ( 0.0804 ) 1.0354 ( 0.0739 ) 1.0508 ( 0.0953 ) 1.0546 ( 0.1040 ) 1.0542 ( 0.1082 )

50
MLE 1.0640 ( 0.0606 ) 1.0899 ( 0.0933 ) 1.0902 ( 0.0882 ) 1.0955 ( 0.1050 ) 1.1065 ( 0.1295 )
IME 1.0466 ( 0.0555 ) 1.0696 ( 0.0847 ) 1.0692 ( 0.0807 ) 1.0708 ( 0.0955 ) 1.0798 ( 0.1173 )
MIME 1.0228 ( 0.0503 ) 1.0423 ( 0.0756 ) 1.0398 ( 0.0716 ) 1.0392 ( 0.0844 ) 1.0459 ( 0.1029 )

60
MLE 1.0661 ( 0.0520 ) 1.0728 ( 0.0599 ) 1.0758 ( 0.0727 ) 1.0897 ( 0.0871 ) 1.0624 ( 0.0672 )
IME 1.0516 ( 0.0480 ) 1.0553 ( 0.0549 ) 1.0574 ( 0.0669 ) 1.0674 ( 0.0783 ) 1.0427 ( 0.0623 )
MIME 1.0317 ( 0.0438 ) 1.0332 ( 0.0498 ) 1.0334 ( 0.0605 ) 1.0413 ( 0.0703 ) 1.0161 ( 0.0564 )

80
MLE 1.0385 ( 0.0341 ) 1.0474 ( 0.0391 ) 1.0634 ( 0.0506 ) 1.0689 ( 0.0556 ) 1.0544 ( 0.0545 )
IME 1.0283 ( 0.0325 ) 1.0353 ( 0.0370 ) 1.0504 ( 0.0476 ) 1.0547 ( 0.0523 ) 1.0398 ( 0.0517 )
MIME 1.0140 ( 0.0306 ) 1.0193 ( 0.0345 ) 1.0327 ( 0.0440 ) 1.0357 ( 0.0480 ) 1.0200 ( 0.0479 )

100
MLE 1.0349 ( 0.0287 ) 1.035 ( 0.0298 ) 1.0393 ( 0.0337 ) 1.0445 ( 0.0376 ) 1.0457 ( 0.0421 )
IME 1.0268 ( 0.0273 ) 1.0262 ( 0.0287 ) 1.0286 ( 0.0323 ) 1.0335 ( 0.0360 ) 1.0333 ( 0.0400 )
MIME 1.0155 ( 0.0260 ) 1.0136 ( 0.0273 ) 1.0149 ( 0.0305 ) 1.0187 ( 0.0338 ) 1.0177 ( 0.0376 )

Table 2. Average relative estimates and MSEs of λ

n Methods α = 2.0 α = 2.5 α = 3.0 α = 3.5 α = 4.0

30
MLE 1.0529 ( 0.0362 ) 1.0394 ( 0.0299 ) 1.0463 ( 0.0331 ) 1.0490 ( 0.0300 ) 1.0484 ( 0.0317 )
IME 1.0303 ( 0.0330 ) 1.0170 ( 0.0273 ) 1.0234 ( 0.0299 ) 1.0261 ( 0.0269 ) 1.0271 ( 0.0293 )
MIME 0.9981 ( 0.0305 ) 0.9861 ( 0.0259 ) 0.9929 ( 0.0280 ) 0.9959 ( 0.0249 ) 0.9973 ( 0.0272 )

40
MLE 1.0403 ( 0.0224 ) 1.0367 ( 0.0235 ) 1.0391 ( 0.0232 ) 1.0378 ( 0.0223 ) 1.0234 ( 0.0205 )
IME 1.0237 ( 0.0205 ) 1.0205 ( 0.0221 ) 1.0226 ( 0.0218 ) 1.0208 ( 0.0203 ) 1.0075 ( 0.0195 )
MIME 0.9999 ( 0.0192 ) 0.9975 ( 0.0209 ) 1.0000 ( 0.0205 ) 0.9985 ( 0.0192 ) 0.9857 ( 0.0189 )

50
MLE 1.0291 ( 0.0210 ) 1.0362 ( 0.0185 ) 1.0305 ( 0.0180 ) 1.0307 ( 0.0165 ) 1.0293 ( 0.0184 )
IME 1.0158 ( 0.0198 ) 1.0232 ( 0.0174 ) 1.0170 ( 0.0171 ) 1.0180 ( 0.0156 ) 1.0156 ( 0.0172 )
MIME 0.9969 ( 0.0190 ) 1.0048 ( 0.0164 ) 0.9991 ( 0.0164 ) 1.0004 ( 0.0149 ) 0.9981 ( 0.0165 )

60
MLE 1.0255 ( 0.0162 ) 1.0326 ( 0.0167 ) 1.0227 ( 0.0131 ) 1.0211 ( 0.0133 ) 1.0268 ( 0.0137 )
IME 1.0150 ( 0.0156 ) 1.0220 ( 0.0158 ) 1.0119 ( 0.0126 ) 1.0096 ( 0.0127 ) 1.0156 ( 0.0131 )
MIME 0.9994 ( 0.0150 ) 1.0068 ( 0.0150 ) 0.9971 ( 0.0121 ) 0.9950 ( 0.0123 ) 1.0012 ( 0.0125 )

80
MLE 1.0152 ( 0.0122 ) 1.0122 ( 0.0105 ) 1.0192 ( 0.0103 ) 1.0179 ( 0.0102 ) 1.0110 ( 0.0089 )
IME 1.0067 ( 0.0118 ) 1.0034 ( 0.0100 ) 1.0109 ( 0.0099 ) 1.0091 ( 0.0098 ) 1.0034 ( 0.0087 )
MIME 0.9951 ( 0.0116 ) 0.9922 ( 0.0099 ) 0.9999 ( 0.0096 ) 0.9982 ( 0.0095 ) 0.9928 ( 0.0086 )

100
MLE 1.0150 ( 0.0092 ) 1.0128 ( 0.0083 ) 1.0126 ( 0.0070 ) 1.0190 ( 0.008 ) 1.0102 ( 0.0075 )
IME 1.0087 ( 0.0090 ) 1.0064 ( 0.0081 ) 1.0062 ( 0.0068 ) 1.0127 ( 0.0078 ) 1.0034 ( 0.0074 )
MIME 0.9995 ( 0.0087 ) 0.9975 ( 0.0079 ) 0.9974 ( 0.0067 ) 1.0040 ( 0.0075 ) 0.9948 ( 0.0073 )

• MLE and IME overestimate both of the two parameters α and λ. MIME over-
estimates only α.
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Figure 1. Average relative biases and MSEs of α.

As far as the biases and MSEs are concerned, MIME works the best in all the cases
considered for estimating the two parameters. Its performance is followed by IME and
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Figure 2. Average relative biases and MSEs of λ.

MLE, especially for small sample sizes. The three methods are close for larger sam-
ple sizes. Considering all the points, MIME is recommended for estimating both the
parameters of the GIHD(λ, α) distribution.
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Table 3. Average relative estimates and MSEs of α and λ when α = 2.0

n Methods λ = 1.0 λ = 1.2 λ = 1.5 λ = 1.8 λ = 2.0

Average relative estimates and MSEs of α

60
MLE 1.0664 ( 0.0541 ) 1.0644 ( 0.0486 ) 1.0597 ( 0.0482 ) 1.055 ( 0.0519 ) 1.0639 ( 0.0508 )
IME 1.0526 ( 0.0505 ) 1.0503 ( 0.0452 ) 1.0454 ( 0.0446 ) 1.041 ( 0.0487 ) 1.0495 ( 0.0473 )
MIME 1.0327 ( 0.0462 ) 1.0305 ( 0.0412 ) 1.0257 ( 0.0409 ) 1.0214 ( 0.0449 ) 1.0296 ( 0.0433 )

80
MLE 1.0511 ( 0.0384 ) 1.0446 ( 0.0366 ) 1.0437 ( 0.0311 ) 1.042 ( 0.0362 ) 1.0431 ( 0.0351 )
IME 1.0404 ( 0.0363 ) 1.0344 ( 0.0347 ) 1.0333 ( 0.0295 ) 1.0316 ( 0.0344 ) 1.0326 ( 0.0335 )
MIME 1.0258 ( 0.0339 ) 1.0200 ( 0.0325 ) 1.0189 ( 0.0276 ) 1.0172 ( 0.0324 ) 1.0181 ( 0.0314 )

100
MLE 1.0379 ( 0.0280 ) 1.0355 ( 0.0281 ) 1.0251 ( 0.0256 ) 1.0373 ( 0.0279 ) 1.0247 ( 0.0263 )
IME 1.0296 ( 0.0267 ) 1.0270 ( 0.0267 ) 1.0175 ( 0.0247 ) 1.0292 ( 0.0268 ) 1.0165 ( 0.0251 )
MIME 1.0182 ( 0.0253 ) 1.0156 ( 0.0253 ) 1.0062 ( 0.0237 ) 1.0178 ( 0.0255 ) 1.0053 ( 0.0241 )

Average relative estimates and MSEs of λ

60
MLE 1.0197 ( 0.0125 ) 1.029 ( 0.0137 ) 1.0203 ( 0.0132 ) 1.0178 ( 0.0122 ) 1.019 ( 0.0131 )
IME 1.0106 ( 0.012 ) 1.0201 ( 0.0131 ) 1.0109 ( 0.0127 ) 1.0089 ( 0.0119 ) 1.0100 ( 0.0125 )
MIME 0.9973 ( 0.0117 ) 1.0067 ( 0.0125 ) 0.9975 ( 0.0124 ) 0.9956 ( 0.0116 ) 0.9966 ( 0.0122 )

80
MLE 1.0202 ( 0.0114 ) 1.0272 ( 0.0129 ) 1.0198 ( 0.0125 ) 1.0142 ( 0.0117 ) 1.0175 ( 0.0101 )
IME 1.0119 ( 0.0109 ) 1.0191 ( 0.0123 ) 1.0118 ( 0.0121 ) 1.0063 ( 0.0114 ) 1.0095 ( 0.0098 )
MIME 1.0003 ( 0.0106 ) 1.0074 ( 0.0117 ) 1.0001 ( 0.0118 ) 0.9947 ( 0.0112 ) 0.9978 ( 0.0095 )

100
MLE 1.0154 ( 0.0087 ) 1.0182 ( 0.0088 ) 1.011 ( 0.0086 ) 1.018 ( 0.0083 ) 1.0079 ( 0.0079 )
IME 1.0089 ( 0.0085 ) 1.0115 ( 0.0084 ) 1.0046 ( 0.0084 ) 1.0115 ( 0.008 ) 1.0015 ( 0.0078 )
MIME 0.9996 ( 0.0083 ) 1.0022 ( 0.0082 ) 0.9953 ( 0.0083 ) 1.0022 ( 0.0078 ) 0.9923 ( 0.0078 )

In addition, we �x the shape parameter α = 2.0. We consider sample sizes n =
60, 80, 100 and λ = 1.0, 1.2, 1.5, 1.8, 2.0. For each combination of sample size n and pa-
rameter λ, we generate a sample of size n from GIHD(λ, α = 2.0), and estimate the
parameters λ and α by the MLE, IME, MIME methods. The average values of α̂/2.0

and λ̂/λ = λ̂ as well as the corresponding MSEs over 1000 replications are computed and
reported.

For di�erent cases, Table 3 reports the average values and the corresponding MSE is
reported within parenthesis. We �nd that

• The average biases and relative MSEs of α̂/α and λ̂ remain unchanged as λ goes
up.

• The average relative biases and MSEs for the three methods decrease as sample
size n increases as expected. The asymptotic unbiasedness of all the estimators
are veri�ed.

• MLE and IME overestimate both of the two parameters α and λ. MIME over-
estimates only α.

5.2. Comparison of the two joint con�dence regions. In this section, we conduct
simulations to compare the two methods to construct the con�dence joint regions of the
two parameters λ and α.

First, we assess the precisions of the two methods of interval estimators for the param-
eter λ. We take sample sizes n = 30, 40, 50, 60, 80, 100 and α = 2.0, 2.5, 3.0, 3.5, 4.0. We
take λ = 1 in all our computations. For each combination of sample size n and parameter
α, we generate a sample of size n from GIHD(λ = 1, α), and estimate the parameters λ
by the two proposed methods (5.11) and (5.12).
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Table 4. Results of the methods for constructing intervals for λ with
con�dence level 0.95

n Methods α = 2.0 α = 2.5 α = 3.0 α = 3.5 α = 4.0

30

(1)
Mean width 1.244 1.2272 1.2189 1.2051 1.1919
Coverage rate 0.963 0.955 0.961 0.954 0.96

(2)
Mean width 0.6692 0.6511 0.6377 0.6295 0.6242
Coverage rate 0.966 0.956 0.95 0.941 0.954

40

(1)
Mean width 1.154 1.1494 1.1482 1.119 1.1268
Coverage rate 0.949 0.96 0.941 0.949 0.954

(2)
Mean width 0.5782 0.5616 0.5478 0.5397 0.5394
Coverage rate 0.951 0.949 0.958 0.948 0.948

50

(1)
Mean width 1.1029 1.1074 1.0676 1.0795 1.0682
Coverage rate 0.947 0.94 0.958 0.942 0.946

(2)
Mean width 0.517 0.5024 0.4897 0.4847 0.4739
Coverage rate 0.95 0.949 0.952 0.946 0.947

60

(1)
Mean width 1.0462 1.0417 1.0325 1.0329 1.032
Coverage rate 0.951 0.954 0.954 0.947 0.955

(2)
Mean width 0.4678 0.4545 0.444 0.4399 0.4336
Coverage rate 0.951 0.956 0.946 0.944 0.952

80

(1)
Mean width 0.9919 0.9759 0.9663 0.9692 0.9582
Coverage rate 0.943 0.947 0.965 0.96 0.954

(2)
Mean width 0.4047 0.3901 0.3828 0.3774 0.3733
Coverage rate 0.948 0.944 0.959 0.948 0.952

100

(1)
Mean width 0.954 0.9399 0.9381 0.9305 0.929
Coverage rate 0.95 0.951 0.943 0.943 0.948

(2)
Mean width 0.3603 0.3492 0.3427 0.336 0.3338
Coverage rate 0.958 0.956 0.941 0.939 0.946

The mean widths as well as the coverage rates over 1000 replications are computed
and reported. Here the coverage rate is de�ned as the rate of the con�dence intervals
that contain the true value λ = 1 among these 1,000 con�dence intervals. The results
are reported in Table 4.

It is observed that:

• The mean widths of the intervals decrease as sample sizes n increase as expected.
• The mean widths of the intervals decrease as the parameter α increases.
• The coverage rates of the two methods are close to the nominal level 0.95.

Considering the mean widths, the interval estimate of λ obtained in method 2 performs
better than that obtained in method 1. Method 2 for constructing the interval estimate
of λ is recommended.

Second, we consider the two joint con�dence regions and the empirical coverage rates
and expected areas. The results of the methods for constructing joint con�dence regions
for (λ, α) with con�dence level γ = 0.95 are reported in Table 5. It shows that
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Table 5. Results of the methods for constructing joint con�dence re-
gions for (λ, α) with con�dence level γ = 0.95.

n Methods α = 2.0 α = 2.5 α = 3.0 α = 3.5 α = 4.0

30

(1)
Mean area 4.4386 6.1655 8.1152 10.4965 13.6872

Coverage rate 0.94 0.947 0.953 0.961 0.948

(2)
Mean area 1.5284 1.8815 2.2449 2.6492 3.1533

Coverage rate 0.948 0.932 0.947 0.943 0.95

40

(1)
Mean area 3.2269 4.4034 5.6075 7.1126 8.7009

Coverage rate 0.942 0.948 0.945 0.956 0.95

(2)
Mean area 1.0639 1.3254 1.5224 1.8016 2.0885

Coverage rate 0.945 0.945 0.945 0.949 0.95

50

(1)
Mean area 2.5839 3.4272 4.482 5.4883 6.8003

Coverage rate 0.957 0.954 0.954 0.954 0.962

(2)
Mean area 0.8351 0.995 1.2057 1.3713 1.6237

Coverage rate 0.944 0.961 0.948 0.95 0.958

60

(1)
Mean area 2.1611 2.8147 3.6691 4.6292 5.7979

Coverage rate 0.948 0.955 0.937 0.95 0.952

(2)
Mean area 0.6661 0.7938 0.9727 1.1323 1.3009

Coverage rate 0.95 0.949 0.927 0.96 0.958

80

(1)
Mean area 1.6647 2.2265 2.9026 3.5014 4.3953

Coverage rate 0.952 0.956 0.948 0.954 0.946

(2)
Mean area 0.487 0.5913 0.7123 0.8195 0.9451

Coverage rate 0.956 0.948 0.944 0.951 0.953

100

(1)
Mean area 1.3895 1.8321 2.3926 2.9028 3.5519

Coverage rate 0.955 0.947 0.949 0.951 0.938

(2)
Mean area 0.3867 0.4662 0.5571 0.6382 0.7336

Coverage rate 0.947 0.939 0.954 0.956 0.941

• The mean areas of the joint regions decrease as sample sizes n increase as ex-
pected.

• The mean areas of the joint regions increase as the parameter α increases.
• The coverage rates of the two methods are close to the nominal level 0.95.

Considering the mean areas, the joint region of (λ, α) obtained in method 2 performs
better than that obtained in method 1. Method 2 is recommended.

6. Real illustrative example

In this section, We consider a real dataset. This dataset from [9] contains 30 successive
values for precipitation (in inches) in March for the Minneapolis/St. Paul area over a
30-year period. The observed values are as follows:

0.77 , 1.74 , 0.81 , 1.20 , 1.95 , 1.20 , 0.47 , 1.43 , 3.37 , 2.20 , 3.00 , 3.09 , 1.51 , 2.10
, 0.52 , 1.62 , 1.31 , 0.32 , 0.59 , 0.81 , 2.81 , 1.87 , 1.18 , 1.35 , 4.75 , 2.48 , 0.96 , 1.89 ,
0.90 , 2.05.
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This dataset has been previously analyzed by [16] etc. Here we �t the dataset with

generalized inverted half-logistic distribution. The MLEs of the parameters are λ̂MLE =
2.4410 and α̂MLE = 2.2225 with log-likelihood value−40.5046. The Kolmogorov-Smirnov
distance and its corresponding p−value are D = 0.1333 and p = 0.9525, respectively.
GIHD �ts the data well.

The inverse moment and modi�ed inverse moment estimates are given as follows:

λ̂IME = 2.3344, α̂IME = 2.0983, λ̂MIME = 2.2577, α̂MIME = 2.0120.

Based on method 2, the 95% joint con�dence region for the parameters (λ, α) is
determined by the following inequalities:

1.4791 ≤ λ ≤ 3.3142
−19.1026

∑30
i=1 log

 1−e
− λ
x(i)

1+e

− λ
x(i)


≤ α ≤ −43.5574

∑30
i=1 log

 1−e
− λ
x(i)

1+e

− λ
x(i)


.

Figure 3 show the 95% joint con�dence regions of (λ, α) based on method 2.
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Figure 3. The 95% joint con�dence region of (λ, α).
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