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Robust X̄ control chart for monitoring the skewed
and contaminated process
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Abstract

In this paper, we propose the modi�ed Shewhart, the modi�ed weighted
variance and the modi�ed skewness correction methods by using
trimmed mean and interquartile range estimators to construct the con-
trol limits of robust X̄ control chart for monitoring the skewed and
contaminated process. A comparison between the performances of the
X̄ chart for monitoring the process mean based on these three modi�ed
models is made in terms of the Type I risk probabilities and the average
run length values for the various levels of skewness as well as di�erent
contamination models.
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1. Introduction

Control charts are among the most commonly used and powerful tools in statistical
process control (1) to learn about a process, (2) to monitor a process for control and (3)
to improve it sequentially. They are now widely accepted and applied in industry. The
conventional Shewhart X̄ and R control charts are based on the assumption that the
distribution of the quality characteristic (also called process distribution) is normal or
approximately normal. However, in many situations the normality assumption of process
population is not valid. One case is that the distribution is skewed [3], [6] and [13].
For instance, the distributions of measurements in chemical processes, semiconductor
processes, cutting tool wear processes and observations on lifetimes in accelerated life
test samples are often skewed[10].

The X̄ and R control charts are widely applied technique for monitoring the pro-
cess. Control charts can be applied in a two-stages when the parameters of a quality
characteristic of the process are unknown. In Phase I, control charts are used to study
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a historical data set and determine the samples that are out of control. Based on the
resulting reference sample, the process parameters are estimated and control limits are
calculated for Phase II. Control charts are used for real-time process monitoring in Phase
II [15].

To deal with non normal underlying distributions, three methods using asymmetric
control limits were proposed as alternatives to the Shewhart method. The Weighted
Variance (WV ) method proposed by [6], the Weighted Standard Deviations (WSD)
proposed by [7] and the Skewness Correction (SC) method proposed by [5] take into
consideration the skewness of the process distribution for constructing X̄ and R charts.
Moreover, [4] proposed a synthetic Scaled WV (SWV) control chart for monitoring the
mean of skewed populations. The Scaled Weighted Variance method has been proven to
be more e�cient than the WV one [4]. Some of the other works on control charts for
contaminated populations are made by: [20] considered robust estimators to obtain the
control limits for X̄ charts. Via simulation, they studied the seven di�erent estimators of
σ, one of which was based on absolute deviations from the mean, and three others were
based on deviations from the median. [14] studied design schemes for the X̄ control chart
under non-normality. Di�erent estimators of standard deviation were considered and the
e�ect of the estimator on the performance of the control chart under non-normality was
investigated. [1] presented a simple approach to robust estimation of the process standard
deviation σ based on a very robust scale estimator, namely, the median absolute deviation
from the sample median (MAD). The proposed method provides an alternative to the
Shewhart S control chart.

[17] considered the interquartile range and the 25% trimmed mean of the interquartile
ranges. [17] gave the practical details for the construction of the charts based on these
estimators. [15] and [16] studied several estimators used to construct the standard devia-
tion Phase II control chart. They found that Tatum's estimator is robust against di�use
disturbances but less robust against shifts in the process standard deviation in Phase I.

[16] studied alternative standard deviation estimators that serve as a basis to deter-
mine the X̄ control chart limits used for real-time process monitoring (Phase II). Several
robust estimation methods were considered. In addition, they proposed a new estima-
tion method based on a Phase I analysis, that is, the use of a control chart to identify
disturbances in a data set retrospectively. The method constructs a Phase I control
chart derived from the trimmed mean of the sample interquartile ranges, which is used
to identify out-of-control data.

In this paper, we propose the modi�ed Shewhart (MS), the modi�ed weighted vari-
ance (MWV ) and the modi�ed skewness correction (MSC) methods to construct the
limits of X̄ control chart for monitoring skewed and contaminated process . One contri-
bution of this paper is to replace the overall mean by a trimmed mean and the estimator
of the standard deviation based on the ranges by the interquartile ranges. For this new
situations coe�cients for establishing the control limits are given. Control chart con-
stants are simulated for three skewed distributions. Another contribution is to correct
the control limits for skewness. Again two alternatives are considered: one variant based
on the traditional choices; the other based on the robust choices. We study the e�ect of
the estimators on control chart performance under non-normality for moderate sample
sizes. To evaluate the performance of control chart we obtain the Type I risk probabil-
ities (p) and the average run lengths (ARL) of these control charts. The performance
characteristics in the in-control situation can be derived as follows: The desired type I
error probability p is p = 0.0027 and ARL = 370.4. By using Monte Carlo simulation,
the p and the ARL of X̄ control charts are compared with the classic estimators for
the Shewhart, WV and SC methods and the robust estimators for the MS, MWV and
MSC methods.
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This paper is organized as follows. The estimators and modi�ed methods are presented
in Section 2. The e�ect of outliers on the accuracy of the conventional and robust
estimators are evaluated by root mean square errors via simulation in Section 3.1. The
control chart constants for each method are obtained in Section 3.2. The next Section
3.3 presents the simulation study that is given to compare the p and the ARL of X̄
control chart with respect to di�erent subgroup sizes for Weibull, gamma and lognormal
skewed distributions. The results are presented in Section 4 . The study ends up with a
conclusion in Section 5.

2. Skewed distributions, estimators and modi�ed methods

In this section, the modi�ed methods under skewed distributions, given in 2.1, using
classic and robust estimators, given in Section 2.2. The proposed methods to construct
the X̄ control chart are explained in details in Section 2.3.

2.1. Skewed distributions. The Weibull, gamma and lognormal distributions are cho-
sen since they can represent a wide variety of shapes from nearly symmetric to highly
skewed.

• The probability density function of the Weibull distribution is de�ned as

f(x|β, λ) = βλβxβ−1 exp(−xλ)β

for x > 0, where β is shape parameter and λ is a scale parameter.
• The probability density function of the gamma distribution is de�ned as

f(x|α, β) =
1

Γ(α)βα
xα−1 exp(−x

β
)

for x > 0, where α is a shape parameter and β is a scale parameter.
• The probability density function of the lognormal distribution is de�ned as

f(x|σ, µ) =
1

xσ
√

2π
exp(− (ln(x)− µ)2

2σ2
)

for x > 0, where σ is a scale parameter and µ is a location parameter.

2.2. Classic and robust estimators. The main advantage of the classic estimator,
is that, it can be regarded as truly representative of the data, since all data values are
taken into account in its calculation, while the main disadvantage, is that, it is non-
robust to slight deviations from normality and can be easily in�uenced by outliers. The
breakdown point of the sample mean for a sample of size n is merely 1/n, that is, it can
be destroyed by even a single outlier. According to Tukey, using the trimmean instead
of the mean or the median gives a more useful assessment of location or centering ([15]).
Robust statistical methods, of which the trimmed mean is a simple example, seek to
outperform classical statistical methods in the presence of outliers, or, more generally,
when underlying parametric assumptions are not quite correct.

In this paper, we will restrict attention to estimator that have an explicit formula,
being easily computable, needs little computation time and have robustness properties
that are high breakdown point and a bounded in�uence function.

In practice, the process parameters µ and σ are usually unknown. They must therefore
be estimated from samples taken when the process is assumed to be in control (i.e.,
in Phase I). The resulting estimates are used to monitor the location of the process
in Phase II. We de�ne µ̂ and σ̂ as unbiased estimates of µ and σ, respectively, based
on k. Phase I samples of size n, which are denoted by Xij , i = 1, 2, ..., k. The �rst

location estimator that we consider is the mean of the sample means, ¯̄X = 1
k

∑k
i=1 X̄i =
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1
k

∑k
i=1( 1

n

∑n
j=1 Xij) where i = 1, 2, ..., k and j = 1, 2, ..., n. We assume that Xij are

independent and that their distribution is skewed. This is the most e�cient estimator
for normally distributed data, but it is well known that it is not robust against outliers.
Therefore, we also consider the mean of the sample trimmed means. Let Xi1...Xin
represent observations on a variable from ith random sample. We start by ordering the
values of Xij from lowest to highest for each sample, and determining the desired amount
of trimming,0 = α < 0, 5 the mean is then calculated for all observations of each samples
except the g smallest and largest observations g = nα

2
, where nα

2
is rounded to the

nearest integer. The formula for the trimmed mean can be written as

(2.1) ¯TMα =
1

k

k∑
i=1

¯TMvi

where TM(vi) denotes the vth ordered value of the sample trimmed means de�ned by

(2.2) ¯TMvi =
1

n− 2dnαe

 n−dnαe∑
j=dnαe+1

X(ij)


where α denotes the percentage of samples to be trimmed, dnαe denotes the ceiling
function, i.e., the smallest integer not less than nα. We consider the 20% trimmed mean,
which trims the three smallest and the three largest sample trimmed means when k=30.

The higher the breakdown point (bdp) of an estimator, the more robust it is. The bdp
cannot exceed 50% because if more than half of the observations are contaminated, it is
not possible to distinguish between the underlying distribution and the contaminating
distribution. Therefore, the maximum bdp is 0.5 and there are estimators which achieve
such a bdp. A relatively robust measure of center is the trimmed mean, which reduces
the impact of outliers or heavy tails by removing the observations at the tails of the
distribution. The bdp of the trimmed mean is determined by the amount of trimming,
and thus is bdp = α. For more details, see [9] and [11].

The amount of trimming also determines the in�uence function. While the in�uence
function of the mean is unbounded, the in�uence function for the trimmed mean is
bounded. Its in�uence function can be written as

(2.3) IFTα(X) =



Xα−µ̂t
1−2α

forX < Xα

Xα−µ̂t
1−2α

forXα < X < X1−α

X(1−α)−µ̂t
1−2α

forX > X1−α

where µ̂t is the trimmed mean (see [19]). The relative e�ciency of the trimmed mean
depends on the distribution. If the distribution is normal and too much trimming is
done, precision will be reduced because it results in greater spread relative to the smaller
n, thus increasing the estimate of the 12 spread of its sampling distribution. On the
other hand, if the distribution has heavy tails and extreme outliers, trimming can result
in improved e�ciency because the variance of X and hence the estimated variance of the
sampling distribution of its mean is decreased.

The �rst scale estimator is the mean of the sample range
R̄ = 1

k

∑k
i=1 Ri where Ri is the range of the ith sample. An unbiased estimator of σ

is R̄/d2(n). We also consider the mean of the sample interquartile ranges since the mean
of the sample range not robust against outliers. The mean of the sample interquartile
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ranges (IQRs) is de�ned by

(2.4) ¯IQR =
1

k

k∑
i=1

IQRi

where IQRi is the interquartile range of sample i: IQRi = Q75,i − Q25,i; Qr,i is the
rth percentile of the values in sample i. Q75 and Q25 are found by solving the following
integrals

(2.5) Q75 =

∫ Q3

−∞
f(x)dx and Q25 =

∫ Q1

−∞
f(x)dx

The function f(x) is continuous over the support of X that satis�es the two properties,
f(x) ≥ 0 and

∫∞
−∞ f(x)dx = 1. The IQR for Weibull, gamma and lognormal distributions

are obtained by taking di�erence between the quantiles in 2.5 after some integration
calculations by [18] and are given respectively

IQRweib =

[
− 1/β ln(0.25)

]1/λ

−
[
− 1/β ln(0.75)

]1/λ

= 1/β1/λln(4)1/λ − ln(4/3)1/λ

IQRgamma =

α−1∑
x=0

Q1/β
x exp(−Q1/β)

x!
−
α−1∑
x=0

Q3/β
x exp(−Q3/β)

x!

IQRlogn = exp (µ)

[
exp(0.6745σ)− exp(−0.6745σ)

]
where σ > 0 by [18].

The IQR is a set of bounded in�uence measures of scale that can have a very high
breakdown point. The di�erence between the .25 and .75 quantiles produces the IQR,
which, with a bdp = 0.25, is the most robust and thus most commonly used of the quantile
ranges [19]. The in�uence function for the IQR is given by the in�uence function at the
third quartile minus the in�uence function at the �rst quartile

(2.6) IFIQR(X) =


1

f(x0.25)
− C ifX < X0.25orX > X0.75

−C ifX0.25 ≤ X ≤ X0.75

where C = q( 1
f(x0.25)

+ 1
f(x0.75)

) , here q is the quantile of the distribution. IQR has the

high bdp and bounded in�uence function which are are desirable properties.

Theorem 1. The probability distribution function for interquartile range is

fY (y) =

∫ b−y

a

f(Y,Z)(y, z)dz

=

∫ b−y

a

n!

(n
4
− 1)!( 3n

4
− n

4
− 1)!(n− 3n

4
)!

∗ (F (z))
n
4
−1(F (y + z)− F (z))

3n
4
−n

4
−1(1− (F (y + z))n−

3n
4 f(z)f(y + z)dz.(2.7)
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Proof 1. Given a random sample, X1, ...Xn, the sample order statistics X(1) < .. <
X(m) < ...X(k) < ... < X(n) are the sample values placed in ascending order,

X(1) = min
1≤i≤n

(Xi),

X(m) = the �rst quantile Xn
4
,

X(k) = the third quantile X 3n
4
,

X(n) = max
1≤i≤n

(Xi).

The event A =

{
Xm ≤ x1, Xk ≤ X2

}
is a union of some disjoint events

am,k,n−m−k =

{
m elements of the sample fall into (−∞, x1] ,

kelements fall into interval (x1, x2] , and

(n−m− k)elements lie to the right ofx2

}

To construct A one has to take all am,k,n−m−k such that r ≤ m ≤ n, j ≥ 0 and s ≤
m+ n ≤ n [2].

The joint distribution of two order statistics Xm and Xk is given by [2] as following:

fXm,Yk (x1, x2) =
n!

(m− 1)!(m− k − 1)!(n− k)!

∗ (F (x1))m−1(F (x2)− F (x1))m−k−1(1− (F (x2))n−kf(x1)f(x2).(2.8)

Hence the distribution function of two order statistics Xm and Xk is given by [2] as
following:

(2.9) FXm,Xk (x1, x2) =

n∑
m=r

n−m∑
k=max{0,s−m}

P{Am,k,n−m−k}

where P{Am,k,n−m−k} = n!
m!k!(n−m−k)!

(F (x1))m(F (x2)− F (x1))k(1− F (x2))n−m−k. To

�nd the distribution of the IQR: Let Y = X 3n
4
− Xn

4
and Z = Xn

4
. Xn

4
= Z and

X 3n
4

= Y +Z. The Jacobian matrix J, J = df
dx

=

∣∣∣∣ 0 1
1 1

∣∣∣∣ and the jacobian determinant

is |J| = 1 and so f(Y,Z)(y, z) = f(Yn
4
,Y 3n

4
)(z, y + z) |J | . By using Eq: 2.8

f(Y,Z)(y, z) =
n!

(n
4
− 1)!( 3n

4
− n

4
− 1)!(n− 3n

4
)!

∗ (F (z))
n
4
−1(F (y + z)− F (z))

3n
4
−n

4
−1(1− (F (y + z))n−

3n
4 f(z)f(y + z)(2.10)

We have f(Y,Z)(y, z) distribution function. So we can �nd the probability distribution

function for the IQR Y = X 3n
4
− Xn

4
by using fY (y) =

∫max(z)

min(z)
f(Y,Z)(y, z)dz. Since

a < Xn
4
< X 3n

4
< b,and a < z < y + z < b =⇒ a < z < b− y.

The probability distribution function for IQR is obtained as following:
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fY (y) =

∫ b−y

a

f(Y,Z)(y, z)dz

=

∫ b−y

a

n!

(n
4
− 1)!( 3n

4
− n

4
− 1)!(n− 3n

4
)!

∗ (F (z))
n
4
−1(F (y + z)− F (z))

3n
4
−n

4
−1(1− (F (y + z))n−

3n
4 f(z)f(y + z)dz

In this study we consider Weibull, gamma and lognormal distributions. We can obtain
the distribution of IQR for this three distributions by using their pdf distributions in
Eq: 2.7.

2.3. Modi�ed methods for X̄ control chart. The robust methods are one of the
most commonly used statistical methods when the underlying normality assumption is
violated. These methods o�er useful and viable alternative to the traditional statistical
methods and can provide more accurate results, often yielding greater statistical power
and increased sensitivity and yet still be e�cient if the normal assumption is correct [1].

We propose modi�cations to the Shewhart, weighted variance and skewness correction
methods using simple robust estimators to construct X̄ control chart for skewed and
contaminated process. In this section, we construct the control limits of X̄ control chart
for skewed populations under the MS, MWD and MSC methods. We estimate µx, µR
and PX by using robust estimators. The µx is estimated using the trimmed mean of
the subgroup trimmed means TMα and µR is estimated using the mean of the subgroup
interquartile ranges ¯IQR. The control limits are derived by assuming that the parameters
of the process are unknown.

We �rst consider the Shewhart method proposed by [12]. The control limits of X̄
chart for Shewhart method are given as follows:

UCLX̄Shewhart = ¯̄X +
3

d2
√
n
R̄(2.11)

LCLX̄Shewhart = ¯̄X − 3

d2
√
n
R̄.(2.12)

where d2 is constant that depends on the subgroup size n, and is calculated when the
distribution is normal [12].

The control limits of the X̄ chart for MS method are de�ned as follows:

UCLX̄MS = ¯TMα +
3

dQ2
√
n

¯IQR,(2.13)

LCLX̄MS = ¯TMα −
3

dQ2
√
n

¯IQR(2.14)

where dQ2 is a constant that depends on the subgroup size n, and is calculated when the
distribution is skewed.

The second method investigated is theWV method proposed by [6]. TheWV method
decompose the skewed distribution into two parts at its mean and both parts are consid-
ered symmetric distributions which have the same mean and di�erent standard deviation.
In this method, µx and µR are normally estimated using the grand mean of the subgroup
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means ¯̄X and the mean of the subgroup ranges R̄, respectively. The control limits of X̄
chart for WV method are de�ned by [3] as follows:

(2.15)
UCLX̄WV

= ¯̄X + 3 R̄
d∗2
√
n

√
2P̂x

LCLX̄WV
= ¯̄X − 3 R̄

d∗2
√
n

√
2(1− P̂x)

where d∗2 is the control chart constant for X̄ chart based on WV and PX = P (X ≤ X̄) is
the probability that the quality variable X will be less than or equal to its mean X̄. The
constant d∗2 which is de�ned as the mean of relative range E

(
R
σ

)
has been obtained under

the non-normality assumption. This value can be computed via numerical integration
once the distribution is speci�ed [3].

The control limits of X̄ chart for MWV method are de�ned as follows:

UCLx̄MWV = ¯TMα + 3
¯IQR

dQ2
√
n

√
2P̂Rx(2.16)

LCLx̄MWV = ¯TMα − 3
¯IQR

dQ2
√
n

√
2(1− P̂Rx ).(2.17)

where dQ2 is the control chart constant for X̄ chart based on MWV method. This

constant, de�ned as the mean of interquartile range, dQ2 = E
(
IQR
σ

)
is obtained under

the non-normality assumption as following:

(2.18) dQ2 = E

(
IQR

σ

)
=

∫
RIQR

IQR

σ
fY (y)dy

where RIQR is interval range for IQR and fY (y) is the probability density function of
interquartile range in Eq. 2.7. As seen it is not easy to obtain this constant for each
skewed distribution. Because of the di�culty of numerical integration in Eq. 2.18, this
constant based on classic and robust estimators are obtained via simulation for each
skewed distribution. Eq. 2.17 allows the probability to be estimated from

P̂RX =

∑k
i=1

∑n
j=1 δ

(
¯TMαX −Xij

)
nk

where k and n are the number of samples and the number of observations in a subgroup,
and δ(X) = 1 for X ≥ 0, 0 otherwise.

The last method being considered is the SC method proposed by [5] for constructing
the X̄ and R control charts under skewed distributions. It's asymmetric control limits are
obtained by taking into consideration the degree of skewness estimated from subgroups,
and making no assumptions about distributions. When the distribution is symmetric, X̄
chart is closer to the Shewhart chart.

The control limits of the X̄ chart for SC method are de�ned by [5] as follows:

(2.19)
UCLX̄SC = ¯̄X + (3 + c∗4) R̄

d∗2
√
n

LCLX̄SC = ¯̄X + (−3 + c∗4) R̄
d∗2
√
n

where c∗4 and d∗2 are the control chart constants for the SC method. The constant c∗4 is
obtained as follows:

(2.20) c∗4 =
4
3
k3(X̄)

1 + 0.2k2
3(X̄)

where k3(X̄) is the skewness of the subgroup mean X̄ [5].
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The control limits of the X̄ chart for MSC method are de�ned as follows:

UCLX̄MSC = ¯TMα + (3 + cQ4 )
¯IQR

dQ2
√
n

(2.21)

LCLX̄MSC = ¯TMα + (−3 + cQ4 )
¯IQR

dQ2
√
n

(2.22)

where cQ4 is the control chart constant for theMSC method. The constant cQ4 is obtained
as follows:

(2.23) cQ4 =
4
3
k3(TMα)

1 + 0.2k2
3(TMα)

where k3(TMα) is the skewness of the subgroup trimmed means TMα.
A comparison between the performances of the X̄ control chart for monitoring the

process based on these three modi�ed methods is made in terms of the Type I risk
probabilities and the average run length values.

Let Ei denote the event that the ith sample mean is beyond the limits. Further,

denote by P (Ei| ¯̄X, σ̂) the conditional probability that for given ¯̄X and σ̂, the sample
mean X̄i is beyond the control limits

(2.24) P (Ei| ¯̄X, σ̂) = P (X̄i < LCL or X̄i > UCL)

Given ¯̄X and σ̂, the events Es and Et (s 6= t) are independent. Therefore, the run length

has a geometric distribution with parameter P (Ei| ¯̄X, σ̂). When we take the expectation
over the estimation data Xij we get the unconditional probability of one sample showing
a Type I false alarm

(2.25) P (Ei) = E(P (Ei| ¯̄X, σ̂))

and, similarly, the unconditional average run length (ARL)

(2.26) ARL = E(1/P (Ei| ¯̄X, σ̂)).

These expectations are simulated by generating 10 000 times k data samples of size n,
computing for each data set the conditional value and averaging the conditional values
over the data sets. Note that for the calculation of the control limits in Phase I the
process is considered to be in-control, thus outliers are omitted in this phase [14].

3. Simulation study

We suggest to use robust estimators for the µ and σ coupled with theMS,MWV and
MSC methods for skewed distributions. The Monte Carlo simulation study is considered
in this section: The e�ects of outliers on the classic and robust estimations are evaluated
in terms of their root mean-square errors in Section 3.1. The control chart constants are
obtained for skewed distributions in Section 3.2. The performance of the control chart
is compared using the Type I risk probabilities and average run lengths of these control
charts in Section 3.3 , when the contamination is considered in Phase I and Phase II
procedures.

3.1. E�ect of outliers on estimations. In this section, we evaluate the e�ect of
outliers on the accuracy of the conventional and robust estimators by means of simulation.
(M = 50.000) simulation runs of 30 (k = 30) subgroups each of size n=5,10 are performed
to generate data on skewed distributions. The distributions of the generated data are
fromWeibull, lognormal and gamma distributions with di�erent parameters. The process
dispersion is estimated by both classic and robust methods. We consider four model in
the case of no outliers and outliers like [8],
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• Model 1: The reference distribution parameters are selected with respect to
skewness of distribution given in Table 1.

• Model 2: The case of 10% replacement outliers coming from another Weibull
distribution with a di�erent scale parameter (λ1 = 0.2) and a shape parameter of
(β1 = 02∗β) , another lognormal distribution with a di�erent location parameter
(µ1 = 0.2) and a scale parameter of (σ1 = 2∗σ) and another gamma distribution
with a di�erent shape parameter (α1 = 2α) and a scale parameter of (β1 = 0.2).

• Model 3: A case with 10% replacement outliers from a uniform distribution on
[0, 20].

• Model 4: A more extreme case with 10% of outliers placed at 50.

We thus allow that some observations come from a di�erent skewed population and, in
the last two models, we permit the occurrence of gross errors.

Table 1. The values of the PX , the skewness and the parameters of
distributions

Lognormal Weibull Gamma
k3 σ PX β PX α PX

0.50 0.16 0.53 2.15 0.54 16.00 0.53

1.00 0.32 0.56 1.57 0.57 4.00 0.57

1.50 0.44 0.59 1.20 0.61 1.80 0.60

2.00 0.54 0.61 1.00 0.63 1.00 0.63

2.50 0.66 0.63 0.86 0.66 0.64 0.66

3.00 0.72 0.64 0.77 0.68 0.44 0.69

We run the simulation M = 50.000 times and generate k = 30 samples of size n = 5
and n = 10 according to di�erent simulation schemes. For each sample, we compute the
location estimate µ̂j and the scale estimate σ̂j , for j = 1, . . . ,M . For each simulation
setting and each type of estimator, we compute the root mean squared error

RMSEµ =

√√√√ 1

M

M∑
j=1

(µ̂j − µ0)2 , RMSEσ

√√√√ 1

M

M∑
j=1

(σ̂j − σ0)2.

The results for the Weibull, lognormal and gamma distributions are reported in Table 2,
Table 3 and Table 4, respectively. The conclusions drawn from the study are as follows.

(i) When there is no contamination, the classic estimators of mean and scale perform
best, as expected.

(ii) Contamination by extreme outliers causes a large increase in the RMSE of
the classic estimators especially for large samples n = 10, and a much smaller
increase in the RMSE of the robust alternatives.

(iii) For the estimation of mean, the trimmed mean estimator performs better for
large sample size than the small sample size, especially when there is contami-
nation by extreme outliers. This is true for all considered distribution.

(iii) For scale estimation, the interquartile range estimator performs better for large
sample size than the small sample size across all distributions, especially when
there is contamination by extreme outliers.

(iv) In the presence of outliers, the classic scale estimator has the highest RMSE of
all skewed distributions except the scale estimator for gamma distribution less
than 2 for Model 1, when n = 5 (for small sample size).
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(v) For the estimation of both mean and scale, the robust estimators have a lower
RMSE than the classical estimator in Model 3 and Model 4.

Table 2. RMSE of the µ̂ and σ̂ estimators for Weibull Distribution,
n = 5 ,10

µ̂
n=5 n=10

Model/k3 0.5 1.0 1.5 2 2.5 3.0 0.5 1.0 1.5 2 2.5 3.0

Model 1
Classic 0.0355 0.0475 0.0643 0.0820 0.1035 0.1249 0.0253 0.0336 0.0457 0.0576 0.0728 0.0887

Robust 0.0494 0.0875 0.1497 0.2184 0.3012 0.3842 0.0345 0.0620 0.1075 0.1585 0.2211 0.2852

Model 2
Classic 0.0493 0.0668 0.0904 0.1131 0.1405 0.1682 0.0371 0.0506 0.0677 0.0846 0.1049 0.1250

Robust 0.0418 0.0574 0.0980 0.1509 0.2196 0.2908 0.0286 0.0380 0.0653 0.1026 0.1522 0.2054

Model 3
Classic 0.7766 0.7767 0.7743 0.7706 0.7663 0.7628 0.6139 0.6131 0.6106 0.6091 0.6042 0.6024

Robust 0.0528 0.0589 0.0800 0.1174 0.1712 0.2318 0.0434 0.0464 0.0526 0.0664 0.0929 0.1265

Model 4
Classic 3.9295 3.9285 3.9249 3.9205 3.9149 3.9082 3.1029 3.1029 3.0992 3.0973 3.0911 3.0853

Robust 0.0545 0.0597 0.0782 0.1117 0.1612 0.2171 0.0452 0.0492 0.0546 0.0660 0.0858 0.1125

σ̂
n=5 n=10

Model/k3 0.5 1.0 1.5 2 2.5 3.0 0.5 1.0 1.5 2 2.5 3.0

Model 1
Classic 0.0293 0.0446 0.0712 0.1048 0.1520 0.2036 0.1363 0.1899 0.2742 0.3741 0.5095 0.6592

Robust 0.0337 0.0491 0.0738 0.1042 0.1460 0.1924 0.0290 0.0409 0.0623 0.0934 0.1453 0.2117

Model 2
Classic 0.0315 0.0492 0.0799 0.1176 0.1707 0.2291 0.1467 0.2093 0.3067 0.4230 0.5791 0.7509

Robust 0.0382 0.0578 0.0901 0.1298 0.1836 0.2432 0.0347 0.0501 0.0686 0.0873 0.1154 0.1511

Model 3
Classic 1.5846 1.5864 1.5966 1.6086 1.6191 1.6268 2.5950 2.6168 2.6653 2.7317 2.8020 2.8895

Robust 0.7251 0.7575 0.8178 0.8898 0.9804 1.0721 0.0591 0.0893 0.1281 0.1664 0.2067 0.2429

Model 4
Classic 8.4085 8.5658 8.8463 9.1533 9.5031 9.8179 13.3728 13.6361 14.1158 14.6384 15.2350 15.7725

Robust 3.6826 3.8093 4.0516 4.3354 4.6874 5.0316 0.0621 0.0942 0.1386 0.1826 0.2323 0.2821

Table 3. RMSE of the µ̂ and σ̂ estimators for lognormal distribution,
n = 5 ,10

µ̂
n=5 n=10

Model/k3 0.5 1.0 1.5 2 2.5 3.0 0.5 1.0 1.5 2 2.5 3.0

Model 1
Classic 0.0362 0.0768 0.1131 0.1491 0.2051 0.2377 0.0255 0.0541 0.0795 0.1052 0.1448 0.1688

Robust 0.0373 0.0798 0.1187 0.1581 0.2197 0.2567 0.0315 0.0889 0.1576 0.2368 0.3648 0.4438

Model 2
Classic 0.1225 0.1333 0.1509 0.1779 0.2447 0.3044 0.0963 0.1018 0.1121 0.1277 0.1703 0.2078

Robust 0.1236 0.1466 0.1753 0.2083 0.2644 0.2975 0.0680 0.1448 0.2188 0.2978 0.4226 0.4995

Model 3
Classic 0.6328 0.6267 0.6208 0.6176 0.6131 0.6146 0.4975 0.4924 0.4875 0.4836 0.4785 0.4764

Robust 0.4677 0.4895 0.5038 0.5136 0.5113 0.5043 0.0398 0.0664 0.0882 0.1170 0.1827 0.2328

Model 4
Classic 3.7608 3.7554 3.7401 3.7308 3.7148 3.7037 2.9849 2.9779 2.9701 2.9619 2.9513 2.9396

Robust 3.5358 3.5356 3.5202 3.5105 3.4914 3.4779 0.0485 0.0825 0.1032 0.1231 0.1549 0.1797

σ̂
n=5 n=10

Model/k3 0.5 1.0 1.5 2 2.5 3.0 0.5 1.0 1.5 2 2.5 3.0

Model 1
Classic 0.0314 0.0752 0.1247 0.1839 0.2902 0.3610 0.1481 0.3266 0.5037 0.6972 1.0141 1.2212

Robust 0.0352 0.0798 0.1263 0.1777 0.2675 0.3269 0.0298 0.0685 0.1118 0.1679 0.2716 0.3461

Model 2
Classic 0.1640 0.1279 0.1631 0.2442 0.4417 0.6190 0.3744 0.4560 0.6217 0.8501 1.3030 1.6448

Robust 0.1018 0.1089 0.1473 0.2064 0.3297 0.4311 0.0394 0.0669 0.1034 0.1528 0.2474 0.3152

Model 3
Classic 1.3094 1.2203 1.1497 1.0904 1.0209 0.9931 2.1632 2.1307 2.1254 2.1454 2.2356 2.3170

Robust 0.6167 0.6405 0.6767 0.7213 0.7938 0.8367 0.0519 0.1131 0.1655 0.2109 0.2725 0.3057

Model 4
Classic 8.0412 8.0930 8.1701 8.2778 8.4516 8.5472 12.8626 13.0311 13.2564 13.5063 13.9106 14.1228

Robust 3.5883 3.7202 3.8852 4.0817 4.4061 4.6041 0.0557 0.1308 0.2028 0.2763 0.3863 0.4468
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Table 4. RMSE of the µ̂ and σ̂ estimators for gamma distribution,
n = 5 ,10

µ̂
n=5 n=10

Model/k3 0.5 1.0 1.5 2 2.5 3.0 0.5 1.0 1.5 2 2.5 3.0

Model 1
Classic 0.3273 0.1641 0.1095 0.0820 0.0654 0.0541 0.2296 0.1153 0.0776 0.0575 0.0461 0.0381

Robust 0.3377 0.1708 0.1163 0.0889 0.0727 0.0619 0.2883 0.1969 0.1716 0.1550 0.1421 0.1297

Model 2
Classic 0.8229 0.2467 0.1363 0.0918 0.0698 0.0564 0.6464 0.1892 0.1012 0.0677 0.0509 0.0409

Robust 0.8609 0.2776 0.1612 0.1131 0.0888 0.0739 0.6243 0.3352 0.2381 0.1919 0.1646 0.1438

Model 3
Classic 0.5539 0.5568 0.7118 0.7733 0.7987 0.8133 0.4226 0.4338 0.5605 0.6097 0.6291 0.6414

Robust 0.5684 0.4788 0.5823 0.6184 0.6294 0.6337 0.4501 0.1300 0.0868 0.0652 0.0564 0.0523

Model 4
Classic 2.7260 3.6648 3.8401 3.9028 3.9324 3.9433 2.1568 2.9089 3.0475 3.0955 3.1175 3.1314

Classic 2.6244 3.4622 3.6140 3.6660 3.6904 3.6972 0.4304 0.1734 0.0950 0.0644 0.0545 0.0506

σ̂
n=5 n=10

Model/k3 0.5 1.0 1.5 2 2.5 3.0 0.5 1.0 1.5 2 2.5 3.0

Model 1
Classic 0.2813 0.1570 0.1203 0.1048 0.0966 0.0927 1.3256 0.6772 0.4724 0.3748 0.3227 0.2938

Robust 0.3183 0.1698 0.1241 0.1045 0.0946 0.0896 0.2693 0.1425 0.1062 0.0940 0.0941 0.1023

Model 2
Classic 0.8501 0.1626 0.1228 0.1089 0.1004 0.0953 2.3528 0.7093 0.4487 0.3469 0.2969 0.2681

Robust 0.6610 0.1803 0.1261 0.1098 0.0998 0.0939 0.3639 0.1428 0.1130 0.1143 0.1192 0.1267

Model 3
Classic 0.5513 0.8855 1.3340 1.6147 1.8183 2.0093 1.9356 1.8544 2.3800 2.7347 3.0083 3.2867

Robust 0.4404 0.5739 0.7623 0.8931 1.0037 1.1248 0.2813 0.2239 0.1900 0.1663 0.1454 0.1270

Model 4
Classic 4.9489 7.6274 8.4630 9.1127 9.7395 10.4095 8.7237 12.5101 13.6815 14.6295 15.5769 16.6415

Robust 2.5862 3.6174 3.9768 4.3167 4.7097 5.1889 0.5141 0.2969 0.2233 0.1815 0.1535 0.1318

Table 5. The values of the constants for the skewed distributions for n=3,5

Weibull Lognormal Gamma

n =3

k3 d∗2 c∗4 dQ2 cQ4 d∗2 c∗4 dQ2 cQ4 d∗2 c∗4 dQ2 cQ4
0.50 1.6880 0.3702 1.2660 0.3702 1.6776 0.3337 1.2582 0.3337 1.6791 0.3414 1.2593 0.3414

1.00 1.6447 0.6537 1.2335 0.6537 1.6352 0.6547 1.2264 0.6547 1.6406 0.6515 1.2305 0.6515

1.50 1.5726 0.9223 1.1795 0.9223 1.5860 0.8784 1.1895 0.8784 1.5804 0.9012 1.1853 0.9012

2.00 1.4995 1.1017 1.1246 1.1017 1.5335 1.0381 1.1502 1.0381 1.5001 1.1033 1.1251 1.1033

2.50 1.4221 1.2355 1.0665 1.2355 1.4587 1.1940 1.0940 1.1940 1.4102 1.2429 1.0577 1.2429

3.00 1.3552 1.3162 1.0164 1.3162 1.4174 1.2529 1.0630 1.2529 1.3157 1.3386 0.9868 1.3386

n=5

k3 d∗2 c∗4 dQ2 cQ4 d∗2 c∗4 dQ2 cQ4 d∗2 c∗4 dQ2 cQ4
0.50 2.3088 0.2879 1.3332 0.2879 2.3092 0.2602 1.3094 0.2602 2.3089 0.2669 1.3122 0.2669

1.00 2.2559 0.5173 1.2921 0.5173 2.2575 0.5223 1.2665 0.5223 2.2595 0.5163 1.2773 0.5163

1.50 2.1702 0.7529 1.2201 0.7529 2.1974 0.7207 1.2166 0.7207 2.1827 0.7362 1.2218 0.7362

2.00 2.0831 0.9283 1.1459 0.9283 2.1346 0.8787 1.1656 0.8787 2.0827 0.9281 1.1457 0.9281

2.50 1.9903 1.0764 1.0672 1.0764 2.0423 1.0527 1.0932 1.0527 1.9758 1.0811 1.0587 1.0811

3.00 1.9102 1.1819 1.0003 1.1819 1.9911 1.1274 1.0539 1.1274 1.8621 1.2011 0.9635 1.2011

3.2. Determination of the control charts constants. An assumption of non-normality
is incorporated into the constants d2 and c4 to correct the control chart limits. Therefore,
the constants are corrected under this conditions. The corrected constants are determined
such that the expected value of the statistic divided by the constant is equal to the true
value of σ.

The WV method constant d∗2 is calculated by taking the mean of range
(
R
σ

)
. In this

study, we consider the modi�ed WV method constant dQ2 which is calculated by taking

the mean of interquartile range
(
IQR
σ

)
. The SC method constant c∗4 is calculated by

using Eq: 2.20. We consider the MSC method constant cQ4 , which is calculated using
Eq: 2.23. All constants are obtained for three skewed distributions via simulation. We
obtain E( ¯IQR) by simulation: we generate 100.000 times k samples of size n, compute



235

Table 6. The values of the constants for the skewed distributions for n=7,10

Weibull Lognormal Gamma

n=7

k3 d∗2 c∗4 dQ2 cQ4 d∗2 c∗4 dQ2 cQ4 d∗2 c∗4 dQ2 cQ4
0.50 2.6721 0.2415 1.3345 0.2592 2.6877 0.2229 1.2947 0.2291 2.6858 0.2253 1.2992 0.2351

1.00 2.6172 0.4418 1.2861 0.4921 2.6381 0.4480 1.2423 0.4468 2.6328 0.4413 1.2602 0.4655

1.50 2.5340 0.6522 1.1988 0.7211 2.5790 0.6268 1.1826 0.6063 2.5531 0.6368 1.1974 0.6820

2.00 2.4499 0.8158 1.1084 0.8854 2.5159 0.7773 1.1211 0.7319 2.4502 0.8146 1.1083 0.8848

2.50 2.3601 0.9660 1.0130 1.0248 2.4231 0.9512 1.0359 0.8707 2.3417 0.9647 1.0044 1.0569

3.00 2.2808 1.0758 0.9317 1.1208 2.3696 1.0323 0.9895 0.9341 2.2306 1.0931 0.8893 1.2006

n=10

k3 d∗2 c∗4 dQ2 cQ4 d∗2 c∗4 dQ2 cQ4 d∗2 c∗4 dQ2 cQ4
0.50 3.0213 0.2044 1.3415 0.2169 3.0640 0.1826 1.2928 0.1850 3.0587 0.1881 1.2982 0.1938

1.00 2.9709 0.3708 1.2892 0.4052 3.0225 0.3787 1.2350 0.3739 3.0050 0.3726 1.2572 0.3871

1.50 2.8990 0.5531 1.1929 0.6012 2.9701 0.5368 1.1698 0.5117 2.9258 0.5423 1.1893 0.5711

2.00 2.8301 0.7046 1.0930 0.7529 2.9145 0.6748 1.1030 0.6242 2.8287 0.7032 1.0926 0.7529

2.50 2.7530 0.8464 0.9875 0.8859 2.8300 0.8432 1.0113 0.7547 2.7323 0.8450 0.9786 0.9142

3.00 2.6842 0.9586 0.8980 0.9850 2.7806 0.9246 0.9617 0.8153 2.6348 0.9715 0.8504 1.0598

IQR for each instance and take the average of the values. The results for all constants
for k = 30 are presented in Table 5 for n = 3, 5 and Table 6 for n = 7, 10.

3.3. Performance of modi�ed methods. When the parameters of the process are
unknown, control charts can be applied in a two-phase procedure. In Phase I, control
charts are used to de�ne the in-control state of the process and to assess process stability
for ensuring that the reference sample is representative of the process. The parameters
of the process are estimated from Phase I sample and control limits are estimated for
using in Phase II. In Phase II, samples from the process are prospectively monitored
for departures from the in-control state. The Type I risk indicates the probability of a
subgroup X̄ falling outside the ±3 sigma control limits. When the process is in-control,
the Type I risks are 0.27%. However, due to the control limits, about 0.0027 of all control
points will be false alarms and have no assignable cause of variation. The ARL is the
number of points plotted within the control limits before one exceeds the limits. Under
the normality assumption and for the Shewhart control charts, it is expected that 370.4
points would be plotted on the chart within the 3σ control limits, before one gets out. If
the process is in-control, we want the in-control average run length, ARL0, to be large.
If the process is out-of-control, we want the out-of-control average run length, ARL1, to
be small.

In this section, we consider design schemes for the X̄ control chart for non-contaminated
and contaminated skewed distributed data. We use the mean and the trimmed mean es-
timators of mean and the range and the interquartile range estimators of the standard
deviation for the Shewhart, WV and SC methods. To evaluate the control chart perfor-
mance we obtain p and the in-control ARL for moderate sample size (30 subgroups of
3-10) for each skewed distribution. The simulation consists of two Phases. The steps of
each Phase are described as following.

Phase I:

1.a. Generate n i.i.d. Weibull (β, 1), gamma(α, 1) and lognormal(1, σ) varieties for
n = 3, 5, 7, 10.

1.b. Repeat step 1.a 30 times (k = 30) .
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1.c. By using classic estimators compute the control limits for Shewhart, the WV
and the SC methods. By using robust estimators compute the control limits for
the MS, the MWV and the MSC methods.

Phase II:

2.a. Generate n i.i.d. Weibull(β, 1), gamma(α, 1) and lognormal (1, σ) varieties using
the procedure of step 1.a.

2.b. Repeat step 2.a 100 times (k = 100).
2.c. Compute the sample statistics for X̄ chart for the Shewhart, WV and SC meth-

ods. Compute the robust estimator interquartile range IQR for theMS, MWV
and MSC methods.

2.d. Record whether or not the sample statistics calculated in step 2.c are within the
control limits of step 1.c. for all methods.

2.e. Repeat steps 1.a through 2.d, 100.000 times and obtain p and ARL values for
each method.

In the simulation study, we consider non-contaminated and contaminated data set in
Phase I and Phase II. We consider the 20% trimmed mean, which trims the six smallest
and the six largest sample trimmed means when k = 30.

• Non-contaminated case: The reference distribution parameters are selected
with respect to skewness of distribution given in Table 1.

• Contaminated case: The more extreme case of 10% of outliers placed at 50.

The simulation results of p for the X̄ control chart for non-contaminated data under
skewed distributions are given in Table 7 for small sample sizes and Table 8 for large
sample size. The results of ARL for the X̄ control chart for non-contaminated data
under skewed distributions are given in Table 9 for small sample sizes and Table 10 for
large sample size. The results of p and ARL for the X̄ control chart for contaminated
Weibull, lognormall and gamma distrubuted data are given in Table 11, Table 12 and
Table 13, respectively.

Table 7. Results of the p for the X̄ control chart based on classic and
robust estimators for small sample sizes

n=3

Classic Estimators Robust Estimators

Method/k3 0.5 1.0 1.5 2 2.5 3.0 0.5 1.0 1.5 2 2.5 3.0

Weibull
Shewhart 0.0050 0.0080 0.0119 0.0152 0.0186 0.0203 0.0053 0.0089 0.0134 0.0172 0.0206 0.0233

WV 0.0042 0.0058 0.0081 0.0100 0.0120 0.0131 0.0047 0.0068 0.0096 0.0120 0.0143 0.0161

SC 0.0034 0.0035 0.0037 0.0043 0.0051 0.0060 0.0035 0.0035 0.0038 0.0045 0.0056 0.0068

Lognormal
Shewhart 0.0055 0.0086 0.0116 0.0142 0.0170 0.0181 0.0058 0.0094 0.0129 0.0157 0.0188 0.0201

WV 0.0051 0.0068 0.0086 0.0103 0.0121 0.0129 0.0054 0.0077 0.0101 0.0120 0.0142 0.0152

SC 0.0046 0.0052 0.0058 0.0062 0.0065 0.0066 0.0046 0.0050 0.0055 0.0058 0.0063 0.0067

Gamma
Shewhart 0.0049 0.0079 0.0121 0.0153 0.0178 0.0189 0.0046 0.0059 0.0075 0.0095 0.0113 0.0134

WV 0.0041 0.0057 0.0081 0.0100 0.0115 0.0120 0.0044 0.0051 0.0061 0.0072 0.0082 0.0094

SC 0.0033 0.0033 0.0038 0.0042 0.0048 0.0052 0.0042 0.0043 0.0038 0.0026 0.0020 0.0025

n=5

Classic Estimators Robust Estimators

Method/k3 0.5 1.0 1.5 2 2.5 3.0 0.5 1.0 1.5 2 2.5 3.0

Weibull
Shewhart 0.0042 0.0061 0.0090 0.0115 0.0144 0.0167 0.0046 0.0067 0.0101 0.0131 0.0161 0.0184

WV 0.0036 0.0043 0.0056 0.0070 0.0085 0.0099 0.0040 0.0049 0.0066 0.0082 0.0100 0.0114

SC 0.0032 0.0032 0.0033 0.0035 0.0039 0.0045 0.0035 0.0033 0.0034 0.0036 0.0042 0.0049

Lognormal
Shewhart 0.0045 0.0067 0.0091 0.0113 0.0140 0.0153 0.0048 0.0073 0.0098 0.0123 0.0152 0.0166

WV 0.0042 0.0051 0.0064 0.0077 0.0094 0.0102 0.0045 0.0057 0.0072 0.0087 0.0106 0.0115

SC 0.0039 0.0042 0.0047 0.0052 0.0057 0.0059 0.0041 0.0043 0.0046 0.0049 0.0053 0.0055

Gamma
Shewhart 0.0042 0.0062 0.0093 0.0118 0.0141 0.0152 0.0048 0.0069 0.0098 0.0131 0.0163 0.0195

WV 0.0036 0.0044 0.0058 0.0071 0.0083 0.0089 0.0044 0.0053 0.0067 0.0083 0.0098 0.0114

SC 0.0032 0.0032 0.0034 0.0035 0.0038 0.0039 0.0040 0.0039 0.0037 0.0037 0.0041 0.0050



237

Table 8. Results of the p for the X̄ control chart based on classic and
robust estimators for large sample sizes

n=7

Classic Estimators Robust Estimators

Method/k3 0.5 1.0 1.5 2 2.5 3.0 0.5 1.0 1.5 2 2.5 3.0

Weibull
Shewhart 0.0038 0.0053 0.0077 0.0100 0.0122 0.0144 0.0054 0.0068 0.0086 0.0088 0.0081 0.0065

WV 0.0033 0.0038 0.0047 0.0057 0.0068 0.0081 0.0051 0.0058 0.0068 0.0067 0.0059 0.0046

SC 0.0032 0.0031 0.0033 0.0035 0.0036 0.0041 0.0045 0.0037 0.0030 0.0022 0.0016 0.0011

Lognormal
Shewhart 0.0041 0.0058 0.0078 0.0097 0.0123 0.0137 0.0045 0.0065 0.0086 0.0104 0.0124 0.0133

WV 0.0039 0.0045 0.0054 0.0064 0.0079 0.0088 0.0042 0.0050 0.0062 0.0072 0.0085 0.0091

SC 0.0037 0.0039 0.0044 0.0047 0.0054 0.0058 0.0037 0.0036 0.0037 0.0039 0.0043 0.0046

Gamma
Shewhart 0.0040 0.0054 0.0079 0.0100 0.0121 0.0133 0.0059 0.0068 0.0080 0.0088 0.0091 0.0089

WV 0.0036 0.0039 0.0048 0.0057 0.0067 0.0073 0.0057 0.0060 0.0065 0.0066 0.0065 0.0060

SC 0.0033 0.0033 0.0035 0.0034 0.0035 0.0035 0.0052 0.0043 0.0031 0.0021 0.0019 0.0017

n=10

Classic Estimators Robust Estimators

Method/k3 0.5 1.0 1.5 2 2.5 3.0 0.5 1.0 1.5 2 2.5 3.0

Weibull
Shewhart 0.0037 0.0047 0.0065 0.0086 0.0105 0.0120 0.0056 0.0061 0.0067 0.0069 0.0066 0.0063

WV 0.0033 0.0035 0.0040 0.0047 0.0055 0.0063 0.0053 0.0051 0.0049 0.0048 0.0043 0.0040

SC 0.0032 0.0033 0.0034 0.0035 0.0035 0.0039 0.0050 0.0040 0.0027 0.0019 0.0015 0.0013

Lognormal
Shewhart 0.0038 0.0052 0.0067 0.0084 0.0107 0.0119 0.0049 0.0051 0.0053 0.0053 0.0051 0.0049

WV 0.0036 0.0041 0.0046 0.0054 0.0066 0.0073 0.0047 0.0044 0.0042 0.0040 0.0037 0.0034

SC 0.0035 0.0038 0.0041 0.0045 0.0051 0.0054 0.0044 0.0036 0.0027 0.0020 0.0014 0.0012

Gamma
Shewhart 0.0040 0.0051 0.0068 0.0083 0.0101 0.0114 0.0045 0.0063 0.0087 0.0105 0.0119 0.0124

WV 0.0036 0.0038 0.0042 0.0045 0.0053 0.0059 0.0041 0.0048 0.0058 0.0063 0.0067 0.0067

SC 0.0035 0.0035 0.0035 0.0034 0.0034 0.0034 0.0037 0.0035 0.0034 0.0033 0.0033 0.0031

Table 9. Results of the ARL for the X̄ control chart based on classic
and robust estimators for small sample sizes

n=3

Classic Estimators Robust Estimators

k3 0.5 1.0 1.5 2 2.5 3.0 0.5 1.0 1.5 2 2.5 3.0

Weibull
Shewhart 201.4504 124.3626 84.1255 65.8111 53.6251 49.2029 187.7335 112.9663 74.8671 58.0953 48.5753 42.9697

WV 236.1833 173.2502 124.1003 100.2406 83.3681 76.3475 213.2378 147.2624 104.3515 83.2404 70.1671 62.2944

SC 289.9391 288.6003 267.2368 232.6664 196.3479 166.7779 283.6075 285.9676 263.4213 220.2110 177.5726 147.6799

Lognormal
Shewhart 181.0217 115.7501 86.1876 70.4072 58.9299 55.2129 172.2030 106.2236 77.7267 63.8659 53.3294 49.7867

WV 195.7522 146.6233 116.7229 97.5096 82.8947 77.8053 183.5132 129.5874 99.2339 83.2646 70.3284 65.7921

SC 218.3978 192.6634 172.1467 160.0384 152.8865 150.6206 215.4197 198.1728 181.5640 172.5923 158.0303 150.1998

Gamma
Shewhart 206.1091 126.7990 82.5430 65.4095 56.0582 53.0453 172.3811 110.3327 76.3161 58.1061 47.6917 40.4073

WV 241.8614 175.4879 123.4583 100.2486 87.2007 83.3021 186.4211 138.9024 103.5508 83.2903 70.6230 61.2329

SC 302.7184 298.7482 263.5532 237.2085 206.2791 190.8615 224.8303 232.6068 241.8906 221.2536 178.7662 142.6737

n=5

Classic Estimators Robust Estimators

Weibull
Shewhart 239.2917 158.8058 110.6562 83.4376 69.5894 58.8582 219.0245 148.4296 99.1405 76.2207 61.9602 54.2041

WV 277.1619 228.2063 176.7721 138.3892 117.1097 100.1201 250.0188 204.4321 152.1422 121.6871 99.7914 87.5695

SC 308.6420 303.8590 318.0662 280.8200 253.1005 219.2982 289.0925 299.7422 297.2828 274.4086 236.6136 202.9221

Lognormal
Shewhart 221.2389 149.9790 110.0606 88.2488 71.2560 65.3202 206.2323 137.1629 101.5713 81.1293 65.9191 60.1063

WV 239.9981 194.4239 156.0184 129.4230 106.2699 97.9489 221.4790 173.9221 139.1866 114.9293 94.4136 86.5883

SC 257.3075 237.2423 212.7886 192.4039 174.1311 168.7849 243.9560 232.0724 218.4455 204.6748 189.8722 182.4185

Gamma
Shewhart 240.8362 161.2279 107.6739 84.8731 71.1081 65.7086 209.4592 144.0320 101.6322 76.1278 61.4881 51.3168

WV 277.9322 229.6159 171.5796 141.6712 120.5342 112.1152 226.9014 188.6081 150.2494 120.9278 102.2275 87.8418

SC 311.1775 310.1929 293.1520 286.4837 266.3896 255.8526 252.7806 258.6185 272.9332 271.7022 242.1366 198.6808
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Table 10. Results of the ARL for the X̄ control chart based on classic
and robust estimators for large sample sizes

n=7

Classic Estimators Robust estimators

k3 0.5 1.0 1.5 2 2.5 3.0 0.5 1.0 1.5 2 2.5 3.0

Weibull
Shewhart 263.4352 187.5117 129.9883 99.9300 81.7127 69.5749 185.6838 147.4861 116.3982 113.7229 122.8818 153.4213

WV 299.0431 264.2706 214.5923 175.4078 146.9076 124.1773 195.3774 173.1722 146.9076 149.6334 168.1520 219.4234

SC 312.9890 319.6931 305.5301 289.0173 278.7845 242.1894 223.3639 268.5285 334.8289 459.8547 619.8859 939.9380

Lognormal
Shewhart 241.6276 172.0312 128.2150 102.9824 81.4233 73.1507 223.3240 154.6623 116.5488 96.3419 80.4466 74.9895

WV 258.6987 222.0101 184.2401 156.2940 126.2499 114.1826 240.8942 198.7360 162.2955 138.0167 117.3778 110.0219

SC 272.7248 255.3952 229.2999 211.1397 185.5976 173.6986 269.1355 276.9853 271.8573 257.6257 230.8989 217.0421

Gamma
Shewhart 250.0438 183.6446 125.9287 100.1422 82.8995 75.4245 170.0912 146.0110 124.6090 114.2583 110.2196 112.7332

WV 281.3969 256.4366 206.6799 175.5433 148.6171 136.4685 174.9567 166.5584 154.3925 150.9434 153.6641 166.1323

SC 299.6344 299.8591 289.3686 295.0549 285.4777 284.0022 190.7851 233.7049 325.3831 468.5596 530.7011 589.4836

n=10

Classic Estimators Robust Estimators

Weibull
Shewhart 273.1494 211.5507 154.3210 116.6181 95.3107 83.0496 179.1088 162.9673 148.8716 145.3848 150.3850 157.9854

WV 302.4803 284.5760 253.0364 211.7747 182.4818 157.7785 188.4979 195.3850 202.9015 210.2077 229.9432 249.3393

SC 307.9766 303.4901 297.4420 288.6003 282.4061 256.3445 201.5154 248.6634 371.2090 523.6425 678.2420 787.0917

Lognormal
Shewhart 260.3828 193.3899 150.2268 119.4172 93.8069 84.1128 206.0624 195.4117 190.2081 188.8004 194.5374 203.7739

WV 277.4926 244.0274 215.1880 184.4916 152.3879 136.8738 213.5292 225.9019 239.1944 250.5136 272.0644 290.9937

SC 285.4126 264.4313 246.2387 223.7737 196.1631 184.2197 224.8454 280.5994 369.6721 488.7347 694.2034 812.9420

Gamma
Shewhart 249.4574 197.9257 146.0750 120.3920 98.7147 87.4027 223.8138 157.8034 115.1145 95.0480 84.3526 80.9454

WV 275.2092 263.9637 238.7490 219.9784 187.5574 169.4083 243.5460 209.3364 173.1902 158.1028 149.7679 149.2983

SC 282.7415 281.9045 283.9860 296.1822 291.5282 293.9793 271.0762 286.6972 291.2056 306.9368 303.7667 321.1304

Table 11. Results of the p and ARL for the X̄ control chart for con-
taminated Weibull distribution

n=5

p values ARL values

Method/k3 0.5 1.0 1.5 2 2.5 3.0 0.5 1.0 1.5 2 2.5 3.0

Model 1
MS 0.0033 0.0049 0.0072 0.0094 0.0116 0.0132 300.9601 205.6302 137.9805 106.3140 86.4013 75.7708

MWV 0.0030 0.0035 0.0046 0.0057 0.0069 0.0079 337.8378 284.8029 215.8895 174.4379 144.4127 127.2734

MSC 0.0027 0.0024 0.0023 0.0023 0.0026 0.0030 376.1520 411.4718 433.9713 433.2380 382.4092 335.5254

Model 2
MS 0.1792 0.1541 0.1181 0.0820 0.0469 0.0263 5.5800 6.4873 8.4662 12.1966 21.3049 38.0451

MWV 0.2030 0.1237 0.0752 0.0425 0.0195 0.0097 4.9252 8.0827 13.2959 23.5185 51.2768 102.5694

MSC 0.1647 0.1240 0.0684 0.0281 0.0086 0.0034 6.0725 8.0670 14.6236 35.5745 115.6283 290.3853

Model 3*
MS 0.2811 0.2492 0.1605 0.0882 0.0386 0.0163 0.0036 0.0040 0.0062 0.0113 0.0259 0.0613

MWV 0.6631 0.6425 0.6101 0.5401 0.3588 0.1521 0.0015 0.0016 0.0016 0.0019 0.0028 0.0066

MSC 0.2279 0.1183 0.0309 0.0065 0.0010 0.0002 0.0044 0.0085 0.0324 0.1541 1.0508 4.2337

n=10

p values ARL values

Method/k3 0.5 1.0 1.5 2 2.5 3.0 0.5 1.0 1.5 2 2.5 3.0

Model 1*
MS 0.0043 0.0047 0.0050 0.0051 0.0049 0.0045 0.2317 0.2141 0.1981 0.1945 0.2062 0.2224

MWV 0.0041 0.0039 0.0037 0.0035 0.0031 0.0027 0.2430 0.2573 0.2717 0.2886 0.3239 0.3650

MSC 0.0039 0.0031 0.0020 0.0013 0.0009 0.0008 0.2540 0.3267 0.5101 0.7807 1.0861 1.3307

Model 2
MS 0.0050 0.0060 0.0073 0.0080 0.0082 0.0079 201.9508 165.8760 136.0859 124.6976 122.2240 126.7363

MWV 0.0045 0.0047 0.0051 0.0053 0.0051 0.0048 221.1460 212.5037 195.3812 189.8109 194.2238 209.1569

MSC 0.0042 0.0036 0.0028 0.0023 0.0020 0.0017 239.0229 279.4623 357.1173 437.0247 509.1909 593.7537

Model 3
MS 0.0048 0.0059 0.0075 0.0085 0.0093 0.0099 208.8206 168.0983 133.6380 117.4936 107.1260 101.4188

MWV 0.0043 0.0046 0.0051 0.0055 0.0059 0.0061 230.2715 217.6468 195.8365 180.4175 170.1201 163.4147

MSC 0.0040 0.0035 0.0028 0.0025 0.0024 0.0024 247.7701 285.7878 351.4197 399.9840 417.9204 417.7109

4. Results

In this section, the performance of di�erent design schemes is evaluated. When the
process in control, it is expected that p is to be as low as possible and ARL is to be
as high as possible. The desired ARL value of 370 indicates that the control limits are
chosen to provide a p of 0.0027. First we consider the design scheme where the process
has a skewed distribution and the Phase I data are non-contaminated. Tables 7,8, 9 and
10 present the p and ARL values for the X̄ control chart under the skewed distributions.
The tables indicates the following points:

• When the distribution is approximately symmetric (k3 = 0.5), the p of the SC,
WV and Shewhart charts are comparable, while the SC X̄ chart has a noticeable
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Table 12. Results of the p and ARL for the X̄ control chart for con-
taminated Lognormal distribution

n=5

p values ARL values

Method/k3 0.5 1.0 1.5 2 2.5 3.0 0.5 1.0 1.5 2 2.5 3.0

Model 1*
MS 0.2715 0.1555 0.0696 0.0293 0.0101 0.0067 0.0037 0.0064 0.0144 0.0342 0.0989 0.1500

MWV 0.6595 0.5970 0.4204 0.1921 0.0311 0.0077 0.0015 0.0017 0.0024 0.0052 0.0321 0.1299

MSC 0.2050 0.0522 0.0086 0.0016 0.0005 0.0004 0.0049 0.0192 0.1169 0.6117 1.9577 2.4820

Model 2*
MS 0.2729 0.1547 0.0705 0.0295 0.0102 0.0068 0.0037 0.0065 0.0142 0.0339 0.0984 0.1480

MWV 0.6602 0.5972 0.4198 0.1914 0.0306 0.0078 0.0015 0.0017 0.0024 0.0052 0.0327 0.1276

MSC 0.2060 0.0513 0.0086 0.0016 0.0005 0.0004 0.0049 0.0195 0.1166 0.6143 1.9701 2.4172

Model 3*
MS 0.2726 0.1549 0.0696 0.0291 0.0101 0.0066 0.0037 0.0065 0.0144 0.0343 0.0993 0.1508

MWV 0.6598 0.5972 0.4204 0.1921 0.0306 0.0078 0.0015 0.0017 0.0024 0.0052 0.0327 0.1275

MSC 0.2053 0.0521 0.0085 0.0016 0.0005 0.0004 0.0049 0.0192 0.1178 0.6339 1.8911 2.4420

n=10

p values ARL values

Method/k3 0.5 1.0 1.5 2 2.5 3.0 0.5 1.0 1.5 2 2.5 3.0

Model 1
MS 0.0037 0.0044 0.0051 0.0055 0.0056 0.0055 273.6502 224.9769 194.5904 182.0930 178.7374 180.7566

MWV 0.0036 0.0039 0.0041 0.0041 0.0041 0.0040 276.3500 257.0628 243.0665 241.0742 246.0509 253.1069

MSC 0.0033 0.0030 0.0025 0.0020 0.0016 0.0015 299.3743 334.2246 396.6995 488.0429 610.1281 673.6275

Model 2
MS 0.0051 0.0063 0.0071 0.0071 0.0062 0.0054 194.3370 159.6526 141.5268 140.6035 160.8131 185.4565

MWV 0.0048 0.0051 0.0053 0.0051 0.0042 0.0035 207.0951 194.5260 187.7018 195.3697 236.5352 282.8614

MSC 0.0045 0.0040 0.0034 0.0027 0.0017 0.0013 219.9446 249.0226 293.5823 373.9856 575.9705 789.0791

Model 3
MS 0.0045 0.0059 0.0072 0.0084 0.0097 0.0103 222.0101 169.1332 138.5445 119.2066 103.5990 97.5572

MWV 0.0041 0.0047 0.0053 0.0060 0.0068 0.0072 241.8497 213.0288 188.2920 167.1794 147.4274 139.4953

MSC 0.0038 0.0037 0.0034 0.0033 0.0034 0.0035 260.3624 273.6427 291.5962 299.0073 291.7919 284.0828

Table 13. Results of the p and ARL for the X̄ control chart for con-
taminated gamma distribution

n=5

p values ARL values

Method/k3 0.5 1.0 1.5 2 2.5 3.0 0.5 1.0 1.5 2 2.5 3.0

Model 1
MS 0.0028 0.0061 0.0102 0.0142 0.0181 0.0214 355.1515 163.1162 97.5705 70.2336 55.1155 46.8305

MWV 0.0030 0.0045 0.0067 0.0088 0.0109 0.0125 333.9456 220.1916 148.8117 113.6454 91.6137 79.7118

MSC 0.0020 0.0028 0.0035 0.0040 0.0049 0.0058 499.8251 356.5952 285.2741 247.6106 204.3235 172.0282

Model 2
MS 0.0047 0.0176 0.0512 0.0816 0.0975 0.1029 212.1341 56.7038 19.5456 12.2533 10.2563 9.7216

MWV 0.0048 0.0108 0.0269 0.0422 0.0497 0.0503 206.7910 92.3344 37.2108 23.7184 20.1147 19.8702

MSC 0.0052 0.0074 0.0179 0.0278 0.0320 0.0308 192.2929 134.5605 55.8572 35.9442 31.2426 32.4377

Model 3
MS 0.0038 0.0393 0.0797 0.0878 0.0719 0.0507 261.1989 25.4221 12.5483 11.3872 13.9121 19.7187

MWV 0.0053 0.1967 0.4482 0.5400 0.5612 0.5541 187.0977 5.0828 2.2313 1.8518 1.7817 1.8048

MSC 0.0018 0.0077 0.0100 0.0066 0.0029 0.0011 557.8178 130.2456 100.1161 152.1005 340.6459 902.1200

n=10

p values ARL values

Method/k3 0.5 1.0 1.5 2 2.5 3.0 0.5 1.0 1.5 2 2.5 3.0

Model 1
MS 0.0037 0.0043 0.0054 0.0068 0.0076 0.0078 272.8662 229.9115 185.0995 147.9596 131.1785 127.6569

MWV 0.0036 0.0037 0.0041 0.0046 0.0048 0.0047 277.4002 267.9313 246.2751 218.0549 207.3785 212.6800

MSC 0.0033 0.0027 0.0020 0.0018 0.0017 0.0016 304.1178 375.0094 491.5696 549.9340 581.3953 634.8803

Model 2
MS 0.0044 0.0062 0.0072 0.0081 0.0085 0.0086 226.4288 160.8001 138.0129 123.4294 117.9830 116.7583

MWV 0.0043 0.0051 0.0052 0.0053 0.0052 0.0049 231.2994 196.8233 193.8172 187.0592 192.1451 203.6784

MSC 0.0042 0.0039 0.0030 0.0023 0.0020 0.0017 240.4135 253.6204 334.4705 435.1989 512.6891 578.8712

Model 3
MS 0.0045 0.0059 0.0074 0.0085 0.0091 0.0094 221.9953 170.9285 136.0304 117.8217 109.8901 106.0524

MWV 0.0041 0.0046 0.0051 0.0055 0.0056 0.0054 243.1847 218.2263 194.9622 181.8579 179.3915 183.5266

MSC 0.0038 0.0036 0.0030 0.0025 0.0021 0.0020 260.9535 281.1042 330.2946 407.3652 465.9181 505.3312

smaller p values. As the skewness increases, the p values of the Shewhart method
increases too much and are quite higher than that of the other methods.

• Under non-normality, when skewness increases, ARL decreases and therefore p
increases.

• When skewness increases, the Shewhart ARL values decreases signi�cantly, while
the ARL of the SC and MSC methods are not e�ected by the skewness. In
particular, for n ≥ 5 the ARL of the SC and MSC provide desirable values as
skewness increases.
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• The WV method produces better results than the Shewhart method, and the
SC method produces better results than both the Shewhart and WV , while the
skewness increases.

• The results for the Weibull, gamma and lognormal distributions are more or less
similar with respect to the p and ARL values.

• When skewness increases, the p values of classic estimators increases for all
methods. However, the p values of the MSC method decreases and reach the
desirable value for gamma distribution for n=3,7 and 10.

• For the large sample size n=10; the p values of MWV and MSC methods de-
crease for Weibull and lognormal distributions when skewness increases, reaching
the desirable value 0.0027. These modi�ed methods work very well when skew-
ness increases.

• In general, the ARL values of the SC and MSC methods are higher than those
of the Shewhart and WV methods for all design schemes. Therefore, the SC
and MSC methods have the best overall performance.

We investigate the e�ect of non-normality on estimated limits under contamination.
We present the results of the simulation for n = 5, 10. Table 11, 12 and 13 give the
results of the p and ARL for the X̄ control chart for contaminated Weibull, lognormal
and gamma distributions, respectively. The main points from these data are as follows:

• As skewness increases, the p decreases and so the ARL increases.
• The results for contaminated Weibull distribution are as follows: The MSC
method has the best performance for Model 1 and Model 2 for n=5. However,
its performance is deteriorated for Model 3, while skewness increases. For Model
1, MWV performs better than the others, while the performance of the MSC
is deteriorated when k3 > 2. For Model 2 and Model 3, theMSC has the lowest
p values than the MWV and MS methods. All three methods can be used.
However, where there are large outliers, the MSC method gives the desirable
results when n=10. MWV can be used as an alternative.

• The results for contaminated lognormal distribution : For small sample sizes, the
MS method performs better than the other modi�ed methods when k3 > 1.5.
However, for large sample sizes, the MSC method has the best performance
especially when k3 > 1. Moreover the MWV method can be used as alternative
to the MSC method for Model 2.

• The results for contaminated gamma distribution: When skewness increases,
the p values of the MSC method decrease and so the ARL values increase. The
MSC method performs better than the other method for n=5 and n=10. The
MWV method produces the desirable results for n=10.

• For large sample size, the MSC method has the lowest p values and the highest
ARL values for all skewed distributions. This modi�ed method has the best
performance.

• The MS and MWV methods can be used as alternatives to MSC method.

5. Conclusion

In this paper, three modi�ed methods to construct the robust X̄ control chart limits
are suggested to monitor the skewed and contaminated process . We propose the MS,
MWV andMSC methods using the simple and robust estimators, which are the trimmed
mean and interquartile range. We have studied the e�ect of the estimators on control
chart performance under non-normal distributed data for small and large sample sizes.
The e�ect of outliers on the accuracy of conventional and robust estimators have been
evaluated by root mean square errors via simulation. Contamination by extreme outliers
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result in a large increase in the RMSE of the classic estimators, especially for the large
samples (n = 10) and a much smaller increase in the RMSEs of the robust alternatives.
The control chart constants for each method are obtained. To evaluate control chart
performance, we obtain the p and ARL values of this control chart and the results are
used to compare the methods. We analyse design schemes in which the Phase I and the
Phase II data are non-contaminated and contaminated, respectively. The results can be
summed up as follows: for non-contaminated data, as skewness increases, the p values of
the classical estimators also increase and so the ARL values decrease in all methods. In
contrast, the p values of theMSC method decrease and reach the desirable value (0.0027)
for gamma distribution for n = 3,7 and 10. TheWV method provides better results than
the Shewhart method, and SC provides better results than both the Shewhart and WV
methods, as skewness increases. The SC and MSC methods have the best performance
out of all the design schemes analysed. For large sample sizes (n = 10), the MWV and
MSC methods work very well for both Weibull and lognormal distributions, as skewness
increases. Under these conditions, the use of theseMWV andMSC methods is strongly
recommended. The results can be summed up as follows: for contaminated data with
large outliers and small sample sizes, the MS method performs better than the other
modi�ed methods when k3 > 1.5. For large sample sizes, the MSC method has the best
performance, especially when k3 > 1. We strongly recommend use of the MSC method
for large sample sizes, while the MWV can be used as an alternative. When the process
distribution is in some neighbourhood of Weibull, lognormal or gamma, SC and MSC
control charts have a p (i.e. probability of a false alarm) closer to 0.0027. Consequently,
the proposed method for the robust X̄ control chart can be a favourable substitute in
process monitoring when the mean of a skewed population is contaminated in Phase I
and Phase II.
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