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On weighted balanced loss function under the
Esscher principle and credibility premiums
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Abstract

This paper focuses on weighted balanced loss function under the Es-
scher principle (WBLF) of which we explore the modern practice of
credibility theory and we generalize credibility premiums by using the
WBLF. We obtain a distribution-free approach under the WBLF and
the Esscher premium by using a minimization technique. Also, we
discuss the consistency of the credibility premium generated by this
distribution-free approach.
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1. Introduction and motivation

According to Rodermund (1989), the concept of credibility has been the casualty
actuaries most important and enduring contribution to casualty actuarial science.

In this sense, credibility theory is used to determine the expected claims experience of
an individual risk when those risks are not homogeneous, given that the individual risk
belongs to a heterogeneous collective. The main objective of the credibility theory is to
calculate the weight which should be assigned to the individual risk data to determine
a fair premium to be charged, for recent detailed introductions to credibility theory, see
Norberg (2004), Bühlmann and Gisler (2005).

Moreover, the credibility assumed that the individual risk, X, has a density f (x | θ)
indexed by a parameter θ ∈ Θ which has a prior distribution with density π (θ). Let, now,
πx (θ) be the posterior density when x is observed. In actuarial science, the unknown risk
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premium PLR ≡ PLR (θ) is obtained by minimizing the expected loss Ef [L(θ, P )], with p ∈
P for some loss function L. If experience is not available, the actuary chooses the collec-
tive premium PLC , which is given by minimizing the risk function, i.e. Eπ[L(PLR (θ), PLC )].
In addition, if experience is available, the actuary takes a sampleX from the random vari-
ables Xi, i = 1, t and uses this information to the unknown risk premium PLR (θ), through
the Bayes premium PLB , obtained by minimizing the Bayes risk, i.e. Eπx [L(PLR (θ), PLB )].

According to Heilmann (1989), many credibility premiums were obtained under statis-
tical decision theory from a Bayesian point of view and using the weighted squared error
loss function (WLF henceforth), L1(P, x) = h(x) (x− P )2, using di�erent functional
forms of h(x) we have di�erent premium principles (such as net premium principle, ex-
pected value premium principle, variance premium principle, standard deviation premium
principle, proportional hazards premium principle, principle of equivalent utility, dutch
premium principle, Wang's premium principle, exponential principle, mean value princi-
ple, zero utility principle, Swiss premium calculation principle, Orlicz principle, Esscher
principle). For example, if we take h(x) = 1 and h(x) = ehx, h > 0, we have the net and
the Esscher premium principles, see Heilmann (1989), Gómez (2006), and others.

In today's point of view, it would be better to understand credibility premium as a sim-
pli�ed version of Bayes estimation of the individual pure premium. It is well known that
the credibility premium can be written as a convex combination between the individual
and the collective information. Under the case of the exponential family of distributions,
exactly in the case of the pair: Poisson- Gamma, the Bayes Esscher premium can be
written as a credibility formula in the form:

PL1
B = Z (t) g (x̄) + (1− Z (t))PL1

C

with (see Heilmann (1989) and Gómez (2006) for details):

PL1
B : the Bayes premium obtained under WLF;

PL1
C : the collective premium obtained under WLF;
g (x̄): a function of the observed data;
Z (t): is the credibility factor, satisfying the condition 0 ≤ Z (t) ≤ 1.
In this work, we use the weighted balanced loss function (WBLF) to obtain new

credibility premiums, WBLF is a generalized loss function introduced by Zellner (1994)
(see Gupta and Berger (1994), pp.371-390) and which appears also in Dey et al. (1999)
and Farsipour and Asgharzadhe (2004). It is given by

L2 (P, x) = ωh(x)(δ0(x)− P )2 + (1− ω)h(x)(x− P )2

where 0 ≤ ω ≤ 1, h(x) is a positive weight function, and δ0(x) is a function of the
observed data (see Jafari et al. (2006)). When ω is chosen to equal 0,This loss includes
as a particular case the WLF, i.e.

L2 (P, x) = 0h(x)(δ0(x)− P )2 + (1− 0)h(x)(x− P )2

= h(x) (x− P )2 = L1(P, x)

Moreover, our work is a generalization of Gómez Déniz (2008) and the results obtained
here are very close to those obtained by Najafabadi et al. (2010) whose approximate
the Bayes estimator with respect to a general loss function and general prior distribution
by a convex combination of the observation mean and mean of prior, say, approximate
credibility formula.

The paper is organized as follows. Section 2 describes the Esscher premium principle
and its properties . Section 3 is dedicated to derive the Esscher credibility premiums
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under WBLF. Section 3 provides the main contribution of this work, i.e., the solutions
under the distribution free approach. Finally, a small simulation is carried out to illustrate
the theoretical conclusions and some remarks.

2. Properties of the Esscher premium principle

Let χ denote the set of non-negative random variables on the probability space
(Ω, F, P ). Goovaerts et al. (1984) describe the Esscher premium as the expected value
of the risk X after multiplying the density of X by an increasing weight function, which
of course makes the risk less attractive to the insurer. The Esscher premium of X ∈ χ is
given by

H [X] = ehx (x− P )2 , h > 0.

which h re�ects the risk averseness of the insurer. In fact, the distribution function Fx
of X is replaced by its Esscher transform, denoted by FX,h, where h is a real parameter:

dFX,h (x) =
ehxdFX (x)∫∞

0
ehxdFX (x)

Clearly, FX,h is also a distribution function. So the Esscher premium of X, with param-
eter h can be calculated as

H[X] =

∫ ∞
0

xdFX,h (x)

Some properties of Esscher premium principle are listed as follows. The proofs can be
easily checked.

• Risk loading: H[X] > E [X] for all X ∈ χ, and h > 0. In addition, when
h → 0, we have H[X] → E(X) which is equal to the net premium principle.
Loading for risk is desirable because one generally requires a premium rule to
charge at least the expected payout of the risk X, namely E(X), in exchange
for insuring the risk. Otherwise, the insurer will lose money on average.

• No unjusti�ed risk loading: If a risk X ∈ χ is identically equal to a constant
c ≥ 0 (almost everywhere), then H[c] = ehc (c− P )2 = c. If we know for certain
(with probability 1) that the insurance payout is c, then we have no reason to
charge a risk loading because there is no uncertainty as to the payout.

• Maximal loss (or no rip-o�): H[X] ≤ esssup[X] for all X ∈ χ.
• Translation equivariance (or translation invariance): H[X+c] = H[X]+c
for all X ∈ χ and all c ≥ 0. If we increase a risk X by a �xed amount c, then the
premium for X + c should be the premium for X increased by the �xed amount
c.

• Additivity for independent risks: If X,Y ∈ χ are independent of each other,
then H[X + Y ] = H[X] +H[Y ].

• Monotonicity: If X(ω) ≤ Y (ω) for all ω ∈ Ω, then H[X] ≤ H[Y ].
• Preserving of �rst stochastic dominance (FSD) ordering: If SX(t) ≤
SY (t) for all t ≥ 0, then H[X] ≤ H[Y ].

• Preserving of stop-loss (SL) ordering: If E[X − d]+ ≤ E[Y − d]+ for all
d ≥ 0, then H[X] ≤ H[Y ].

• Continuity: Let X ∈ χ, then lima→0+ H[max(X − a, 0)] = H[X], and
lima→∞H[min(X, a)] = H[X].
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Now, we give the individual premium, the collective premium and the Bayesian pre-
mium under the Esscher principle:
The individual premium
The individual premium of risk X and parameter θ under Esscher premium principle is

PLR = Ef [L(θ, P )] =
Ef
[
Xehx | θ

]
Ef [ehx | θ]

The collective premium
If we have no information, the actuary charges the collective premium to the insured
which is given by

PLC =
Eπ
[
PLR e

hPLR

]
Eπ
[
ehP

L
R

]
The Bayesian premium
To calculate the Bayesian premium, we use both the prior information about the param-
eters of the loss process and the actual loss experience observed during the policy period.
The posterior density function is obtained using the prior density function and the data
on actual losses from the Bayes' theorem. Let f (x | θ) be the probability function of X,
and let π (θ) denote the prior density function of θ. Let πX (θ) be the posterior density
function, then:

PLB = Eπx
[
L(PLR , P

L
B )
]

=
Eπx

[
PLR e

hPLR

]
Eπx

[
ehP

L
R

]
3. Derivation of premiums under WBLF

In this section, we aim to use the WBLF to derive a new credibility formula under
the Esscher premium principle. Next lemma is a generalization of Lemma 3.1 in Jafari
et al. (2006).

3.1. Lemma. Under WBLF and prior π, the risk , collective and Bayes premium are
given by

PL2
R = ω

Ef(x|θ ) [δ0(x)h(x) |θ ]

Ef(x|θ ) [h(x) |θ ]
+ (1− ω)

Ef(x|θ ) [Xh(x) |θ ]

Ef(x|θ ) [h(x) |θ ]

PL2
C = ω

Eπ
[
δ0(x)h(PL2

R )
]

Eπ
[
h(PL2

R )
] + (1− ω)

Eπ
[
PL2
R h(PL2

R )
]

Eπ
[
h(PL2

R )
]

= ωδ∗0 + (1− ω)
Eπ
[
PL2
R h(PL2

R )
]

Eπ
[
h(PL2

R )
]

PL2
B = ωδ∗0 + (1− ω)

Eπx
[
PL2
R h(PL2

R )
]

Eπx
[
h(PL2

R )
] ,

where δ∗0 is a target estimator for the risk (individual) premium PL2
R .
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Proof. The proof, which is similar to the one given by Dey et al. (1999).
Under WBLF, we minimize Ef(x|θ )[L2(θ, PL2

R )] with respect to PL2
R .

Under WBLF , we minimize Eπ(θ)[L2(PL1
R , PL2

C )] with respect to PL2
C .

We replace π (θ) by πx (θ) to obtain the Bayes premium PL2
B . �

3.2. Lemma. If the Bayes premium obtained under L1(P, x) is a credibility formula, the
Bayes balanced premium obtained under WBLF is also a credibility formula in this form:

PL2
B = ωδ∗0 + (1− ω)

Eπx

[
e
h
h−θ
h−θ

]
Eπx

[
e

h
h−θ

]
Proof. Consider the case in which, the claim follows a Poisson distribution with param-
eter θ > 0 and the prior is a gamma distribution π (θ) ∝ θα−1e−βθ, α > 0, β > 0.
Suppose also that the actuary chooses the WLF to obtain the Esscher risk premium and
the WBLF to obtain the Esscher collective and Bayes premiums. Then, we have:

PL1
R =

Ef(x|θ )

[
Xehx/θ

]
Ef(x|θ ) [ehx/θ]

= θeh

PL2
C = ωδ∗0 + (1− ω)

αeh

β − heh

PL2
B = ωδ∗0 + (1− ω)

(α+ t) eh

β + t− heh = z (t) l
(
PL2
C

)
+ (1− z (t)) l(ehx̄)

where z (t) =
β − hh

β + t− heh and l (x) = ωδ∗0 + (1− ω)x.

However, if we replace Poisson(θ) with the exponential distribution Exp(θ), θ > 0, PL2
B

no longer has a credibility formula, because we have

PL1
R =

1

h− θ ,

PL2
C = ωδ∗0 + (1− ω)

Eπ

[
e
h
h−θ
h−θ

]
Eπ
[
e

h
h−θ

] ,
and

PL2
B = ωδ∗0 + (1− ω)

Eπx

[
e
h
h−θ
h−θ

]
Eπx

[
e

h
h−θ

] ,
which is not a credibility formula. �

3.3. Remark. Under the exponential family, the Bayes balanced premium is linear only
under the case Poisson-gamma.

4. The distribution-free approach: Main results

According to Bühlmann (1967), the classical formula in credibility theory often calcu-
lates the premium as a weighted sum of the average experience of the policyholder and the
average experience of the entire collection of policyholders. The main idea in this work
is to change the exact credibility premium H(µ(θ)|X1, X2, ..., Xn) by a linear expression

of the form c0 + c1Hn [x] which Hn [x] =
∑n
i=1Xie

hXi∑n
i=1 e

hXi
indicates the empirical Esscher

premium, depending on the past claims Xi, i = 1, n. Using the WBLF , we will suppose
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that the variables X1|θ,X2|θ, ...,Xn|θ are independently and identically distributed. To
simplify the presentation, we use the following notations

µ(θ) = ω
Ef(x|θ)

[
δ0(x)ehx|θ

]
Ef(x|θ) [ehx|θ] + (1− ω)

Ef(x|θ)
[
Xehx|θ

]
Ef(x|θ) [ehx|θ] ,

is the individual Esscher premium.

m = ωδ∗0 + (1− ω)
Eπ
[
µ(θ)ehµ(θ)

]
Eπ [ehµ(θ)]

,

is the collective Esscher premium. Then, the coe�cients c0, c1 must be determined by
minimizing

(4.1) min
c0,c1

E
[
ω (δ0 − c0 − c1Hn [x])2 ehµ(θ) + (1− ω) (µ(θ)− c0 − c1Hn [x])2 ehµ(θ)

]
.

In order to �nd the solution to (4.1), we write

mh (θ) = E
[
ehµ(θ) | θ

]

mh = E [mh (θ)] = EΠ

[
ehµ(θ)

]

fn (θ) = E [Hn [x] | θ]

E∗ [fn (θ)] =
E [fn (θ)mh (θ)]

E [mh (θ)]
=
E
[
Hn [x] ehµ(θ)

]
E [ehµ(θ)]

,

where π∗(θ) =
π(θ)mh (θ)

mh
is a probability distribution function. To achieve the minimum

in (6), the derivative with respect to ”c0” must be set to zero, namely,

E
[
ωehµ(θ) (δ0 − c0 − c1Hn [x])

]
+ E

[
(1− ω) ehµ(θ) (µ(θ)− c0 − c1Hn [x])

]
= 0

ω
(
E
[
ehµ(θ)δ0

]
− c0E

[
ehµ(θ)

]
− c1E

[
ehµ(θ)Hn [x]

])
+

(1− ω)
(
E
[
ehµ(θ)µ(θ)

]
− c0E

[
ehµ(θ)

]
− c1E

[
ehµ(θ)Hn [x]

])
= 0

c0E
[
ehµ(θ)

]
= ωE

[
ehµ(θ)δ0

]
+ (1− ω)E

[
ehµ(θ)µ(θ)

]
− c1E

[
ehµ(θ)Hn [x]

]
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c0 =
ωE

[
ehµ(θ)δ0

]
+ (1− ω)E

[
ehµ(θ)µ(θ)

]
− c1E

[
ehµ(θ)Hn [x]

]
E [ehµ(θ)]

c0 = ω
E
[
δ0e

hµ(θ)
]

E [ehµ(θ)]
+ (1− ω)

E
[
µ(θ)ehµ(θ)

]
E [ehµ(θ)]

− c1
E
[
Hn [x] ehµ(θ)

]
E [ehµ(θ)]

c0 = m− c1
E
[
Hn [x] ehµ(θ)

]
E [ehµ(θ)]

c0 = m− c1
E [fn (θ)mh (θ)]

E [mh (θ)]

(4.2) c0 = m− c1E∗ [fn (θ)] .

Now, the problem is equivalent to:

minc1 E

[
ω (δ0 −m+ c1E

∗ [fn (θ)]− c1Hn [x])2 ehµ(θ)

+ (1− ω) (µ(θ)−m+ c1E
∗ [fn (θ)]− c1Hn [x])2 ehµ(θ)

]
= 0

minc1 E

[
ωehµ(θ) (δ0 −m− c1 (Hn [x]− E∗ [fn (θ)]))2

+(1− ω)ehµ(θ)(µ(θ)−m− c1 (Hn [x]− E∗ [fn (θ)]))2

]
= 0

Taking derivative to ”c1”:

2c1E
[
ωehµ(θ) (Hn [x]− E∗ [fn (θ)])2

]
− 2E

[
ωehµ(θ) (Hn [x]− E∗ [fn (θ)]) (δ0 −m)

]
+2c1E

[
(1− ω) ehµ(θ) (Hn [x]− E∗ [fn (θ)])2

]
−2E

[
(1− ω) ehµ(θ) (Hn [x]− E∗ [fn (θ)]) (µ(θ)−m)

]
= 0

c1E
[
ehµ(θ) (Hn [x]− E∗ [fn (θ)])2

]
= E

[
ωehµ(θ) (Hn [x]− E∗ [fn (θ)]) (δ0 −m)

]
+E

[
(1− ω) ehµ(θ) (Hn [x]− E∗ [fn (θ)]) (µ(θ)−m)

]

c1 =
E
[
(Hn [x]− E∗ [fn (θ)]) (ωδ0 − ωµ (θ) + µ (θ)−m) ehµ(θ)

]
E
[
(Hn [x]− E∗ [fn (θ)])2 ehµ(θ)

]
c1 =

E
[
(ωδ0 + (1− ω)µ (θ)−m) (Hn [x]− E∗ [fn (θ)]) ehµ(θ)

]
E
[
(Hn [x]− E∗ [fn (θ)])2 ehµ(θ)

]
c1 =

E
[
E
[
(ωδ0 + (1− ω)µ (θ)−m) (Hn [x]− E∗ [fn (θ)]) ehµ(θ) | θ

]]
E
[
E
[
(Hn [x]− E∗ [fn (θ)])2 ehµ(θ) | θ

]]
c1 =

E
[
E
[
(ωδ0 + (1− ω)µ (θ)−m) (Hn [x]− E∗ [fn (θ)]) ehµ(θ) | θ

]]
E
[
E
[
(Hn [x]− E∗ [fn (θ)])2 ehµ(θ) | θ

]]
c1 =

1
mh

E
[
E
[
(ωδ0 + (1− ω)µ (θ)−m) (Hn [x]− E∗ [fn (θ)]) ehµ(θ) | θ

]]
1
mh

E
[
E
[
(Hn [x]− E∗ [fn (θ)])2 ehµ(θ) | θ

]]
c1 =

1
mh

E [(ωδ0 + (1− ω)µ (θ)−m) (Hn [x]− E∗ [fn (θ)])mh (θ)]

1
mh

E
[
E
[
(Hn [x]− E∗ [fn (θ)])2 mh (θ)

]]
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c1 =

E

[
ω(δ0 − δ∗0) + (1− ω)(µ (θ)− Eπ[µ(θ)ehµ(θ)]

Eπ[ehµ(θ)]
) (fn (θ)− E∗ [fn (θ)]) mh(θ)

mh

]
E
[
E
[
(Hn [x]− E∗ [fn (θ)])2 mh(θ)

mh

]]

c1 =

(1− ω)E

[
(µ (θ)− Eπ[µ(θ)ehµ(θ)]

Eπ[ehµ(θ)]
) (fn (θ)− E∗ [fn (θ)]) mh(θ)

mh

]
E
[
E
[
(Hn [x]− E∗ [fn (θ)])2 mh(θ)

mh

]]

c1 =

(1− ω)E

[
(µ (θ)− Eπ[µ(θ)ehµ(θ)]

Eπ[ehµ(θ)]
) (fn (θ)− E∗ [fn (θ)]) mh(θ)

mh

]
var∗ [fn (θ)] + E∗ [var [Hn [x] | θ]]

(4.3) c1 =
(1− ω)cov∗ (µ(θ), fn (θ))

var∗ [fn (θ)] + E∗ [var [Hn [x] | θ]] .

Using (4.2) and (4.3), we �nd

H(µ(θ)|X1, X2, ..., Xn) = c0 + c1Hn [x]

= m− c1E∗ [fn (θ)] + c1Hn [x]

= c1Hn [x] +

(
1− c1E

∗ [fn (θ)]

m

)
m

5. Numerical simulation

This section is made in order to illustrate the convergence of the empirical premium
to the individual Esscher premium using a numerical simulation. We assume that X
follows a Poisson distribution with parameter θ, and the prior is a gamma distribution.
Taking δ0(x) = x̄eh

H(µ(θ)|X1, X2, ..., Xn) = c1Hn [x] +

(
1− c1E

∗ [fn (θ)]

m

)
m

With:

c1 =
(1− ω)cov∗ (µ(θ), fn (θ))

var∗ [fn (θ)] + E∗ [var [Hn [x] | θ]]
It is quite di�cult to work out a closed form of c1 due to the obstacle in the analytic

calculation of fn (θ) = E [Hn [x] | θ] where Hn [x] =
∑n
i=1Xie

hXi∑n
i=1 e

hXi
. Thus, instead, we use

a Monte Carlo method to compute numerically c1. The algorithm is described as follows:
1- Randomly sample 4 values, θk, k = 1, 2, 3, 4 from distribution with density π∗(θ) ∼
gamma(α, β − heh).
2- For each θk, we produce 1000 repetitions of sampling data, each of which consists of
n independent and identically distributed values.
3- For each θk, we �nd the vector Hj (the empirical premium), according to this vector,
we calculate: Uk, Vk,Wk ,i.e., compute:

Hj =

∑n
i=1 Xije

hXij∑n
i=1 e

hXij

Uk =

∑1000
j=1 Hj

1000

Vk =

∑1000
j=1 (Hj − Uk)2

1000− 1
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Wk =

∑1000
j=1

∑n
i=1 Xije

hXij∑1000
j=1

∑n
i=1 e

hXij
.

4- We calculate:

A =
1

4− 1

4∑
k=1

(
Uk − Ū

) (
Wk − W̄

)
= cov∗ (µ(θ), fn (θ))

B =
1

4− 1

4∑
k=1

(
Uk − Ū

)2
= var∗ [fn (θ)]

C =
1

4

4∑
k=1

Vk = E∗ [var [Hn [x] | θ]]

D =
1

4

4∑
k=1

Uk = E∗ [fn (θ)]

then,

c1 =
(1− ω)A

B + C
.

Simulation I
we take h = 0.8, ω = 0.9, α = 2 and β = 6. In addition, four di�erent values of θ
are given. Furthermore, two sample sizes are considered: n = 100 and n = 150. The
corresponding simulation results are listed in the following tables:

n=100 µ(θ) c1 m=P
L2
c

H̄ sdH(µ(θ)|X1,X2,...,Xn)

θ=0.2 0.445108 0.0880289 0.503881 0.4467347 0.01009818

θ=0.4 0.890216 0.0880289 0.903917 0.8855569 0.00539665

θ=0.6 1.335300 0.0880289 1.312647 1.332238 0.2863931

θ=0.8 1.780400 0.0880289 1.707736 1.763652 0.17487

Table 1. Simulation results, n = 100

n=150 µ(θ) c1 m=P
L2
c

H̄ sdH(µ(θ)|X1,X2,...,Xn)

θ=0.2 0.445108 0.08798384 0.5012096 0.4436123 0.00149569

θ=0.4 0.890216 0.08798384 0.9060136 0.887553 0.00266295

θ=0.6 1.335300 0.08798384 1.3071587 1.326706 0.01095288

θ=0.8 1.780400 0.08798384 1.707462 1.76525 0.04263834

Table 2. Simulation results, n = 150

Simulation II
To proving the closeness of this new credibility premium, we make another simulation
by Taking 9 values of θ with the following parameters: h = 0.004, ω = 0.9, α = 2 and
β = 8, the same sample sizes are considered in this simulation.
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n=100 µ(θ) c1 m=P
L2
c

H̄ sdH(µ(θ)|X1,X2,...,Xn)

θ=0.01 0.01002 0.059246202 0.021610547 0.01922807 0.00101804

θ=0.02 0.02004 0.059246202 0.030393611 0.02858928 0.008943467

θ=0.03 0.03006 0.059246202 0.040062203 0.03889427 0.008181747

θ=0.04 0.04008 0.059246202 0.048971771 0.04839034 0.009120648

θ=0.05 0.0501001 0.059246202 0.057808875 0.05780403 0.007527759

θ=0.06 0.06012012 0.059246202 0.066727051 0.06682108 0.001030524

θ=0.07 0.07014014 0.059246202 0.077531796 0.07676451 0.008697686

θ=0.08 0.08016016 0.059246202 0.083552218 0.08335358 0.00742907

θ=0.09 0.09036072 0.059246202 0.09637804 0.0947857 0.003017266

Table 3. Simulation results, n = 100

n=150 µ(θ) c1 m=P
L2
c

H̄ sdH(µ(θ)|X1,X2,...,Xn)

θ=0.01 0.01004008 0.06906078 0.021616573 0.0187785 0.009932746

θ=0.02 0.02008016 0.06906078 0.030670718 0.02855261 0.008946811

θ=0.03 0.03012024 0.06906078 0.039429681 0.03800808 0.00718741

θ=0.04 0.04016032 0.06906078 0.048875386 0.04820519 0.008981859

θ=0.05 0.0502004 0.06906078 0.057242788 0.05723828 0.006831935

θ=0.06 0.06024048 0.06906078 0.066706573 0.06745428 0.00106605

θ=0.07 0.07028056 0.06906078 0.073971576 0.07529701 0.006379061

θ=0.08 0.08032064 0.06906078 0.084158238 0.08629355 0.008426812

θ=0.09 0.09036072 0.06906078 0.093061777 0.09590581 0.001535335

Table 4. Simulation results, n = 150

where, H̄(µ(θ)|X1, X2, ..., Xn) is denoted by H̄.
Here, H̄(µ(θ)|X1, X2, ..., Xn) is the average of 1000 repetitions ofH(µ(θ)|X1, X2, ..., Xn),

sdH(µ(θ)|X1,X2,...,Xn) denotes the standard deviation of H(µ(θ)|X1, X2, ..., Xn), and µ(θ)
is the individual Esscher premium. The simulation shows better closeness of
H̄(µ(θ)|X1, X2, ..., Xn) to µ(θ) than m. Moreover, the simulation results show that the
new exact credibility premium
H(µ(θ)|X1, X2, ..., Xn) is much closed to the individual Esscher premium. Also, we ob-
serve if θ → 1, the new exact credibility premium H(µ(θ)|X1, X2, ..., Xn) is more much
closed to the individual Esscher premium. This closeness proves the consistency of this
credibility premium.

5.1. Remark. In this work, we take only the single insurance contract, which is valid
only when the collective premium is given.

6. Conclusion

This study investigated weighted balanced loss function under the Esscher principle
and generalized credibility premiums. It then derived distribution-free credibility premi-
ums. More precisely, it employed a distribution free approach under WBLF to obtain a
simple and new credibility premium which it is a combination of the collective premium
and the individual Esscher premium.

Using a numerical simulation approach, it obtained empirical premiums and illustrated
whether the empirical premiums converged to the Esscher premium. Its numerical sim-
ulation provides evidence of the convergence of the new credibility premiums derived in
the study, and shows a simple way to calculate credibility premiums for actuaries.
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However, our study is limited in the case of Poisson-gamma in which the Esscher
premium has a linear formula, but under the other combinations of the exponential
family, the Esscher premium does not hold.

Another research topic should include the other cases of the exponential family to
generalizing this study and giving to insurer the choice between distributions.
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