Hacettepe Journal of Mathematics and Statistics
Volume 46 (6) (2017), 10291034

Herstein’s theorem for generalized derivations in
rings with involution

Shakir Ali *', Abdul Nadim Khan* ¥ and Nadeem Ahmad Dar®

Abstract

Let R be an associative ring. An additive map F' : R — R is called
a generalized derivation if there exists a derivation d of R such that
F(zy) = F(z)y + zd(y) for all z,y € R. In [7], Herstein proved the
following result: If R is a prime ring of char(R) # 2 admitting a
nonzero derivation d such that [d(z),d(y)] = 0 for all z,y € R, then R is
commutative. In the present paper, we shall study the above mentioned
result for generalized derivations in rings with involution.
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1. Introduction, Notations and Results

Throughout the present paper, R always denotes an associative ring with center Z(R),
C is an extended centroid of R and U is a left Utumi quotient ring of R. A ring R is
said to be 2-torsion free if 2z = 0 (where z € R) implies that z = 0. A ring R is called
prime if aRb = (0) (where a,b € R) implies either a = 0 or b = 0, and is called semiprime
ring if aRa = (0) (where a € R) implies a = 0. Following [6], an additive map = +— z*
of R into itself is called an involution if (i) (zy)* = y*z* and (ii) (z*)* = « hold for all
x € R. A ring equipped with involution is called ring with involution or *-ring. A ring R
with involution is called normal if zz* = x*x for all x € R. An element z in a ring with
involution is said to be hermitian if z* = x and skew-hermitian if z* = —xz. The sets
of all hermitian and skew-hermitian elements of R will be denoted by H(R) and S(R),
respectively. The involution is said to be of the first kind if Z(R) C H(R), otherwise it
is said to be of the second kind. In the later case, S(R) N Z(R) # (0).
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An additive mapping d : R — R is said to be a derivation of R if d(zy) = d(z)y +
xd(y) holds for all z,y € R. A derivation d is said to be inner if there exists an element
a € R such that d(z) = axz — za for all © € R. In [3], Bresar introduced the algebraic
definition of generalized derivation as follows: an additive mapping F': R — R is called
a generalized derivation of R if there exists a derivation d of R such that F(zy) =
F(z)y + zd(y) for all z,y € R. Obviously, any derivation is a generalized derivation,
but the converse is not true in general. A significant example is a map of the form
F(z) = ax + xb for some a,b € R; such generalized derivations are called inner.

In [7], Herstein proved that if R is a prime ring of char(R) # 2 admitting a nonzero
derivation d such that [d(x),d(y)] = 0 for all z,y € R, then R is commutative. Later,
Daif [4] extended Herstein’s result for two sided ideals of a semiprime ring. Motivated
by these results Dar and Ali [5] proved the following result: Let R be a prime ring with
involution x of the second kind such that char(R) # 2. If R admits a nonzero derivation
d such that [d(z),d(z*)] = 0 for all x € R, then R is commutative. Further, in [2] Bell
and Rehman generalized Heristein’s theorem for generalized derivations. In particular,
they showed that if a prime ring of char(R) # 2 with identity admitting a generalized
derivation F' : R — R such that [F(z), F(y)] = 0 for all z,y € R, then either R is
commutative or R is a 2 X 2 matrices over a field and f(z) = ax + za for all z € R, where
a is a fixed element of R.

In the present paper, we study the Dar and Ali’s [5] result for generalized derivations
in prime rings with involution. More precisely, we prove the following:

1.1. Theorem. Let R be a non commutative prime ring with involution of the second
kind such that char(R) # 2. If R admits a nonzero generalized derivation F' : R — R
such that [F(x), F(z*)] = 0 for all x € R, then R is an order in a central simple algebra
of dimension at most 4 over its center and F(x) = ax+xb for allx € R and fized a,b € U
such that a —b e C.

We recall some well known facts which will be helpful in order to prove our results:

Fact 1. [1, Lemma 2.1] Let R be a prime ring with involution such that char(R) # 2. If
S(R) N Z(R) # (0) and R is normal, then R is commutative.

Fact 2. The center of a prime ring is free from zero devisors.

Fact 3. Let R be a ring with involution such that char(R) # 2. Then, every x € R can
uniquely represented as 2¢ = h + k, where h € H(R) and k € S(R).

Fact 4. [8, Theorem 3] Let n > 1 be a fixed integer and R is a prime ring of char(R) #
2,..,n—1. If F: R — R is a generalized derivation such that (F(z))" =0 for all z € R,
then F' = 0.

Proof of Theorem 1.1. By the given hypothesis, we have

(1.1) [F(z),F(z")] =0 for all z € R.

Replacing © by h + k in (1.1), where h € H(R) and k € S(R), we have
(1.2) [F(k),F(h)] =0 for all h€ H(R) and k € S(R).
Taking h = kf in (1.2), where k1 € S(R) N Z(R), we get

(1.3) [F'(k), F(k1)]k1 =0 for all k € S(R) and k1 € S(R)N Z(R).

In view of Fact 2, we have
(1.4) [F'(k), F(k1)]=0for all k € S(R) and k1 € S(R)N Z(R).
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Replacing k by hok: in (1.4), where ho € H(R) and k1 € S(R) N Z(R), we get

(1.5) [F'(ho), F(k1)]k1 + [ho, F'(k1)]d(k1) =0
for all hg € H(R) and k1 € S(R) N Z(R). Application of (1.2) yields that
(1.6) [ho,F(k‘l)]d(lﬁ) =0 for all hg € H(R) and ki1 € S(R) n Z(R)

Using the primeness of R we obtain, either [ho, F'(k1)] = 0 or d(k1) = 0. Assume that
[ho, F(k1)] = 0 for all hg € H(R) and k1 € S(R) N Z(R). Replacing ho by kok: in the
last expression, where ko € S(R) and k1 € S(R) N Z(R), we obtain [ko, F'(k1)]k1 = 0 for
all ho € H(R) and k1 € S(R) N Z(R). This further implies that [ko, F'(k1)] = 0 for all
ko € S(R) and k1 € S(R)NZ(R). In view of Fact 3, we have 2[y, F(k1)] = [2y, F(k1)] =
[ho + ko, F'(k1)] = [ho, F'(k1)] + [ko, F'(k1)] = 0. Since char(R) # 2, the last expression
yields that [y, F'(k1)] =0 for all y € R and k1 € S(R)NZ(R). That is, F (k1) € Z(R) for
all k1 € S(R) N Z(R). Next, substituting k& by hki in (1.2), where h € H(R) and k1 €
S(R)INZ(R), we get [F(hks), F(h)] = [F(h)kr, F(0)]-+[hd(ky), F()] = [h, F())d(k1) = 0
for all h € H(R) and k1 € S(R) N Z(R). Again primeness of R forces that either
[h, F(h)] =0 or d(k1) = 0. Assume that [h, F(h)] =0 for all h € H(R). Taking h = kk;
for all k € S(R) and k1 € S(R) N Z(R) and using F (k1) € Z(R), we get [k,d(k)]ki =0
for all k € S(R) and k1 € S(R) N Z(R). Application of Fact 2 yields that [k,d(k)] = 0
for all k € S(R). Next, replacing k by hk; in the last relation, we get [h,d(h)]ki = 0.
This implies that

(1.7) [h,d(h)] =0 for all h € H(R).

On linearizing (1.7), we obtain

(1.8) [d(h), ho] + [d(ho),h] =0 for all h,ho € H(R).

Which can be further written as

(1.9) [d(ho), h] = [ho,d(h)] for all h,ho € H(R).
Substituting h? for h in above expression, we obtain

(1.10) [d(ho), h?] = [ho, d(h)]h + h[ho, d(R)] 4+ d(h)[ho, h] + [ho, h]d(h)
for all h,ho € H(R). Also, we have

(1.11) [d(ho), h?] = [d(ho), hh + h[d(ho), h] = [ho, d(h)]h + h[ho, d(h)]
for all h, ho € H(R). Combining (1.10) and (1.11), we obtain

(1.12) d(h)[ho, h] + [ho, h]d(h) = 0 for all h,ho € H(R).

Now, taking ho = kki in (1.12), where k € S(R) and k; € S(R) N Z(R), and using the
fact that S(R) N Z(R) # (0), we arrive at

(1.13) d(h)[k,h] + [k, h]d(h) =0 for all h € H(R) and k € S(R).
Replacing h by h + h1 in (1.13), where hy € H(R) N Z(R), we get
(1.14) d(h)[k, h] + d(h1)[k, k] + [k, h]d(h) + [k, h]d(h1) =0

for all h € H(R) and k € S(R). In view of (1.13), the last relation reduces to
2[k, h]ld(h1) =0 for all h € H(R),k € S(R) and hy € H(R)N Z(R).

Since char(R) # 2, the above expression gives us

(1.15) [k, hJd(h1) = 0 for all h € H(R),k € S(R) and hy € H(R) N Z(R).

Since R is prime, this yields that either [k,h] = 0 or d(hi) = 0. If [k, h] = 0 for all
h € H(R) and k € S(R), then in view of Fact 1, R must be commutative, this leads
to a contradiction. Now assume that d(h1) = 0 for all hy € H(R) N Z(R). This further
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implies that d(ki) = 0 and hence d(k1)

= 0 for all k; € S(R) N Z(R). Replacing k by
hoky in (1.2), where ho € H(R) and k1 € S(R) N ( ) and using d(k1) = 0, we get
(1.16) (ho), F'(h)]k1

[F
for all ho,h € H(R) and ki € S(R)N Z(R). This further implies that
(1.17) [F'(ho), F(h)] =0 for all ho,h € H(R).

In view of Fact 3, (1.2) and (1.17), we find that 2[F(z), F'(h)] = [F(2z), F(h)] = [F(ho+
k), F(h)] = [F(ho), F(h)] + [F(k),F(h)] = 0 for all h,ho € H(R), k € S(R) and z € R.
Since char(R) # 2, the last expression yields that [F'(z), F(h)] = 0 for all z € R and
h € H(R). Taking h = kk1 in this relation, where k € S(R) and k1 € S(R)NZ(R), yields
[F(z), F(k)] =0 for all z € R and k € S(R); and another application of Fact 3 gives

(1.18) [F(z), F(y)] =0 for all z,y € R.

In view of [9, Theorem 1.1], R is an order in a central simple algebra of dimension at most
4 over its center and F'(z) = ax+ xb for all z € R and fixed a,b € U such that a—b € C.
This completes the proof.

If we replace commutator by the anti-commutator in Theorem 1.1, then we obtain
the following result:

1.2. Theorem. Let R be a prime ring with involution of the second kind such that
char(R) # 2. If R admits a generalized deriation F : R — R such that F(x)o F(z*) =0
for all x € R, then F = 0.

Proof. We have

(1.19) F(z)oF(z*)=0for allz € R.

That is,

(1.20) F(z)F(z") + F(z*)F(z) =0 for all z € R.

On linearizing (1.20), we get

(1L21)  F@FW)+ F@)FE") + Fy")F(z) + Fe)F(y) = 0

for all z,y € R. Replacing y by yh1 in (1.21), where h1 € H(R) N Z(R), we get
(1.22) 0 = F(@)F@y" )h + F(z)y*d(h1) + F(y)F(z")h1

+d(h)yF (z") + F(z")F(y)h

+F( )yd(h1) + F(y") F(x)h

+d(h1)yF(z) for all z,y € R and h1 € H(R) N Z(R).
In view of (1.21), we conclude that
(1.23) (F(@)y" +yF (") + F(a")y +y F(x))d(h1) = 0
for all z,y € R and hy € H(R)NZ(R). Application of Fact 2 yields that either F'(z)y* +
yF(z*) + F(z*)y + y*F(z) = 0 or d(hi1) = 0. Suppose that d(h1) = 0 for all by €
H(R)N Z(R). This further implies that d(k1) = 0 for all k1 € S(R) N Z(R). Replacing
y by yk1 in (1.21), where k1 € S(R) N Z(R) and using the fact that S(R) N Z(R) # (0),
we obtain
(1.24) —F@)F(y") + F(y)F(«") — F(y")F(z) + F(z")F(y) = 0
for all ,y € R. On combining (1.21) and (1.24), we get

(1.25) F()F(y")+ F(y")F(z) =0 for all z,y € R.
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Taking y = 2 and using the fact that char(R) # 2, we have

(1.26) (F(x))®> =0 for all z € R.
In view of Fact 4, we get F' = 0. Next, we suppose that
(1.27) F(@)y +yF(@")+ F(z")y+y " F(z) =0 for all z,y € R.

Taking y = h1 in above expression, where hy € H(R) N Z(R) and using the fact that
char(R) # 2, we obtain

(1.28) F(z+z*)hi =0for allz € R and hy € H(R) N Z(R).
This implies that

(1.29) F(z+z*)=0for all x € R.

That is,

(1.30) F(z) = —F(z") for allz € R.

This reduces (1.20) into

(1.31) (F(x))*> =0 for all z € R.

Again in view of Fact 4, we get F' = 0. Thereby proof of the theorem is completed. O

At the end, let us write an example which shows that the restriction of second kind
involution in Theorem 1.1 is not superfluous.

1.3. Example. Let F be any field. Consider R = {< Zl 22 > ’ ai,az,as, a4 € IF}
3 Q4

Of course, R with matrix addition and matrix multiplication is a non commutative
prime ring. Define mappings F : R — R, d : R — R, and * : R — R such that
F<a1 a2>:<0 72a2)d(a1 ag):(O 72a2)<a1 ag)*:
as a4 20,3 0 ’ as as 20,3 0 ’ as a4

(o o) om ={(% o )foer) mon -

. Obviously, Z(R) = ’ a1 €FY. Then z* = z for all z €

as a1 0 ai

Z(R), and hence Z(R) C H(R), which shows that the involution * is of the first kind.
Moreover, F' is a nonzero generalized derivation with associated derivation d and satisfies
the condition [F'(z), F(z*)] = 0 for all z € R. In this case, F' is of the form F(z) = az+uzb,
where a = ( Bl ? ) and b = ( (1] _01 ) However, a—b ¢ C. Hence, the hypothesis
of the second kind involution is crucial in Theorem 1.1.

Acknowledgment: The authors are greatly indebted to the referee(s) for their helpful
suggestions and comments.
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