Available online: February 12, 2018

Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. Volume 68, Number 1, Pages 43-52 (2019) DO I: 10.31801/cfsuasmas.443540 ISSN 1303-5991 E-ISSN 2618-6470

http://communications.science.ankara.edu.tr/index.php?series=A1

FLAT STRONG δ -COVERS OF MODULES

YILMAZ MEHMET DEMIRCI

ABSTRACT. We say that a ring R is right generalized δ -semiperfect if every simple right R-module is an epimorphic image of a flat right R-module with δ small kernel. This definition gives a generalization of both right δ -semiperfect rings and right generalized semiperfect rings. We provide examples involving such rings along with some of their properties. We introduce flat strong δ cover of a module as a flat cover which is also a flat δ -cover and use flat strong δ -covers in characterizing right A-perfect rings, right B-perfect rings and right perfect rings.

1. INTRODUCTION

Flat cover of a module M is introduced by E. Enochs (see [\[10\]](#page-8-0)). It is a homomorphism $\alpha : F \longrightarrow M$ with the following properties.

- (i) F is a flat module.
- (ii) for any homomorphism $\beta : F' \longrightarrow M$ with F' a flat module, there is a homomorphism $\gamma : F' \longrightarrow F$ such that $\alpha \circ \gamma = \beta$.
- (iii) if θ is an endomorphism of F satisfying $\alpha \circ \theta = \alpha$, then θ is an automorphism.

In $[1]$ the term flat cover is used for another concept. A flat cover of a module M is defined as an epimorphism $f : F \longrightarrow M$ from a flat module F with a small kernel. In $[9]$, such covers of modules are called flat B-covers to distinguish between these two definitions, since this definition is derived from the definition of a projective cover in the sense of H. Bass (see $[6]$). We stick to the notation used in $[9]$ concerning flat covers.

As a generalization of right perfect rings, right generalized perfect rings are introduced in $[1]$ as rings whose modules have flat B-covers. In $[9]$, right generalized semiperfect (shortly G -semiperfect) rings are defined with the same condition restricted to the class of all simple modules. Some properties and examples of such

43

Received by the editors: April 02, 2017; Accepted: September 22, 2017.

²⁰¹⁰ Mathematics Subject Classification. 16D40, 16L30.

Key words and phrases. Flat cover, flat δ -cover, flat strong δ -cover, G - δ -semiperfect ring, semiperfect ring, perfect ring.

 \bigcirc 2018 Ankara University. Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics. Com munications de la Faculté des Sciences de l'Université d'Ankara-Séries A1 Mathematics and Statistics.

rings can be found in $[1]$ and $[9]$. In $[9, §3]$ $[9, §3]$, a flat cover of a module which is also a flat B -cover is called a flat strong cover.

Right A -perfect rings and right B -perfect rings are defined using the projectivity of flat covers of certain modules (see $[2]$ and $[7]$). One of the equivalent conditions for a ring R to be right A -perfect (right B -perfect resp.) is that flat covers of cyclic (simple resp.) modules are projective. It is shown in [\[9\]](#page-8-2) that certain modules having flat strong covers are related to the ring being right A -perfect or right B -perfect.

Y. Zhou introduced δ -small submodules and defined δ -covers as epimorphisms with δ -small kernel (see [\[15\]](#page-9-0)). Rings whose (simple resp.) modules have projective δ -covers are defined as right δ -perfect (right δ -semiperfect resp.) rings in the same work. In [\[5\]](#page-8-6), flat δ -covers are introduced as a generalization of both projective δ -covers and flat B-covers. Rings over which every module has a flat δ -cover are called right generalized δ -perfect and properties and examples illustrating relation between such rings, perfect rings and δ -perfect rings are given in [\[5\]](#page-8-6).

In the first part of this work, we follow the ideas used in [\[5\]](#page-8-6) and define right generalized δ -semiperfect rings as a generalization of both δ -semiperfect rings and generalized δ -perfect rings by restricting the property of "having flat δ -covers" to simple modules. For this reason, most of the results given in section 2 depend on and/or uses the ones given in [\[5\]](#page-8-6) for generalized δ -perfect rings. In this section, we give some properties of right generalized δ -semiperfect rings and provide some examples. Such rings are closed under quotients and finite direct products. We show that a commutative domain is right generalized δ -semiperfect if and only if it is local which generalizes [\[9,](#page-8-2) Proposition 2.10]. We also give a direct proof to the fact that a ring is right perfect if and only if it is semilocal and every semisimple module has a flat δ -cover so that semilocal right generalized δ -perfect rings are right perfect.

Generalizing the notion of flat strong covers, we also define flat strong δ -covers of modules as flat covers which are also flat δ -covers. We show that flat cover of a module M is projective if and only if M has a projective cover and a flat strong δ -cover. Using this result we characterize right A-perfect rings, right B-perfect rings and right perfect rings as semilocal rings over which every cyclic, simple and semisimple module has a flat strong δ -cover, respectively.

For a ring R , J denotes the Jacobson radical of the ring R and by saying a regular ring we mean a von Neumann regular ring. Let M be a module and N be a submodule of M. N is said to be δ -small in M if $N + K \neq M$ for every proper submodule K of M with M/K singular (see [\[15\]](#page-9-0)). It generalizes the notion of small submodules in which the condition M/K being singular in the definition is omitted. The submodule $\delta(M)$ is the sum of all δ -small submodules of M. If M is projective, then by [\[15,](#page-9-0) Lemma 1.9], $\delta(M)$ is the intersection of all essential maximal submodules of M. We use δ_r instead of $\delta(R_R)$. Rad(M) denotes the Jacobson radical of M and the notations \leq , \ll and \ll_{δ} are used to indicate submodule,

small submodule and δ -small submodule, respectively. The following results are used in the sequel.

Lemma 1. [\[15,](#page-9-0) Lemma 1.2] Let N be a submodule of a module M . Then the following are equivalent.

- (i) $N \ll_{\delta} M$.
- (ii) If $X + N = M$, then $M = X \oplus Y$ for a projective semisimple submodule Y with $Y \subseteq N$.

Lemma 2. Let M be a module. If $\text{Rad}(M) \ll_{\delta} M$, then $\text{Rad}(M) \ll M$.

Proof. Assume that Rad $(M) + N = M$ for some $N \leq M$. By Lemma [1,](#page-2-0) $M =$ $N \oplus (\bigoplus_{i} S_i)$ for some index set I, where S_i is simple for every $i \in I$. Since $N \neq M$,

I is nonempty. For $i_0 \in I$, $K = N \oplus (\bigoplus_{i \in I} I_i)$ $i \in I \\ i \neq i_0$ S_i) is a maximal submodule of M and

we have $M = \text{Rad}(M) + N \leq K$ which is a contradiction.

2. GENERALIZED δ -SEMIPERFECT RINGS

Flat δ -covers of modules are introduced in [\[5\]](#page-8-6). Rings over which every module has a flat δ -cover are defined as right generalized δ -perfect (briefly right $G-\delta$ -perfect) rings in the same work. Most of the results given in this section depend on and/or uses the ones given in $[5]$ for generalized δ -perfect rings. Related results from this work are cited wherever they are used. We restrict the property of "having a flat δ -cover" to simple modules and give the following definition.

Definition 1. We call a ring R right generalized δ -semiperfect (right G - δ -semiperfect, for short) if every simple right R-module has a flat δ -cover. Left G - δ -semiperfect rings are defined similarly. If R is both right and left G - δ -semiperfect, we call R a G - δ -semiperfect ring.

We now give some examples of right G - δ -semiperfect rings to see their relation to those already studied. Let us recall that a ring R is called a right V -ring if every simple module is flat.

Example 1.

- (a) Every right perfect ring is right $G-\delta$ -perfect and every semiperfect ring is G - δ -semiperfect.
- (b) Every flat module is a flat δ -cover of itself, therefore every right V-ring is $right G$ - δ -semiperfect.
- (c) Every right G-semiperfect ring is right G - δ -semiperfect.
- (d) Following the proof for [\[5,](#page-8-6) Example 3.4], we can shown that $\mathbb Z$ is not a G - δ semiperfect ring. Let p be a prime number and $f : F \longrightarrow \mathbb{Z}/p\mathbb{Z}$ be a flat δ cover of $\mathbb{Z}/p\mathbb{Z}$. By the use of [\[5,](#page-8-6) Lemma 2.5], $F \cong \mathbb{Z}/K$ for some submodule K of $\mathbb Z$, since projective semisimple abelian groups are zero. Then $\mathbb Z/K$

is a cyclic flat abelian group. Since $\mathbb Z$ is noetherian, it is projective so that $K = 0$ and $F \cong \mathbb{Z}$. Then for the isomorphism $q : F \longrightarrow \mathbb{Z}$, we have $g(\text{Ker } f) \ll_{\delta} \mathbb{Z}$ by [\[15,](#page-9-0) Lemma 1.3(2)], since $\text{Ker } f \ll_{\delta} \mathbb{Z}$. g is an isomorphism and $\delta(\mathbb{Z}) = 0$ imply that Ker $f = 0$ and so $\mathbb{Z} \cong \mathbb{Z}/p\mathbb{Z}$ which is a contradiction. Therefore $\mathbb{Z}/p\mathbb{Z}$ does not have a flat δ -cover.

Example 2. For a regular ring K, Let $R = \prod_{n=1}^{\infty}$ $\prod_{i=1} K_i \text{ with } K_i = K \text{ for } i = 1, 2, 3, \dots$ It is shown in $[11, §10.4]$ $[11, §10.4]$ that R is a regular ring which is not semisimple. Then R

is a regular ring which is not semiperfect. Hence R is a right G - δ -semiperfect ring which is not semiperfect.

Proposition 1. Let R and S be right G - δ -semiperfect rings. Then the following hold.

- (i) A ring Morita equivalent to R is right G - δ -semiperfect.
- (ii) Every factor ring of R is right G - δ -semiperfect.
- (iii) $R \times S$ is right G - δ -semiperfect.

Proof. The proof for (i) is almost the same as the one for right G - δ -perfect rings in [\[5,](#page-8-6) Proposition 3.7]. Its proof is given in details, so we omit it to avoid repetition. A proof similar to that for [\[9,](#page-8-2) Proposition 2.8] implies (ii) and (iii) .

Remark 1. Over a right noetherian ring, finitely generated modules are finitely presented and so a flat δ -cover of a finitely generated module M is also a projective δ -cover of M by [\[5,](#page-8-6) Lemma 2.6]. It follows from [\[8,](#page-8-7) Remark 4.4] that a right noetherian ring is semiperfect if and only if it is right G - δ -semiperfect.

The following result is a consequence of [\[5,](#page-8-6) Theorem 4.3] and [\[8,](#page-8-7) Corollary 4.3]. We include it for future references.

Theorem 1. The following are equivalent for a ring R.

- (i) R is semiperfect.
- (ii) R is semilocal and every simple module has a flat B -cover.
- (iii) R is semilocal and every simple module has a flat δ -cover.

Example 3. (Remark in [\[13\]](#page-9-2)) Let $R = S^{-1}\mathbb{Z}$ with $S = \mathbb{Z}\backslash (p\mathbb{Z} \cup q\mathbb{Z})$ for prime numbers $p \neq q$. Then R is semilocal but not G - δ -semiperfect.

Proposition 2. Let R be a right G - δ -semiperfect ring and J be nil. Then R is right noetherian if and only if R is right artinian.

Proof. It is a consequence of [\[9,](#page-8-2) Proposition 2.15] and Remark [1.](#page-3-0)

Corollary 1. $R[x]$ is not a G- δ -semiperfect ring for every commutative noetherian ring R.

Proposition 3. Let R be a commutative domain. Then the following statements are equivalent.

- (i) R is local.
- (ii) R is semiperfect.
- (iii) R is G -semiperfect.
- (iv) R is G - δ -semiperfect.

Proof. Only $(iv) \Rightarrow (i)$ needs to be proved. We follow the proof for [\[5,](#page-8-6) Lemma 2.6] to show that every simple module has a flat δ -cover which is cyclic. Let $f : F \longrightarrow S$ be a flat δ -cover of a simple module S and $g : R \longrightarrow S$ be the canonical epimorphism. Since R is projective, there is a homomorphism $h : R \longrightarrow F$ satisfying $fh = q$. Since Ker $f + \text{Im } h = F$ and Ker $f \ll_{\delta} F$, we have that Im h is a direct summand of F by Lemma [1](#page-2-0) and Ker $f \cap \text{Im } h \ll_{\delta}$ by [\[5,](#page-8-6) Lemma 2.4]. Then $f|_{\text{Im } h} : \text{Im } h \longrightarrow S$ is a flat δ -cover of S. Moreover, Im h is cyclic as a factor module of R and so Im $h \cong R$, since Im h is torsion-free. By using [\[15,](#page-9-0) Lemma 1.3(2)] there is a maximal ideal M of R with $M \ll_{\delta} R$. Hence R is local.

Note that Proposition [3](#page-3-1) gives another way to show that $\mathbb Z$ is not a G - δ -semiperfect ring.

Proposition 4. Let R be a commutative ring and S be a multiplicatively closed subset of R such that every maximal ideal of the ring $S^{-1}R$ is of the form $S^{-1}M$ for some maximal ideal M of R. If R is G- δ -semiperfect then so is $S^{-1}R$.

Proof. Let U be a maximal ideal of $S^{-1}R$ with $U = S^{-1}M$ for some maximal ideal M of R. Since R is G - δ -semiperfect, by [\[5,](#page-8-6) Lemma 2.6] there is a cyclic flat δ -cover R/I of R/M . Since R/I is a flat R-module, $S^{-1}R/S^{-1}I \cong S^{-1}(R/I)$ is a flat $S^{-1}R$ -module. Let $S^{-1}N/S^{-1}I$ be a maximal ideal of $S^{-1}R/S^{-1}I$ other than $S^{-1}M/S^{-1}I$. Then $S^{-1}M/S^{-1}I + S^{-1}N/S^{-1}I = S^{-1}R/S^{-1}I$ and so $M + N = R$. Since $M/I \ll_{\delta} R/I$, $(N+I)/I$ is a direct summand in R so that $S^{-1}N/S^{-1}I$ is a direct summand in $S^{-1}R/S^{-1}I$.

Now we have that either $S^{-1}M/S^{-1}I$ is a direct summand in $S^{-1}R/S^{-1}I$ or $S^{-1}M/S^{-1}I$ is essential in $S^{-1}R/S^{-1}I$. Then either $S^{-1}R/S^{-1}I$ is semisimple or $S^{-1}M/S^{-1}I \ll_{\delta} S^{-1}R/S^{-1}I$ by [\[15,](#page-9-0) Lemma 1.9]. Hence $S^{-1}R/S^{-1}I$ is a flat δ -cover of $S^{-1}R/S^{-1}M$.

The following result is a consequence of Theorem [1](#page-3-2) and Proposition [4.](#page-4-0)

Corollary 2. Let R be a commutative G - δ -semiperfect ring. Then for every finite number of maximal ideals M_1, M_2, \cdots, M_n and $S = R \setminus \bigcup_{i=1}^n$ $\bigcup_{i=1} M_i$, $S^{-1}R$ is semiperfect.

The following result can be given as a consequence of [\[5,](#page-8-6) Remark 3.21] and [\[5,](#page-8-6) Theorem 4.8]. Here we give a direct proof of this fact.

Theorem 2. Let R be a semilocal ring. Then R is right perfect if and only if every semisimple R-module has a flat δ -cover.

Proof. Necessity part is clear, since flat modules are projective over a right perfect ring and a flat cover is also a flat B-cover, hence a flat δ -cover by [\[14,](#page-9-3) Theorem 1.2.12 in this case. For sufficiency let F be a free right R-module. Since R/J is semisimple, F/FJ is a semisimple right R-module. By assumption F/FJ has a flat δ -cover $\alpha: P \longrightarrow F/FJ$ for some flat right R-module P. Since F is projective, we have the commutative diagram

where $\pi : F \longrightarrow F/FJ$ is the canonical epimorphism. Since π is an epimorphism, we have $\text{Ker }\alpha + \text{Im }\beta = P$. Since $\text{Ker }\alpha \ll_{\delta} P$, $\text{Im }\beta$ is a direct summand of P by Lemma [1](#page-2-0) and so Im β is flat. Then $\overline{\alpha}$: Im $\beta \longrightarrow F/FJ$ induced by α is a flat δ -cover of F/FJ , since Ker $\alpha \cap \text{Im } \beta \ll_{\delta} \text{Im } \beta$ by [\[5,](#page-8-6) Lemma 2.4]. Since F is projective, Im β is flat and Ker $\beta \leq$ Ker $\pi = FJ = \text{Rad }F$, we have Ker $\beta = 0$ by [\[12,](#page-9-4) Exercise 4.20, so $\beta : F \longrightarrow \text{Im }\beta$ induced by β is an isomorphism. Rad $F = FJ =$ $\tilde{\beta}^{-1}$ (Ker $\alpha \cap \text{Im } \beta$) $\ll_{\delta} F$ by [\[15,](#page-9-0) Lemma 1.3]. Lemma [2](#page-2-1) implies that Rad $F \ll F$. By [\[3,](#page-8-8) Lemma 28.3], *J* is right T-nilpotent. Hence *R* is right perfect.

The following result is a consequence of Theorem [2](#page-4-1) and [\[15,](#page-9-0) Theorem 3.8].

Corollary 3. Let R be a semilocal ring. Then the following are equivalent.

- (i) R is right perfect.
- (ii) R is right δ -perfect.
- (iii) R is right G - δ -perfect.

Example 4. Let R be a semiperfect ring which is not right perfect. Then by Corollary [3,](#page-5-0) R is a right $G-\delta$ -semiperfect ring which is not right $G-\delta$ -perfect.

3. FLAT STRONG δ -COVERS

Flat strong covers of modules are introduced in [\[9\]](#page-8-2) as flat covers which are also flat B-covers. They are used in uniqueness (up to isomorphism) of flat B-covers under some conditions in the same work. Here we define flat strong δ -covers of modules as a generalization.

Definition 2. A right R-module M is said to have a flat strong δ -cover if a flat cover $f : F \longrightarrow M$ of M is also a flat δ -cover. In this case, we also say that F is a flat strong δ -cover of M.

Flat δ -cover of a module need not be unique, in general, as [\[1,](#page-8-1) Example 3.1] shows. As a consequence of the example mentioned, one can deduce the following result.

Proposition 5. Let R be a regular ring and flat δ -covers of modules be unique (up to isomorphism), then R is a right V-ring.

The property having flat strong δ -covers is not inherited by submodules, in general. The following result demonstrates a special case. Note that a homomorphism $\alpha: F \longrightarrow M$ satisfying the first two conditions in the definition of a flat cover is called a flat precover of M .

Proposition 6. Let R be a ring such that $\delta(M) = M\delta_r \ll_{\delta} M$ for every module M. Let $K \leq L$ and L/K be flat. If L has a flat strong δ -cover, then so does K.

Proof. Let $f : F \longrightarrow L$ be a flat strong δ -cover of L. Following the proof for [\[14,](#page-9-3) Lemma 3.1.3] with $P = f^{-1}(K)$, $f' : P \longrightarrow K$ induced by f is a flat precover of K. By [\[14,](#page-9-3) Theorem 1.2.7], $P = X \oplus Y$ for submodules X and Y such that $f'_{|X}: X \longrightarrow K$ is a flat cover of K and $Y \leq$ Ker $f' =$ Ker f.

Since Ker $f \ll_{\delta} F$, $F/P \cong L/K$ is flat and δ_r is two sided, by [\[3,](#page-8-8) Lemma 19.18] we have

$\operatorname{Ker} f \leq F \delta_r \cap P = P \delta_r \ll_{\delta} P.$

Let $W + \text{Ker } f'_{|X} = W + (\text{Ker } f \cap X) = X$ for some submodule W of X. Then $Ker f = Ker f \cap P = Ker f \cap (X + Y) = (Ker f \cap X) + Y$ and $P = X + Y =$ $W + (\text{Ker } f \cap X) + Y = W + \text{Ker } f.$ Since Ker $f \ll_{\delta} P, P = W \oplus U$ for some projective semisimple submodule U of Ker f by Lemma [1.](#page-2-0) Then $X = X \cap P =$ $X \cap (W \oplus U) = W \oplus (X \cap U)$ with $X \cap U$ is projective semisimple and contained in Ker $f'_{|X}$. The use of Lemma [1](#page-2-0) once again implies that Ker $f'_{|X} \ll_{\delta} X$. Hence $f'_{|X}: X \longrightarrow K$ is a flat strong δ -cover of K.

Rings over which flat covers of cyclic modules are projective are introduced in [\[2\]](#page-8-4) as right A -perfect rings. Right B -perfect rings are defined with the same condition restricted to simple modules in [\[7\]](#page-8-5).

Proposition 7. If flat cover of a module M is projective, then flat δ -covers of M are projective.

Proof. Let $f : F \longrightarrow M$ be a flat cover of M and $g : P \longrightarrow M$ be a flat δ -cover of M. Since F is projective, there is a homomorphism $h : F \longrightarrow P$ such that $gh = f$. Since Ker $g + \text{Im } h = P$ and Ker $g \ll_{\delta} P$, we have by Lemma [1](#page-2-0) that $P = \text{Im } h \oplus Y$ for some projective semisimple module Y. Then $F/\text{Ker } h \cong \text{Im } h$ is flat and Ker $h \leq$ Ker $f \ll F$ which implies that Ker $h = 0$ and Im $h \approx F$ is projective by [12. Exercise 4.20]. Therefore, $P = \text{Im } h \oplus Y$ is projective. projective by [\[12,](#page-9-4) Exercise 4.20]. Therefore, $P = \text{Im } h \oplus Y$ is projective.

Corollary 4. Over a right A-perfect (right B-perfect resp.) ring, flat δ -covers of cyclic (simple resp.) modules are projective.

Flat strong covers are used in characterizing right A-perfect rings, right B-perfect rings and right perfect rings in [\[9\]](#page-8-2). It turns out that flat strong δ -covers are also related to such rings. We need the following result, which is a generalization of [\[9,](#page-8-2) Lemma 3.6], before proceeding.

Lemma 3. Let M be an R-module. Then flat cover of M is projective if and only if M has a projective cover and a flat strong δ -cover.

Proof. Necessity part is clear by [\[14,](#page-9-3) Theorem 1.2.12]. For sufficiency let $f : F \longrightarrow$ M be a flat strong δ -cover of a right R-module M and $g: P \longrightarrow M$ be a projective cover of M . Since P is projective, we have the commutative diagram

with Ker $f \ll_{\delta} F$. Since Im $h + \text{Ker } f = F$, it follows from Lemma [1](#page-2-0) that $F =$ Im $h \oplus K$ for some projective semisimple submodule K of F. Since P is projective, Ker h
left Ker $q \ll P$ and $P/\text{Ker } h \cong \text{Im } h$ is flat as a direct summand of F, we have Ker $h = 0$ by [\[12,](#page-9-4) Exercise 4.20] and so Im h is projective. Hence $F = \text{Im } h \oplus K$ is projective. projective.

Over a right noetherian ring, a flat δ -cover of a cyclic module is also a projective δ -cover by Remark [1.](#page-3-0) If we assume that R is right noetherian and M is cyclic in the proof of Lemma [3,](#page-7-0) then projectivity of $\text{Im } h$ follows from [\[5,](#page-8-6) Proposition 2.15] in this case. Using these facts, we obtain the following result.

Corollary 5. Let R be a right noetherian ring and M be a cyclic module. Then flat cover of M is projective if and only if M has a flat strong δ -cover.

Now we can give characterizations for right A-perfect rings, right B-perfect rings and right perfect rings using flat strong δ -covers, respectively.

Theorem 3. The following statements are equivalent for a ring R.

- (i) Flat covers of cyclic modules are projective.
- (ii) R is semilocal and every cyclic module has a flat strong δ -cover.

Proof. (i) \Rightarrow (ii): R is semilocal by [\[2,](#page-8-4) Theorem 3.7]. If C is a cyclic module and $f: F \longrightarrow C$ is flat cover of C with F projective, then Ker $f \ll F$ by [\[14,](#page-9-3) Theorem 1.2.12. Then $f: F \longrightarrow C$ is a flat strong cover and hence a flat strong δ -cover of C .

 $(ii) \Rightarrow (i)$: Let C be a cyclic module. R is semiperfect by Theorem [1.](#page-3-2) Therefore C has a projective cover. Then C has a projective cover and a flat strong δ -cover. By Lemma [3,](#page-7-0) flat cover of C is projective. \square

Theorem 4. The following statements are equivalent for a ring R.

- (i) Flat covers of simple modules are projective.
- (ii) R is semilocal and every simple module has a flat strong δ -cover.

Proof. (i) \Rightarrow (ii): R is semilocal by [\[7,](#page-8-5) Theorem 2.4]. If S is a simple module and $f: F \longrightarrow S$ is flat cover of S with F projective, then Ker $f \ll F$ by [\[14,](#page-9-3) Theorem 1.2.12. Then $f: F \longrightarrow S$ is a flat strong cover and hence a flat strong δ -cover of S.

 $(ii) \Rightarrow (i)$: Just let C be simple in the proof for Theorem [3](#page-7-1) $ii) \Rightarrow i$.

Theorem 5. The following statements are equivalent for a ring R.

- (i) R is right perfect.
- (ii) Flat covers of semisimple modules are projective.
- (iii) R is semilocal and every semisimple module has a flat strong δ -cover.
- (iv) Every semisimple module has a flat δ -cover and flat covers of simple modules are projective.

Proof. Proofs for $(i) \Rightarrow (ii)$ and $(ii) \Rightarrow (iii)$ are given in [\[9,](#page-8-2) Theorem 3.9].

 $(iii) \Rightarrow (iv)$ is a consequence of Theorem [4.](#page-7-2)

 $(iv) \Rightarrow (i): R$ is semilocal by Theorem [4.](#page-7-2) Theorem [2](#page-4-1) completes the proof. \Box

Note that when R is right noetherian, then using Corollary [5,](#page-7-3) the condition for R being semilocal can be dropped in Theorem [3,](#page-7-1) Theorem [4](#page-7-2) and Theorem [5](#page-8-9) so that such rings can be characterized as rings whose certain modules have flat strong δ -covers.

Acknowledgments

The author would like to thank the referees for careful reading of the paper.

REFERENCES

- [1] Amini, A., Amini, B., Ershad, M. and Sharif, H., On generalized perfect rings, Comm. Algebra $(2007), 35(3), 953-963.$
- [2] Amini, A., Ershad, M. and Sharif, H., Rings over which flat covers of finitely generated modules are projective, $Comm. Algebra$ (2008), 36(8), 2862-2871.
- [3] Anderson, F. W. and Fuller, K. R., Rings and Categories of Modules, Graduate Texts in Mathematics, Springer-Verlag, New York, 1992.
- [4] Atiyah, M. F. and Macdonald, I. G., Introduction to commutative algebra, Addison-Wesley Publishing Co., London, 1969.
- [5] Aydoğdu, P., Rings over which every module has a flat δ -cover, Turkish J. Math. (2013), $37(1), 182-194.$
- [6] Bass, H., Finitistic dimension and a homological generalization of semi-primary rings, Trans. Amer. Math. Soc. $(1960), 95, 466-488$.
- [7] Büyükaşık, E., Rings over which flat covers of simple modules are projective, J. Algebra Appl. (2012), 11(3), 1250046.
- [8] Büyükaşık, E. and Lomp, C., When δ -semiperfect rings are semiperfect, Turkish J. Math. $(2010), 34(3):317-324.$
- [9] Demirci, Y. M., On generalizations of semiperfect and perfect rings, Bull. Iranian Math. Soc. $(2016), 42(6), 1441-1450.$
- [10] Enochs, E. E., Injective and flat covers, envelopes and resolvents, Israel J. Math. (1981), $39(3)$, $189-209$.
- [11] Kasch, F., Modules and rings, London Mathematical Society Monographs, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, 1982. Translated from German with a preface by D. A. R. Wallace.
- [12] Lam, T. Y., Lectures on Modules and Rings, Graduate Texts in Mathematics, Springer, New York, 1999.
- [13] Lomp, C., On semilocal modules and rings, $Comm.$ $Algebra$ (1999), 27(4), 1921-1935.
- [14] Xu, J., Flat covers of modules, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1996.
- [15] Zhou, Y., Generalizations of perfect, semiperfect, and semiregular rings, Algebra Colloq. $(2000), 7(3), 305-318.$

Current address: Yılmaz Mehmet Demirci: Sinop University, Department of Mathematics, 57000, Sinop, TURKEY

 $\emph{E-mail address: ymdemirci@sinop.edu.tr}$ ORCID Address: http://orcid.org/0000-0003-3802-4211