Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. Volume 68, Number 1, Pages 43–52 (2019) DOI: 10.31801/cfsuasmas.443540 ISSN 1303–5991 E-ISSN 2618-6470

http://communications.science.ankara.edu.tr/index.php?series=A1

FLAT STRONG δ -COVERS OF MODULES

YILMAZ MEHMET DEMIRCI

ABSTRACT. We say that a ring R is right generalized δ -semiperfect if every simple right R-module is an epimorphic image of a flat right R-module with δ -small kernel. This definition gives a generalization of both right δ -semiperfect rings and right generalized semiperfect rings. We provide examples involving such rings along with some of their properties. We introduce flat strong δ -cover of a module as a flat cover which is also a flat δ -cover and use flat strong δ -covers in characterizing right A-perfect rings, right B-perfect rings and right perfect rings.

1. Introduction

Flat cover of a module M is introduced by E. Enochs (see [10]). It is a homomorphism $\alpha: F \longrightarrow M$ with the following properties.

- (i) F is a flat module.
- (ii) for any homomorphism $\beta: F' \longrightarrow M$ with F' a flat module, there is a homomorphism $\gamma: F' \longrightarrow F$ such that $\alpha \circ \gamma = \beta$.
- (iii) if θ is an endomorphism of F satisfying $\alpha \circ \theta = \alpha$, then θ is an automorphism.

In [1] the term flat cover is used for another concept. A flat cover of a module M is defined as an epimorphism $f: F \longrightarrow M$ from a flat module F with a small kernel. In [9], such covers of modules are called flat B-covers to distinguish between these two definitions, since this definition is derived from the definition of a projective cover in the sense of H. Bass (see [6]). We stick to the notation used in [9] concerning flat covers

As a generalization of right perfect rings, right generalized perfect rings are introduced in [1] as rings whose modules have flat B-covers. In [9], right generalized semiperfect (shortly G-semiperfect) rings are defined with the same condition restricted to the class of all simple modules. Some properties and examples of such

Received by the editors: April 02, 2017; Accepted: September 22, 2017.

²⁰¹⁰ Mathematics Subject Classification. 16D40, 16L30.

Key words and phrases. Flat cover, flat δ -cover, flat strong δ -cover, G- δ -semiperfect ring, semiperfect ring, perfect ring.

^{©2018} Ankara University.

rings can be found in [1] and [9]. In [9, $\S 3$], a flat cover of a module which is also a flat *B*-cover is called a flat strong cover.

Right A-perfect rings and right B-perfect rings are defined using the projectivity of flat covers of certain modules (see [2] and [7]). One of the equivalent conditions for a ring R to be right A-perfect (right B-perfect resp.) is that flat covers of cyclic (simple resp.) modules are projective. It is shown in [9] that certain modules having flat strong covers are related to the ring being right A-perfect or right B-perfect.

Y. Zhou introduced δ -small submodules and defined δ -covers as epimorphisms with δ -small kernel (see [15]). Rings whose (simple resp.) modules have projective δ -covers are defined as right δ -perfect (right δ -semiperfect resp.) rings in the same work. In [5], flat δ -covers are introduced as a generalization of both projective δ -covers and flat B-covers. Rings over which every module has a flat δ -cover are called right generalized δ -perfect and properties and examples illustrating relation between such rings, perfect rings and δ -perfect rings are given in [5].

In the first part of this work, we follow the ideas used in [5] and define right generalized δ -semiperfect rings as a generalization of both δ -semiperfect rings and generalized δ -perfect rings by restricting the property of "having flat δ -covers" to simple modules. For this reason, most of the results given in section 2 depend on and/or uses the ones given in [5] for generalized δ -perfect rings. In this section, we give some properties of right generalized δ -semiperfect rings and provide some examples. Such rings are closed under quotients and finite direct products. We show that a commutative domain is right generalized δ -semiperfect if and only if it is local which generalizes [9, Proposition 2.10]. We also give a direct proof to the fact that a ring is right perfect if and only if it is semilocal and every semisimple module has a flat δ -cover so that semilocal right generalized δ -perfect rings are right perfect.

Generalizing the notion of flat strong covers, we also define flat strong δ -covers of modules as flat covers which are also flat δ -covers. We show that flat cover of a module M is projective if and only if M has a projective cover and a flat strong δ -cover. Using this result we characterize right A-perfect rings, right B-perfect rings and right perfect rings as semilocal rings over which every cyclic, simple and semisimple module has a flat strong δ -cover, respectively.

For a ring R, J denotes the Jacobson radical of the ring R and by saying a regular ring we mean a von Neumann regular ring. Let M be a module and N be a submodule of M. N is said to be δ -small in M if $N+K\neq M$ for every proper submodule K of M with M/K singular (see [15]). It generalizes the notion of small submodules in which the condition M/K being singular in the definition is omitted. The submodule $\delta(M)$ is the sum of all δ -small submodules of M. If M is projective, then by [15, Lemma 1.9], $\delta(M)$ is the intersection of all essential maximal submodules of M. We use δ_r instead of $\delta(R_R)$. Rad(M) denotes the Jacobson radical of M and the notations \leq , \ll and \ll_{δ} are used to indicate submodule,

small submodule and δ -small submodule, respectively. The following results are used in the sequel.

Lemma 1. [15, Lemma 1.2] Let N be a submodule of a module M. Then the following are equivalent.

- (i) $N \ll_{\delta} M$.
- (ii) If X + N = M, then $M = X \oplus Y$ for a projective semisimple submodule Y with $Y \subseteq N$.

Lemma 2. Let M be a module. If $\operatorname{Rad}(M) \ll_{\delta} M$, then $\operatorname{Rad}(M) \ll M$.

Proof. Assume that $\operatorname{Rad}(M) + N = M$ for some $N \leq M$. By Lemma 1, $M = N \oplus (\bigoplus_{i \in I} S_i)$ for some index set I, where S_i is simple for every $i \in I$. Since $N \neq M$,

I is nonempty. For $i_0 \in I$, $K = N \oplus (\bigoplus_{\substack{i \in I \\ i \neq i_0}} S_i)$ is a maximal submodule of M and

we have $M = \operatorname{Rad}(M) + N \leq K$ which is a contradiction.

2. Generalized δ -Semiperfect Rings

Flat δ -covers of modules are introduced in [5]. Rings over which every module has a flat δ -cover are defined as right generalized δ -perfect (briefly right G- δ -perfect) rings in the same work. Most of the results given in this section depend on and/or uses the ones given in [5] for generalized δ -perfect rings. Related results from this work are cited wherever they are used. We restrict the property of "having a flat δ -cover" to simple modules and give the following definition.

Definition 1. We call a ring R right generalized δ -semiperfect (right G- δ -semiperfect, for short) if every simple right R-module has a flat δ -cover. Left G- δ -semiperfect rings are defined similarly. If R is both right and left G- δ -semiperfect, we call R a G- δ -semiperfect ring.

We now give some examples of right G- δ -semiperfect rings to see their relation to those already studied. Let us recall that a ring R is called a right V-ring if every simple module is flat.

Example 1.

- (a) Every right perfect ring is right G- δ -perfect and every semiperfect ring is G- δ -semiperfect.
- (b) Every flat module is a flat δ -cover of itself, therefore every right V-ring is right G- δ -semiperfect.
- (c) Every right G-semiperfect ring is right G- δ -semiperfect.
- (d) Following the proof for [5, Example 3.4], we can shown that \mathbb{Z} is not a G- δ semiperfect ring. Let p be a prime number and $f: F \longrightarrow \mathbb{Z}/p\mathbb{Z}$ be a flat δ cover of $\mathbb{Z}/p\mathbb{Z}$. By the use of [5, Lemma 2.5], $F \cong \mathbb{Z}/K$ for some submodule K of \mathbb{Z} , since projective semisimple abelian groups are zero. Then \mathbb{Z}/K

is a cyclic flat abelian group. Since \mathbb{Z} is noetherian, it is projective so that K=0 and $F\cong \mathbb{Z}$. Then for the isomorphism $g:F\longrightarrow \mathbb{Z}$, we have $g(\operatorname{Ker} f)\ll_{\delta}\mathbb{Z}$ by [15, Lemma 1.3(2)], since $\operatorname{Ker} f\ll_{\delta}\mathbb{Z}$. g is an isomorphism and $\delta(\mathbb{Z})=0$ imply that $\operatorname{Ker} f=0$ and so $\mathbb{Z}\cong \mathbb{Z}/p\mathbb{Z}$ which is a contradiction. Therefore $\mathbb{Z}/p\mathbb{Z}$ does not have a flat δ -cover.

Example 2. For a regular ring K, Let $R = \prod_{i=1}^{\infty} K_i$ with $K_i = K$ for $i = 1, 2, 3, \ldots$ It is shown in [11, §10.4] that R is a regular ring which is not semisimple. Then R is a regular ring which is not semiperfect. Hence R is a right G- δ -semiperfect ring

Proposition 1. Let R and S be right G- δ -semiperfect rings. Then the following

- (i) A ring Morita equivalent to R is right G- δ -semiperfect.
- (ii) Every factor ring of R is right G- δ -semiperfect.
- (iii) $R \times S$ is right G- δ -semiperfect.

which is not semiperfect.

Proof. The proof for (i) is almost the same as the one for right G- δ -perfect rings in [5, Proposition 3.7]. Its proof is given in details, so we omit it to avoid repetition. A proof similar to that for [9, Proposition 2.8] implies (ii) and (iii).

Remark 1. Over a right noetherian ring, finitely generated modules are finitely presented and so a flat δ -cover of a finitely generated module M is also a projective δ -cover of M by [5, Lemma 2.6]. It follows from [8, Remark 4.4] that a right noetherian ring is semiperfect if and only if it is right G- δ -semiperfect.

The following result is a consequence of [5, Theorem 4.3] and [8, Corollary 4.3]. We include it for future references.

Theorem 1. The following are equivalent for a ring R.

- (i) R is semiperfect.
- (ii) R is semilocal and every simple module has a flat B-cover.
- (iii) R is semilocal and every simple module has a flat δ -cover.

Example 3. (Remark in [13]) Let $R = S^{-1}\mathbb{Z}$ with $S = \mathbb{Z} \setminus (p\mathbb{Z} \cup q\mathbb{Z})$ for prime numbers $p \neq q$. Then R is semilocal but not G- δ -semiperfect.

Proposition 2. Let R be a right G- δ -semiperfect ring and J be nil. Then R is right noetherian if and only if R is right artinian.

Proof. It is a consequence of [9, Proposition 2.15] and Remark 1. \Box

Corollary 1. R[x] is not a G- δ -semiperfect ring for every commutative noetherian ring R.

Proposition 3. Let R be a commutative domain. Then the following statements are equivalent.

- (i) R is local.
- (ii) R is semiperfect.
- (iii) R is G-semiperfect.
- (iv) R is G- δ -semiperfect.

Proof. Only $(iv)\Rightarrow(i)$ needs to be proved. We follow the proof for [5, Lemma 2.6] to show that every simple module has a flat δ-cover which is cyclic. Let $f:F\longrightarrow S$ be a flat δ-cover of a simple module S and $g:R\longrightarrow S$ be the canonical epimorphism. Since R is projective, there is a homomorphism $h:R\longrightarrow F$ satisfying fh=g. Since $\ker f+\operatorname{Im} h=F$ and $\ker f\ll_\delta F$, we have that $\operatorname{Im} h$ is a direct summand of F by Lemma 1 and $\ker f\cap\operatorname{Im} h\ll_\delta$ by [5, Lemma 2.4]. Then $f|_{\operatorname{Im} h}:\operatorname{Im} h\longrightarrow S$ is a flat δ-cover of S. Moreover, $\operatorname{Im} h$ is cyclic as a factor module of R and so $\operatorname{Im} h\cong R$, since $\operatorname{Im} h$ is torsion-free. By using [15, Lemma 1.3(2)] there is a maximal ideal M of R with $M\ll_\delta R$. Hence R is local.

Note that Proposition 3 gives another way to show that $\mathbb Z$ is not a G- δ -semiperfect ring.

Proposition 4. Let R be a commutative ring and S be a multiplicatively closed subset of R such that every maximal ideal of the ring $S^{-1}R$ is of the form $S^{-1}M$ for some maximal ideal M of R. If R is G- δ -semiperfect then so is $S^{-1}R$.

Proof. Let U be a maximal ideal of $S^{-1}R$ with $U=S^{-1}M$ for some maximal ideal M of R. Since R is G- δ -semiperfect, by [5, Lemma 2.6] there is a cyclic flat δ -cover R/I of R/M. Since R/I is a flat R-module, $S^{-1}R/S^{-1}I \cong S^{-1}(R/I)$ is a flat $S^{-1}R$ -module. Let $S^{-1}N/S^{-1}I$ be a maximal ideal of $S^{-1}R/S^{-1}I$ other than $S^{-1}M/S^{-1}I$. Then $S^{-1}M/S^{-1}I + S^{-1}N/S^{-1}I = S^{-1}R/S^{-1}I$ and so M+N=R. Since $M/I \ll_{\delta} R/I$, (N+I)/I is a direct summand in R so that $S^{-1}N/S^{-1}I$ is a direct summand in $S^{-1}R/S^{-1}I$.

Now we have that either $S^{-1}M/S^{-1}I$ is a direct summand in $S^{-1}R/S^{-1}I$ or $S^{-1}M/S^{-1}I$ is essential in $S^{-1}R/S^{-1}I$. Then either $S^{-1}R/S^{-1}I$ is semisimple or $S^{-1}M/S^{-1}I \ll_{\delta} S^{-1}R/S^{-1}I$ by [15, Lemma 1.9]. Hence $S^{-1}R/S^{-1}I$ is a flat δ -cover of $S^{-1}R/S^{-1}M$.

The following result is a consequence of Theorem 1 and Proposition 4.

Corollary 2. Let R be a commutative G- δ -semiperfect ring. Then for every finite number of maximal ideals M_1, M_2, \dots, M_n and $S = R \setminus \bigcup_{i=1}^n M_i$, $S^{-1}R$ is semiperfect.

The following result can be given as a consequence of [5, Remark 3.21] and [5, Theorem 4.8]. Here we give a direct proof of this fact.

Theorem 2. Let R be a semilocal ring. Then R is right perfect if and only if every semisimple R-module has a flat δ -cover.

Proof. Necessity part is clear, since flat modules are projective over a right perfect ring and a flat cover is also a flat B-cover, hence a flat δ -cover by [14, Theorem 1.2.12] in this case. For sufficiency let F be a free right R-module. Since R/J is semisimple, F/FJ is a semisimple right R-module. By assumption F/FJ has a flat δ -cover $\alpha: P \longrightarrow F/FJ$ for some flat right R-module P. Since F is projective, we have the commutative diagram

where $\pi: F \longrightarrow F/FJ$ is the canonical epimorphism. Since π is an epimorphism, we have $\operatorname{Ker} \alpha + \operatorname{Im} \beta = P$. Since $\operatorname{Ker} \alpha \ll_{\delta} P$, $\operatorname{Im} \beta$ is a direct summand of P by Lemma 1 and so $\operatorname{Im} \beta$ is flat. Then $\overline{\alpha}: \operatorname{Im} \beta \longrightarrow F/FJ$ induced by α is a flat δ -cover of F/FJ, since $\operatorname{Ker} \alpha \cap \operatorname{Im} \beta \ll_{\delta} \operatorname{Im} \beta$ by [5, Lemma 2.4]. Since F is projective, $\operatorname{Im} \beta$ is flat and $\operatorname{Ker} \beta \leq \operatorname{Ker} \pi = FJ = \operatorname{Rad} F$, we have $\operatorname{Ker} \beta = 0$ by [12, Exercise 4.20], so $\widetilde{\beta}: F \longrightarrow \operatorname{Im} \beta$ induced by β is an isomorphism. $\operatorname{Rad} F = FJ = \widetilde{\beta}^{-1}(\operatorname{Ker} \alpha \cap \operatorname{Im} \beta) \ll_{\delta} F$ by [15, Lemma 1.3]. Lemma 2 implies that $\operatorname{Rad} F \ll F$. By [3, Lemma 28.3], J is right T-nilpotent. Hence R is right perfect.

The following result is a consequence of Theorem 2 and [15, Theorem 3.8].

Corollary 3. Let R be a semilocal ring. Then the following are equivalent.

- (i) R is right perfect.
- (ii) R is right δ -perfect.
- (iii) R is right G- δ -perfect.

Example 4. Let R be a semiperfect ring which is not right perfect. Then by Corollary 3, R is a right G- δ -semiperfect ring which is not right G- δ -perfect.

3. Flat Strong δ -covers

Flat strong covers of modules are introduced in [9] as flat covers which are also flat B-covers. They are used in uniqueness (up to isomorphism) of flat B-covers under some conditions in the same work. Here we define flat strong δ -covers of modules as a generalization.

Definition 2. A right R-module M is said to have a flat strong δ -cover if a flat cover $f: F \longrightarrow M$ of M is also a flat δ -cover. In this case, we also say that F is a flat strong δ -cover of M.

Flat δ -cover of a module need not be unique, in general, as [1, Example 3.1] shows. As a consequence of the example mentioned, one can deduce the following result.

Proposition 5. Let R be a regular ring and flat δ -covers of modules be unique (up to isomorphism), then R is a right V-ring.

The property having flat strong δ -covers is not inherited by submodules, in general. The following result demonstrates a special case. Note that a homomorphism $\alpha: F \longrightarrow M$ satisfying the first two conditions in the definition of a flat cover is called a flat precover of M.

Proposition 6. Let R be a ring such that $\delta(M) = M\delta_r \ll_{\delta} M$ for every module M. Let $K \leq L$ and L/K be flat. If L has a flat strong δ -cover, then so does K.

Proof. Let $f: F \longrightarrow L$ be a flat strong δ -cover of L. Following the proof for [14, Lemma 3.1.3] with $P = f^{-1}(K)$, $f': P \longrightarrow K$ induced by f is a flat precover of K. By [14, Theorem 1.2.7], $P = X \oplus Y$ for submodules X and Y such that $f'_{|X}: X \longrightarrow K$ is a flat cover of K and $Y \leq \operatorname{Ker} f' = \operatorname{Ker} f$.

Since Ker $f \ll_{\delta} F$, $F/P \cong L/K$ is flat and δ_r is two sided, by [3, Lemma 19.18] we have

$$\operatorname{Ker} f \leq F\delta_r \cap P = P\delta_r \ll_{\delta} P.$$

Let $W+\operatorname{Ker} f'_{|X}=W+(\operatorname{Ker} f\cap X)=X$ for some submodule W of X. Then $\operatorname{Ker} f=\operatorname{Ker} f\cap P=\operatorname{Ker} f\cap (X+Y)=(\operatorname{Ker} f\cap X)+Y$ and $P=X+Y=W+(\operatorname{Ker} f\cap X)+Y=W+\operatorname{Ker} f$. Since $\operatorname{Ker} f\ll_{\delta} P,\ P=W\oplus U$ for some projective semisimple submodule U of $\operatorname{Ker} f$ by Lemma 1. Then $X=X\cap P=X\cap (W\oplus U)=W\oplus (X\cap U)$ with $X\cap U$ is projective semisimple and contained in $\operatorname{Ker} f'_{|X}$. The use of Lemma 1 once again implies that $\operatorname{Ker} f'_{|X}\ll_{\delta} X$. Hence $f'_{|X}:X\longrightarrow K$ is a flat strong δ -cover of K.

Rings over which flat covers of cyclic modules are projective are introduced in [2] as right A-perfect rings. Right B-perfect rings are defined with the same condition restricted to simple modules in [7].

Proposition 7. If flat cover of a module M is projective, then flat δ -covers of M are projective.

Proof. Let $f: F \longrightarrow M$ be a flat cover of M and $g: P \longrightarrow M$ be a flat δ -cover of M. Since F is projective, there is a homomorphism $h: F \longrightarrow P$ such that gh = f. Since $\operatorname{Ker} g + \operatorname{Im} h = P$ and $\operatorname{Ker} g \ll_{\delta} P$, we have by Lemma 1 that $P = \operatorname{Im} h \oplus Y$ for some projective semisimple module Y. Then $F/\operatorname{Ker} h \cong \operatorname{Im} h$ is flat and $\operatorname{Ker} h \leq \operatorname{Ker} f \ll F$ which implies that $\operatorname{Ker} h = 0$ and $\operatorname{Im} h \cong F$ is projective by [12, Exercise 4.20]. Therefore, $P = \operatorname{Im} h \oplus Y$ is projective.

Corollary 4. Over a right A-perfect (right B-perfect resp.) ring, flat δ -covers of cyclic (simple resp.) modules are projective.

Flat strong covers are used in characterizing right A-perfect rings, right B-perfect rings and right perfect rings in [9]. It turns out that flat strong δ -covers are also related to such rings. We need the following result, which is a generalization of [9, Lemma 3.6], before proceeding.

Lemma 3. Let M be an R-module. Then flat cover of M is projective if and only if M has a projective cover and a flat strong δ -cover.

Proof. Necessity part is clear by [14, Theorem 1.2.12]. For sufficiency let $f: F \longrightarrow M$ be a flat strong δ -cover of a right R-module M and $g: P \longrightarrow M$ be a projective cover of M. Since P is projective, we have the commutative diagram

with Ker $f \ll_{\delta} F$. Since Im h + Ker f = F, it follows from Lemma 1 that $F = \text{Im } h \oplus K$ for some projective semisimple submodule K of F. Since P is projective, Ker $h \leq \text{Ker } g \ll P$ and $P/\text{Ker } h \cong \text{Im } h$ is flat as a direct summand of F, we have Ker h = 0 by [12, Exercise 4.20] and so Im h is projective. Hence $F = \text{Im } h \oplus K$ is projective.

Over a right noetherian ring, a flat δ -cover of a cyclic module is also a projective δ -cover by Remark 1. If we assume that R is right noetherian and M is cyclic in the proof of Lemma 3, then projectivity of Im h follows from [5, Proposition 2.15] in this case. Using these facts, we obtain the following result.

Corollary 5. Let R be a right noetherian ring and M be a cyclic module. Then flat cover of M is projective if and only if M has a flat strong δ -cover.

Now we can give characterizations for right A-perfect rings, right B-perfect rings and right perfect rings using flat strong δ -covers, respectively.

Theorem 3. The following statements are equivalent for a ring R.

- (i) Flat covers of cyclic modules are projective.
- (ii) R is semilocal and every cyclic module has a flat strong δ -cover.

Proof. $(i)\Rightarrow(ii)$: R is semilocal by [2, Theorem 3.7]. If C is a cyclic module and $f:F\longrightarrow C$ is flat cover of C with F projective, then $\operatorname{Ker} f\ll F$ by [14, Theorem 1.2.12]. Then $f:F\longrightarrow C$ is a flat strong cover and hence a flat strong δ -cover of C.

 $(ii)\Rightarrow(i)$: Let C be a cyclic module. R is semiperfect by Theorem 1. Therefore C has a projective cover. Then C has a projective cover and a flat strong δ -cover. By Lemma 3, flat cover of C is projective.

Theorem 4. The following statements are equivalent for a ring R.

- (i) Flat covers of simple modules are projective.
- (ii) R is semilocal and every simple module has a flat strong δ -cover.

Proof. $(i)\Rightarrow(ii)$: R is semilocal by [7, Theorem 2.4]. If S is a simple module and $f:F\longrightarrow S$ is flat cover of S with F projective, then $\operatorname{Ker} f\ll F$ by [14, Theorem 1.2.12]. Then $f:F\longrightarrow S$ is a flat strong cover and hence a flat strong δ -cover of S.

 $(ii) \Rightarrow (i)$: Just let C be simple in the proof for Theorem 3 $ii) \Rightarrow i$).

Theorem 5. The following statements are equivalent for a ring R.

- (i) R is right perfect.
- (ii) Flat covers of semisimple modules are projective.
- (iii) R is semilocal and every semisimple module has a flat strong δ -cover.
- (iv) Every semisimple module has a flat δ -cover and flat covers of simple modules are projective.

Proof. Proofs for $(i) \Rightarrow (ii)$ and $(ii) \Rightarrow (iii)$ are given in [9, Theorem 3.9].

- $(iii) \Rightarrow (iv)$ is a consequence of Theorem 4.
- $(iv) \Rightarrow (i)$: R is semilocal by Theorem 4. Theorem 2 completes the proof.

Note that when R is right noetherian, then using Corollary 5, the condition for R being semilocal can be dropped in Theorem 3, Theorem 4 and Theorem 5 so that such rings can be characterized as rings whose certain modules have flat strong δ -covers.

ACKNOWLEDGMENTS

The author would like to thank the referees for careful reading of the paper.

References

- Amini, A., Amini, B., Ershad, M. and Sharif, H., On generalized perfect rings, Comm. Algebra (2007), 35(3), 953–963.
- [2] Amini, A., Ershad, M. and Sharif, H., Rings over which flat covers of finitely generated modules are projective, Comm. Algebra (2008), 36(8), 2862-2871.
- [3] Anderson, F. W. and Fuller, K. R., Rings and Categories of Modules, Graduate Texts in Mathematics, Springer-Verlag, New York, 1992.
- [4] Atiyah, M. F. and Macdonald, I. G., Introduction to commutative algebra, Addison-Wesley Publishing Co., London, 1969.
- [5] Aydoğdu, P., Rings over which every module has a flat δ -cover, Turkish J. Math. (2013), 37(1), 182–194.
- [6] Bass, H., Finitistic dimension and a homological generalization of semi-primary rings, Trans. Amer. Math. Soc. (1960), 95, 466–488.
- [7] Büyükaşık, E., Rings over which flat covers of simple modules are projective, J. Algebra Appl. (2012), 11(3), 1250046.
- [8] Büyükaşık, E. and Lomp, C., When δ-semiperfect rings are semiperfect, Turkish J. Math. (2010), 34(3):317–324.
- [9] Demirci, Y. M., On generalizations of semiperfect and perfect rings, Bull. Iranian Math. Soc. (2016), 42(6), 1441–1450.
- [10] Enochs, E. E., Injective and flat covers, envelopes and resolvents, Israel J. Math. (1981), 39(3), 189–209.

- [11] Kasch, F., Modules and rings, London Mathematical Society Monographs, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, 1982. Translated from German with a preface by D. A. R. Wallace.
- [12] Lam, T. Y., Lectures on Modules and Rings, Graduate Texts in Mathematics, Springer, New York, 1999.
- [13] Lomp, C., On semilocal modules and rings, Comm. Algebra (1999), 27(4), 1921–1935.
- [14] Xu, J., Flat covers of modules, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1996.
- [15] Zhou, Y., Generalizations of perfect, semiperfect, and semiregular rings, Algebra Colloq. (2000), 7(3), 305–318.

 $Current\ address$: Yılmaz Mehmet Demirci: Sinop University, Department of Mathematics, 57000, Sinop, TURKEY

 $E ext{-}mail\ address: ymdemirci@sinop.edu.tr}$

ORCID Address: http://orcid.org/0000-0003-3802-4211