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NEW STRUCTURE TO CONSTRUCT NEW SOLITARY WAVE

SOLUTIONS FOR PERTURBED NLSE WITH POWER LAW

NONLINEARITY

AHMAD NEIRAMEH

Abstract. In this paper we applied new structure to constructing new soli-

tary wave solutions for perturbed nonlinear Schrodinger equation with power
law nonlinearity, which describes the effects of quantic nonlinearity on the ul-

trashort optical solitons pulse propagation in non-Kerr media. These solitary
wave solutions demonstrate the fact that solutions to the perturbed nonlinear

Schrodinger equation with power law nonlinearity model can exhibit a variety

of behaviors.

1. Introduction

Exact solutions can serve as a basis for perfecting and testing computer alge-
bra software packages for solving NLEEs. It is significant that many equations of
physics, chemistry, and biology contain empirical parameters or empirical functions.
Exact solutions allow researchers to design and run experiments, by creating appro-
priate natural conditions, to determine these parameters or functions. Therefore,
investigation of exact traveling wave solutions is becoming successively attractive in
nonlinear sciences day by day. However, not all equations posed of these models are
solvable. Exact solutions can serve as a basis for perfecting and testing computer al-
gebra software packages for solving NLEEs. It is significant that many equations of
physics, chemistry, and biology contain empirical parameters or empirical functions.
Exact solutions allow researchers to design and run experiments, by creating appro-
priate natural conditions, to determine these parameters or functions. Therefore,
investigation of exact traveling wave solutions is becoming successively attractive
in nonlinear sciences day by day. Hence it becomes increasingly important to be
familiar with all traditional and recently developed methods for solving these mod-
els and the implementation of new methods. As a result, many new techniques
have been successfully developed by diverse groups of mathematicians and physi-
cists, such as, the trigonometric function series method [5], the modified mapping
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method and the extended mapping method [6], homogeneous balance method [7],
tanh function method [8], extended tanh function method [9], hyperbolic function
method [10], rational expansion method [11], sine-cosine method [12].
In this present paper we applied the direct algebraic method for finding new ex-
act solitary wave solutions of perturbed NLSE with power law nonlinearity in the
following form [13],

(1.1) iqt + aqxx + b|q|2mq = icqx − iγqxxx + is(|q|2mq)x+ ir(|q|2m)xq,

Where a, b, c, γ, s and r are all real valued constants. Also, the exponent m rep-
resents the power law nonlinearity parameter. For the perturbation terms on the
right hand side represents the inter-modal dispersion, γ is the coefficient of third
order dispersion, s is the coefficient of self-steepening term while r is the coeffi-
cient of nonlinear dispersion. The self-steepening and nonlinear dispersion terms
are considered with full nonlinearity, namely their intensities are considered with
an exponent m, in order to maintain the problem on a generalized setting [14].

2. Our methodology

For a given partial differential equation

(2.1) G(u, ux, ut, uxx, utt, ....) = 0,

Our method mainly consists of four steps:
Step 1 : We seek complex solutions of Eq. (2.1) as the following form:

(2.2) u = u(ξ), ξ = ik(x− ct),
Where k and c are real constants. Under the transformation (2.2), Eq. (2.1)
becomes an ordinary differential equation

(2.3) N(u, iku′,−ikcu′,−k2u′′, .....) = 0,

Where u′ = du
dξ .

Step 2 : We assume that the solution of Eq. (2.3) is of the form

(2.4) u(ξ) =

n∑
i=0

aiF
i(ξ),

Where ai(i = 1, 2, .., n) are real constants to be determined later.F (ξ)expresses the
solutions of the auxiliary ordinary differential equation

(2.5) F ′(ξ) = b+ F 2(ξ),

Eq. (2.5) admits the following solutions:

(2.6)

F (ξ) =

{
−
√
−b tanh(

√
−bξ), b ≺ 0 (a)

−
√
−b coth(

√
−bξ), b ≺ 0 (b)

F (ξ) =

{ √
b tan(

√
bξ), b � 0 (c)

−
√
b cot(

√
bξ), b � 0 (d)

F (ξ) = − 1
ξ , b = 0 (e)

Integer n in (2.4) can be determined by considering direct algebraic [3] between the
nonlinear terms and the highest derivatives of u(ξ)in Eq. (2.3).
Step 3 : Substituting (2.4) into (2.3) with (2.5), then the left hand side of Eq. (2.3)
is converted into a polynomial inF (ξ), equating each coefficient of the polynomial
to zero yields a set of algebraic equations for ai, k, c.



38 AHMAD NEIRAMEH

Step 4 : Solving the algebraic equations obtained in step 3, and substituting the
results into (2.4), then we obtain the exact traveling wave solutions for Eq. (2.1).

3. Application to the perturbed NLSE with power law nonlinearity

We assume Eq. (2.5) has the traveling wave solution of the form

(3.1) q(x, t) = U(ξ)ei(αx+βt), ξ = i(kx− ωt),

where α, β, k and ωare constants, all of them are to be determined. Thus, from the
wave transformation (3.1), we have

(3.2)

qt = i (βU − ωU ′) ei(αx+βt),
qx = i (αU + kU ′) ei(αx+βt),
qxx = −

(
α2U + 2αkU ′ + k2U ′′

)
ei(αx+βt),

qxxx = −i
(
α3U + 3α2kU ′ + 3αk2U ′′ + k3U ′′′

)
ei(αx+βt),(

|q|2m q
)
x

= i
(
αU2m+1 + k

(
U2m+1

)′)
ei(αx+βt),(

|q|2m
)
x
q = ik

(
U2m

)′
Uei(αx+βt),

Inserting the expressions (3.2) into Eq. (1.1), we obtain nonlinear ODE in the form
(3.3)

(cα+ γα3 − β − aα2)U + (ω − 2aαk + ck + 3α2kγ)U ′ + (3αk2γ − ak2)U ′′

+(b+ sα)U2m+1 + k3γU ′′′ + sk(U2m+1)′ + rk(U2m)′U = 0.

Balancing U ′′′ with U ′U2min Eq. (3.3) give

N + 3 = N + 1 + 2mN ⇔ 3 = 2mN + 1⇔ N =
1

m
.

We then assume that Eq. (3.3) has the following formal solutions:

(3.4) U(ξ) = AF
1
m , A 6= 0

Substituting Eq (3.4) into Eq. (3.3) and collecting all terms with the same order
of F j together, we convert the left-hand side of Eq. (3.3) into a polynomial in
F j . Setting each coefficient of each polynomial to zero, we derive a set of algebraic
equations forα, β, k, ω and A. By solving these algebraic equations we have

(3.5)

A =
[
− sn(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r)(4sn+4sn2+2rn+s+4rn2)γ

(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r)2 ×(
1
n2 + 3

n + 2
)
− s

2r

(
1
n + 2

)] 1
2n ,

α = a
3γ , β = 9caγ−2a3

27γ2 ,

k = ±
√

2γrs(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r)(4sn+4sn2+2rn+s+4rn2)n

γ(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r) .

(3.6)

ω = a2

3γ2

√
2γrs(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r)(4sn+4sn2+2rn+s+4rn2)n

(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r) −
c
√

2γrs(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r)(4sn+4sn2+2rn+s+4rn2)n

γ(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r) −
b(2γrs(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r)(4sn+4sn2+2rn+s+4rn2))

3
2 n3

γ2(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r)3 ×(
1
n − 1

) (
1
n − 2

)
−

2bn(2γrs(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r)(4sn+4sn2+2rn+s+4rn2))
3
2

γ2(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r)3 ,
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From Eq. (2.6)(a) and relations (3.5) , (3.6) along with (3.4) we have

U(ξ) =
[
− sn(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r)(4sn+4sn2+2rn+s+4rn2)γ

(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r)2 ×(
1
n2 + 3

n + 2
)
− s

2r

(
1
n + 2

)] 1
2n
(
−
√
−b tanh(

√
−bξ)

) 1
n ,

So from (3.1) we have solitary wave solutions of Eq. (1.1) as follows

q1(x, t) =
[
− sn(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r)(4sn+4sn2+2rn+s+4rn2)γ

(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r)2 ×(
1
n2 + 3

n + 2
)
− s

2r

(
1
n + 2

)] 1
2n ×

[
−
√
−b tanh(

√
−bi(√

2γrs(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r)(4sn+4sn2+2rn+s+4rn2)n

γ(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r) x−

( a
2

3γ2

√
2γrs(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r)(4sn+4sn2+2rn+s+4rn2)n

(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r) −
c
√

2γrs(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r)(4sn+4sn2+2rn+s+4rn2)n

γ(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r) −
b(2γrs(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r)(4sn+4sn2+2rn+s+4rn2))

3
2 n3

γ2(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r)3 ×(
1
n − 1

) (
1
n − 2

)
−

2bn(2γrs(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r)(4sn+4sn2+2rn+s+4rn2))
3
2

γ2(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r)3 )t

] 1
n

×

exp
(
i( a3γx+ 9caγ−2a3

27γ2 t)
)
,

From (2.6)(b) and relations (3.5) and (3.6) along with (3.1) and (3.4) we obtaion
solitary wave solutions of Eq. (1.1) in following form

q2(x, t) =
[
− sn(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r)(4sn+4sn2+2rn+s+4rn2)γ

(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r)2 ×(
1
n2 + 3

n + 2
)
− s

2r

(
1
n + 2

)] 1
2n ×

[
−
√
−b coth(

√
−bi(√

2γrs(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r)(4sn+4sn2+2rn+s+4rn2)n

γ(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r) x−

( a
2

3γ2

√
2γrs(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r)(4sn+4sn2+2rn+s+4rn2)n

(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r) −
c
√

2γrs(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r)(4sn+4sn2+2rn+s+4rn2)n

γ(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r) −
b(2γrs(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r)(4sn+4sn2+2rn+s+4rn2))

3
2 n3

γ2(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r)3 ×(
1
n − 1

) (
1
n − 2

)
−

2bn(2γrs(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r)(4sn+4sn2+2rn+s+4rn2))
3
2

γ2(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r)3 )t

] 1
n

×

exp
(
i( a3γx+ 9caγ−2a3

27γ2 t)
)
,
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From (2.6)(c) and relations (3.1),(3.4),(3.5) and (3.6) we obtain solitary wave solu-
tions for nonlinear Schrodinger equation with power law nonlinearity

q3(x, t) =
[
− sn(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r)(4sn+4sn2+2rn+s+4rn2)γ

(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r)2 ×(
1
n2 + 3

n + 2
)
− s

2r

(
1
n + 2

)] 1
2n ×

[√
b tan(

√
bi(

√
2γrs(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r)(4sn+4sn2+2rn+s+4rn2)n

γ(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r) x−

( a
2

3γ2

√
2γrs(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r)(4sn+4sn2+2rn+s+4rn2)n

(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r) −
c
√

2γrs(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r)(4sn+4sn2+2rn+s+4rn2)n

γ(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r) −
b(2γrs(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r)(4sn+4sn2+2rn+s+4rn2))

3
2 n3

γ2(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r)3 ×(
1
n − 1

) (
1
n − 2

)
−

2bn(2γrs(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r)(4sn+4sn2+2rn+s+4rn2))
3
2

γ2(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r)3 )t

] 1
n

×

exp
(
i( a3γx+ 9caγ−2a3

27γ2 t)
)
,

In this case we obtain solitary wave solution for (1.1) from (2.6)(d) and relations
(3.1)-(3.6) as follow

q4(x, t) =
[
− sn(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r)(4sn+4sn2+2rn+s+4rn2)γ

(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r)2 ×(
1
n2 + 3

n + 2
)
− s

2r

(
1
n + 2

)] 1
2n ×

[
−
√
b cot(

√
bi(

√
2γrs(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r)(4sn+4sn2+2rn+s+4rn2)n

γ(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r) x−

( a
2

3γ2

√
2γrs(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r)(4sn+4sn2+2rn+s+4rn2)n

(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r) −
c
√

2γrs(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r)(4sn+4sn2+2rn+s+4rn2)n

γ(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r) −
b(2γrs(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r)(4sn+4sn2+2rn+s+4rn2))

3
2 n3

γ2(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r)3 ×(
1
n − 1

) (
1
n − 2

)
−

2bn(2γrs(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r)(4sn+4sn2+2rn+s+4rn2))
3
2

γ2(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r)3 )t

] 1
n

×

exp
(
i( a3γx+ 9caγ−2a3

27γ2 t)
)
,

Finally from (2.6)(e) we obtain solitary wave solutions for perturbed NLSE with
power law nonlinearity in following form

q5(x, t) =
[
− sn(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r)(4sn+4sn2+2rn+s+4rn2)γ

(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r)2 ×(
1
n2 + 3

n + 2
)
− s

2r

(
1
n + 2

)] 1
2n ×

n
√
i

[√
2γrs(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r)(4sn+4sn2+2rn+s+4rn2)n

γ(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r) x−

( a
2

3γ2

√
2γrs(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r)(4sn+4sn2+2rn+s+4rn2)n

(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r) −

c
√

2γrs(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r)(4sn+4sn2+2rn+s+4rn2)n

γ(s+5sn+8rn+8sn2+12rn2+4n3s+8n3r) )t

]− 1
n

×

exp
(
i( a3γx+ 9caγ−2a3

27γ2 t)
)
,
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4. Conclusion

In summary we derive many types of optical solitary wave solutions of perturbed
nonlinear Schrodinger equation with power law nonlinearity which include the
bright and dark optical solitary wave solutions. The results show that the method
is reliable and effective and gives more solutions. We hope that the obtained results
will be useful for further studies in mathematical physics and engineering.
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