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ON THE REPRESENTATIONS AND CHARACTERS OF
CAT1-GROUPS AND CROSSED MODULES

M. A. DEHGHANI AND B. DAVVAZ

Abstract. Let G be a group and V a K-vector space. A K-linear representa-
tion of G with representation space V is a homomorphism φ : G −→ GL(V ).

The dimension of V is called the degree of φ. If φ is a representation of G, then
the character φ is defined for g ∈ G as ψg(φ) = Tr(φ(g)). In this paper we
study the representations and characters of cat1-groups and crossed modules.
We show that for class functions ψ1 and ψ2 of crossed module χ = (G,M,µ, ∂),
the inner product is Hermitian. Also, if χ = (G,M,µ, ∂) is a finite crossed
module and ψ is an irreducible character of χ, then∑

m∈M, g∈G
ψ(m, g)ψ(m−1, g−1) = |G||M |.

Moreover, we present some examples of the character tables of crossed modules.

1. Introduction

Cat1-groups (or 1-cat groups) are the first in a series of models homotopy n-types
introduced by Loday [9]. They are sometimes referred to simply as cat-groups [6]
if the higher catn-groups are not also being considered; the term categorical group
[13] is used for similar structures in which inverses for the group operations are only
defined up to isomorphism[7].
The term crossed module was introduced by J.H.C. Whitehead in his work on

combinatorial homotopy theory [12]. So many mathematician and many areas of
mathematics have used crossed modules such as homotopy theory, homology and
cohomology of groups, Algebra, K-theory etc.
In this paper we study the representations and characters of cat1-groups and

crossed modules.

2. Cat1-groups

We recall some definitions and properties of cat1-groups.
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Definition 1. A cat1-group C = (G,P, i; s, t) consists of groups G and P , an
embedding i : P −→ G and epimorphisms s, t : G −→ P satisfying:

(1) si = ti = idp,
(2) [ker s, ker t] = {1G}.

A morphism γ : C1 −→ C2 of cat1-groups consists of a pair γg : G1 −→ G2 and
γp : P1 −→ P2 that commute with the homomorphisms of C1 and C2.
With the obvious composition, there is a category cat1 of cat1-groups and their

morphisms.

Definition 2. If G and H are groups; with a left action of H on G, the semidirect
product of G byH is the group GoH = {(g, h) | g ∈ G, h ∈ H} with multiplication
(g, h)(g′, h′hg′, hh′). The inverse of (g, h) is ( h

−1
g−1, h−1).

Since, for any cat1-group, Ker s is normal in G and iP 6 G, it follows that
there is an action of iP on Ker s by conjugation. Hence, the semidirect product
Ker so P is defined.

Lemma 1. [5] For a cat1-group (G,P, i, s, t), we have G ∼= Ker so P.

3. Representations of cat1-groups

Let K be a field and let C0, C1 be vector spaces over K. If δ : C1 −→ C0 is a
linear transformation, then

is a length 1 chain complex of vector spaces. C can be considered as

and so the composition trivially gives the zero map and δ is a differential [8]. Thus,
every linear transformation can be considered as a chain complex. It will sometimes
be convenient to blur the distinction between the linear transformation and its chain
complex, and refer to δ itself as a chain complex. Suppose that in addition to C we
have a chain complex i.e., write δC for the differential in
C to distinguish it. Then, a morphism between C and D is defined as follows.

Definition 3. A chain map f : C −→ D consists of components f1 : C1 −→ D1

and f0 : C0 −→ D0 such that δ
Df1 = f0δ

D, i.e., the following diagram commutes:
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Suppose that f : C −→ D and g : D −→ ε are chain maps. Then the composite
g#◦f : C −→ ε is defined by (g#◦f)i := gifi, where i = 0, 1 and the composition
on the right hand side is the usual one for linear maps.

Definition 4. Let K be a field. The category of length 1 chain complexes of
K-vector spaces, and chain maps between them, is denoted by Ch(1)

K .

This structure provides the foundation for a 2-groupoid. By restricting our
attention to those chain maps that are invertible we obtain a subgroupoid of Ch(1)

K ,

which we shall write as inv Ch(1)
K . From Definition 4 before it is clear that a chain

map f : C −→ D is invertible precisely when both its components are invertible.
Definition 5. A chain isomorphism is an invertible chain map f : C −→ D.

Hence the morphisms of invCh(1)
K are precisely the chain isomorphisms of Ch(1)

K .
Let δ : C1 −→ C0 be a linear transformation of vector spaces; this can and will
be considered as an object in Ch(1)

K in the way explained earlier. The collection of
all chain isomorphisms δ −→ δ and homotopies between them is a 2-group and is
also a cat1-group. As isomorphisms from an object to itself are commonly known
as automorphisms, we may call this structure an automorphism cat1-group.
We recall that any element in an abstract vector space V of dimension n can be

considered as an n-tuple in Kn. Linear transformations between vector spaces are
equivalent to matrices over K; assuming standard bases, a linear transformation
φ : Kn −→ Km uniquely determines and is determined by anm×nmatrix φ (orMφ

or M(φ)) with coeffi cients in K. In particular, a linear isomorphism Kn −→ Kn is
equivalent to an element of GLn(K). In Ch(1)

K , the objects are chain complexes of
length 1. As we have seen, these are essentially the same as linear transformations.
Hence a chain complex C with differential δC : C1 −→ C0 can be represented by an
n0 × n1 matrix ∆C , where ni is the dimension of Ci. Suppose that D is another
chain complex, with differential dD : D1 −→ D0, where the dimension of Di is
mi. A chain map f : C −→ D is given by a pair of matrices F1(m1 × n1) and
F0(m0 × n0). The commutativity of the chain map with the differentials is then
expressed as

F0∆C = ∆DF1

which is an m0 × n1 matrix as required. Any chain map f : C −→ D in inv Ch(1)
K

is invertible, so in this case Di also has dimension ni and the corresponding square
matrices are non-singular, i.e., F1 ∈ GLn1(K) and F0 ∈ GLn0(K) and so before
equation can then by rewritten as ∆C = F−1

0 ∆DF1. A chain homotopy is a linear
transformation, so corresponds to a matrix. So, we have another chain map f ′ :
C −→ D and a homotopy h : f ' f ′, and a chain homotopy h′ : C0 −→ D1 with a
corresponding n1 × n0 matrix H such that H∆C = F 1

1 − F1, ∆DH = F 1
0 − F0. If

h : f −→ f ′ and ĥ : f ′ −→ f ′′, then the vertical composite ĥ 6=1 h, which is given
by the chain homotopy (ĥ#1h)′ := ĥ′ + h′, corresponds to the matrix sum Ĥ +H.
On the other hand:
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Definition 6. Let h : f ' f ′ and ĥ : f ′ ' f ′′ such that f, f ′, f ′′ : C −→ D. Then
the vertical composite (ĥ#1h) : f ' f ′′ is the homotopy with chain homotopy
component:

(ĥ#1h)′ := ĥ′ + h′

Suppose that we have homotopies h : f ' f ′ : C −→ D and k : g ' g′ : D −→ ε.
Then the chain homotopy components of g#0h, k#0f

′, and k#0h are represented
by the matrices G1H, kF ′0 and G1H + kF ′0 respectively.

Definition 7. Let δ : C1 −→ C0 be a linear transformation of K-vector spaces.
The automorphism cat1-group of δ, Aut(δ), consists of:

• the group Aut(δ)1 of all chain automorphisms δ −→ δ,
• the groups Aut(δ)2 of all homotopies on Aut(δ)1,
• morphisms s, t : Aut(δ)2 −→ Aut(δ)1, selecting the source and target of
each homotopy,

• the morphism i : Aut(δ)1 −→ Aut(δ)2, which provides the identity homo-
topy on each chain automorphism.

4. Linear Representations

We recall that a cat1-group [5] is the same thing as a 2-group. Therefore, we may
look for representations of a cat1-group C as 2-functors into a suitable 2-category,
taking elements of P to 1-cells and elements C o P to 2-cells, so as to preserve the
structures (all the 1-and 2-cells will have the same object, ?, as their 0-source and
target, even if the target category has many objects). By analogy with groups and
groupoids, the target 2-category of a linear representation should involve vector
spaces or modules. We have seen in [5] that Ch(1)

K is a 2-category which generalises
V ectK , where V ectK is category of K-vector spaces and linear transformations, so
this is suitable for our purpose.
Although its ramifications will be far-reaching, the actual definition of a represen-
tation is fairly obvious.

Definition 8. A linear representation of the cat1-group C is a 2-functor φ : C −→
Ch

(1)
K .

Given C, the first step towards defining φ is to find a chain complex (i.e., linear
transformation) to act as the implicit target object, δ = φ(?). The group algebra
functor [5] provides a canonical way of getting from a group homomorphism to
a linear transformation, although it will sometimes be useful to make a different
choice. Once δ is chosen, the elements of the cat1-group must be mapped to elements
of Ch(1)

k , with elements of the base going to 1-cells and elements of the top group
going to 2-cells . For φ to be a functor, this mapping must preserve identities
and composition. Therefore, the image of C lies within Aut(δ). This δ is clearly
analogous to the representation space of a group representation; since it is a chain
complex rather than a vector space it will be called the representation complex of
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the representation. Recall that Aut(δ) is itself a cat1-group [5], whose elements are
linear transformations. Therefore, another way of considering the representation φ
is to take it as a cat1-group morphism

φ : C −→ Aut(δ).

Definition 9. The right regular representation of a cat1-group C = (GoP, P, s, t, i)
is the 2-functor ρ : Cop −→ ch

(1)
K sending each p ∈ P to the chain automorphism

ρ(p)(eq) := eq#0p, ρ(p)(v̄c,q) := v̄c,qp

and each (c, p) ∈ G o P to the homotopy ρ(c, p) : ρ(p) −→ ρ(∂cp) with chain
homotopy

ρ′(c, p)(eq) := v̄qc,qp,

where all chain automorphisms and homotopies reside in Aut (δ) for the linear
transformation δ := τ̄ |Kerσ̄ obtained from the car1- group algebra K(C) of C.

Theorem 1. (Cayley). For any cat1-group C, the right regular representation, as
defined in Definition 9, exists.

Definition 10. A 2-functor φ : A −→ B is faithful, if for 2-cells α, β ∈ A,
φ(α) = φ(β) =⇒ α = β.

Definition 11. Let C be a cat1-group. A representation φ : C −→ ch
(1)
K is faithful

if it is faithful as a 2-functor.

5. Crossed Modules

A crossed module is a 4-tuple χ = (G,M,µ, ∂), where G and M are groups, µ is
an action of G on M , and ∂ : M −→ G is a homomorphism, called the boundary
map, that satisfies:

• ∂(mg) = g−1(∂m)g, for all m ∈M and g ∈ G,
• m∂n = n−1mn for all m,n ∈M .

A crossed module is finite if both G and M are finite groups.

Example 1. For a group G, we will denote by RG the crossed module (G, 1, µ, ∂),
where 1 denote the trivial subgroup of G, and both the action µ and the boundary
map ∂ are trivial.

Example 2. If G is a group, DG is the crossed module (G,G, µ, id), where µ is
the conjugation action, µ(m, g) = g−1mg, and id : g −→ g is the trivial map.

Definition 12. A morphism φ : χ −→ Y between the crossed modules χ =
(G1,M1, µχ, ∂χ) and Y = (G2,M2, µY , ∂Y) is a pair (φ1, φ2), where φi : Mi −→ Gi
and group homomorphisms for i = 1, 2, and the following relations hold:

• ∂Y ◦ φ2 = φ1 ◦ ∂χ,
• µY ◦ (φ2 × φ1) = φ2 ◦ µχ,
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which simply express the commutativity of the diagrams:

A consequence of the defining properties of a crossed module is that K = Ker ∂
is a central subgroup of M , I = im∂ is a normal subgroup of G, and one has an
exact sequence

1 −→ K −→M −→ G −→ C −→ 1

where C = G/I is the cokernel of ∂ [3]. In particular, |M ||C| = |K||G| for a finite
crossed module.
From a crossed module χ = (G,M,µ, ∂) we can construct a cat1-group C(χ) :

(G o M,M, i, s, t). Here s, t : M o G −→ M , i : M −→ G × M are defined
as s(c, p) = p, t(c, p) = ∂(c)p and i(p) = (1G, p). Then s|M = t|M = idM and
[Ker s,Ker t] = 1GoM . Note that (c, p) ∈ Ker s ⇐⇒ p = 1M , i.e., Ker s =
{(c, 1M )} ∼= G; hence t(c, 1M ) = ∂(c)1M = ∂(c), so ∂ = t|Ker s and we can recover
χ from C(χ). The same trick enables us to construct a crossed module χ(C) from
any given cat1-group C. These constructions lead to the well-known equivalence
between crossed modules and cat1-groups [5].

Example 3. (a) Let C2 =, x|x2 = 1 > and I = {1}. Then C2 −→ I is a
crossed module and from C2 −→ I we get the cat1-group (C2, I, i, 0, 0)
where i is the inclusion (1� 1) and s, t are both the zero map.

(b) Let C3 =< x|x3 = 1 > and C2 =< y|y2 = 1 >. The zero homomor-
phism and the trivial action, 1, make (C3, C2, 0, 1) a crossed module. The
semidirect product corresponding to (C3, C2, 0, 1) is C3 o C2

∼= C6 and so
(C6, C2, i, s, s), where the structural homomorphisms are identical and send
odd powers of the generator of C6 to the generator of C2 and even powers
to the identity.

(c) Let C4 =< x|x4 = 1 > and C2 =< y|y2 = 1 > and y = x2. Action
by conjugation fixes each element of C4, and together with the boundary
∂ defined by x −→ y, gives a crossed module, (C4, C2, ∂). Since C4 is
abelian, action by conjugation fixes every element of C4. (C4, C2, ∂) with
action by conjugation yields C4oC2

∼= C4×C2 and leads to the cat1-group
(C4×C2, C2, i, s, t) with s the projection onto C2 and t the homomorphism
sending both (x, 1) and (1, y) to y.

6. Character of Crossed Modules

To any finite crossed module χ = (G,M,µ, ∂) we will associate a braided tensor
category M(χ). An object of M(χ) is a 3-tuple (V, P,Q), where V is a complex
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linear space, while P and Q are maps P : M −→ End(V ) and Q : G −→ GL(V )
such that for all g, h ∈ G and m,n ∈M :

• P (m)P (n) = δ(m,n)P (m) where δ(m,n) =

{
1 if x = y
0 otherwise,

•
∑
m∈M P (m) = idV ,

• Q(g)Q(h) = Q(gh),
• P (m)Q(g) = Q(g)P (mg).

Definition 13. A morphism φ : (V1, P1, Q1) −→ (V2, P2, Q2) between two objects
of M(χ) is a linear map φ : V1 −→ V2 such that φ ◦ P1(m) = P2(m) ◦ φ for all
m ∈M and φ ◦Q1(g) = Q2(g) ◦ φ for all g ∈ G.

Example 4. The triple 1 = (V, P,Q) with V = C, P (m) = δ(m, 1)idV and Q(g) =
idV , is a one dimensional object ofM(χ), that we will call the trivial object.

Definition 14. If (V, P,Q) is an object of M(χ), a linear subspace W < V is
invariant if P (m)W ⊂ W and Q(g)W ⊂ W for all m ∈ M and g ∈ G. An
object (V, P,Q) is reducible if it has a nontrivial invariant subspace, otherwise it is
irreducible.

Definition 15. The character of an object (V, P,Q) ofM(χ) is the complex valued
function ψ : M ×G −→ C given by ψ(m, g) = TrV (P (m)Q(g)).

A function is called class function if it is constant on conjugate classes.

Proposition 1. The character ψ of an object of M(χ) is a class function of the
crossed module.

Proof. The proof is straightforward, because of, a complex valued function ψ :
M ×G −→M we have

• ψ(m, g) = 0 unless mg = m, for m ∈M and g ∈ G;
• ψ(mh, h−1gh) = ψ(m, g) for all m ∈M and g, h ∈ G.

�

Definition 16. Let χ = (G,M,µ, ∂) be a crossed module and (m, g), (m′, g′)
elements of M × G. Then (m, g) and (m′, g′) are called the conjugate, if there is
h ∈ G such that (m′, g′h, h−1gh).

Definition 17. If χ = (G,M,µ, ∂) is a crossed module and (m, g) ∈M ×G, then
conjugacy class (m, g) is

{(mh, h−1gh) | h ∈ G}.

Proposition 2. Let χ = (G,M,µ, ∂) be a crossed module. Then (m, g), (m′, g′)
elements of M ×G are conjugate if and only if for all character ψ of χ, ψ(m, g) =
ψ(m′, g′).

Proof. The proof is straightforward. �
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Proposition 3. Let χ = (G,M,µ, ∂) be a crossed module. Then (m, g) is conjugate
of (m−1, g−1), if and only if ψ(m, g) is real for all ψ ∈ Irr(χ).

Proof. We know that ψ(m−1, g−1) = ψ(m, g), additionally by Proposition 2 we
have ψ(m, g) = ψ(m−1, g−1). Therefore, ψ(m, g) = ψ(m, g). So ψ(m, g) is real for
all ψ ∈ Irr(χ). �

Definition 18. Let χ = (G,M,µ, ∂) be a crossed module and ψ be a character.
Then ψ(1, 1) is called the degree character of ψ.

Definition 19. Characters of degree 1 are called linear characters.

Proposition 4. If ψ is the character of χ, ψ 6= 0 and ψ is a homomorphism, then
ψ is a linear character.

Proof. If ψ is a character (non zero) and a homomorphism, then

ψ(1, 1) = ψ
(
(1, 1)2

)
= ψ(1, 1)ψ(1, 1) = (ψ(1, 1))

2
.

So ψ(1, 1) = 1. Therefore, ψ is a linear character. �

The next step in the theory of characters is to put a Hermitian inner product
structure on the space of class functions and prove that the irreducible characters
form an orthonormal basis with respect to this inner product.
Irreducible characters, i.e., the characters of the irreducible objects ofM(χ), play

a distinguished role, since any character may be written as a linear combination,
of irreducible ones with non-negative integer coeffi cients. We refer to [2] for basic
results about irreducible characters.

Theorem 2. (Generalized Orthogonality Relation) If χ = (G,M,µ, ∂) is a finite
crossed module, then

1

|G|
∑
h∈G

ψp(m,h)ψq(m,h
−1g) =

1

dp
δpqψp(m, g)

for p, q ∈ Irr(χ), where dp =
∑
m∈M ψp(m, 1) denotes the dimension of the irre-

ducible p.

Theorem 3. (Second Orthogonality Relation) If χ = (G,M,µ, ∂) is a finite crossed
module, then ∑

p∈Irr(χ)

ψp(m, g)ψp(n, h) =
∑
z∈G

δ(n,mz)δ(h−1, gz).

Example 5. Suppose that the triple 1 = (V, P,Q), with V = C, P (m) = δ(m, 1)idV
and Q(g) = idV . Then, we have ψ1(m, g) = δ(m, 1).

In a finite crossed module χ = (G,M,µ, ∂), we put I = im∂ and K = ker∂.
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Theorem 4. To each irreducible p ∈ Irr(χ), associate the complex number

wp =
1

dp

∑
m∈M

ψp(m, ∂m),

which turns out to be a root of unity, and ψp(m, g∂m) = wpψp(m, g), for all m ∈M ,
g ∈ G. Additionally, ∑

p∈Irr(χ)

d2
pw
−1
p = |G||K|.

According to [2] we have:

Theorem 5. (Frobenius-Schur): Let χ = (G,M, , µ, ∂) be a finite crossed module,
then

νp =
1

|G|
∑

m∈M,g∈G
δ(mg,m−1)ψ(m, g2),

where ψp is a irreducible character, and additionally, νp may take only the values
0 and ±1.

Definition 20. For class functions ψ1, ψ2 of a crossed module χ = (G,M,µ, ∂)
define

< ψ1, ψ2 >=
1

|G|
∑

m∈M, g∈G
ψ1(m, g)ψ2(m, g)

where the bar denotes the complex conjugation.

Proposition 5. [2] The set of class functions of a finite crossed module χ form a
finite dimensional linear space PL(χ), which carries the natural scalar product

< ψ1, ψ2 >=
1

|G|
∑

m∈M, g∈G
ψ1(m, g)ψ2(m, g)

where ψ1, ψ2 ∈ PL(χ), and the bar denotes the complex conjugation.

Lemma 2. For class functions ψ1, ψ2 of crossed module χ = (G,M,µ, ∂), the
inner product in Definition 20, is Hermitian.

Proof. For all λ ∈ C, ψ1, ψ2, ψ3 ∈ cf(χ,C) we have

< ψ1 + λψ2, ψ3 > =
1

|G|
∑

m∈M g∈G
(ψ1 + λψ2)(m, g)ψ3(m, g)

=
1

|G|
∑

ψ1(m, g)ψ3(m, g) + λ
1

|G|
∑

ψ2(m, g)ψ3(m, g)

= < ψ1, ψ2 > +λ < ψ2, ψ3 >
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also

< ψ1, ψ2 + λψ3 > =
1

|G|
∑

ψ1(m, g)(ψ2 + λψ3)(m, g)

=
1

|G|
∑

ψ1(m, g)ψ2(m, g) + λ
1

|G|
∑

ψ1(m, g)ψ3(m, g)

= < ψ1, ψ2 > +λ̄ < ψ1, ψ3 >

and

< ψ1, ψ2 > =
1

|G|
∑

ψ1(m, g)ψ2(m, g)

=
1

|G|
∑

ψ1(m, g)ψ2(m, g)

=
1

|G|
∑

ψ2(m, g)ψ1(m, g) = < ψ2, ψ1 >

also

< ψ1, ψ1 > =
1

|G|
∑

ψ1(m, g)ψ1(m, g)

=
1

|G|
∑
|ψ1(m, g)|2 ≥ 0.

�

Theorem 6. (First Orthogonality Relation): Let χ = (G,M,µ, ∂) be a finite
crossed module and ψ1, ψ2 be the irreducible characters of χ on C. Then with
respect to the inner product < , >;∑

m∈M,g∈G
ψ1(m, g)ψ2(m−1, g−1) = 0.

Proof. We have

ψ1(m, g) =
∑

m∈M, g∈G
aii(m, g), ψ2(m, g) =

∑
m∈M, g∈G

bjj(m
−1, g−1).

Thus∑
m∈M, g∈G

ψ1(m, g)ψ2(m−1, g−1) =
∑

m∈M, g∈G

∑
i,j

aii(m, g)bjj(m
−1, g−1)

=
∑
i,j

∑
m∈M, g∈G

aii(m, g)bjj(m
−1, g−1) = 0.

�

Theorem 7. [2] (Generalization of Burnside’s Classical Theorem) For a finite
crossed module χ there are only finitely many isomorphism classes of irreducible
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objects in M(χ), and ∑
p∈Irr(χ)

d2
p = |G||M |,

where we denote by Irr(χ) the set of (isomorphism classes of) irreducible objects
of M(χ), and dp denotes the dimension of the irreducible p ∈ Irr(χ).

Theorem 8. Let χ = (G,M,µ, ∂) be a finite crossed module and ψ be an irreducible
character of χ. Then ∑

m∈M, g∈G
ψ(m, g)ψ(m−1, g−1) = |G||M |.

Proof. We have∑
m∈M, g∈G

ψ(m, g)ψ(m−1, g−1) =
∑

m∈M, g∈G

∑
i,j

aii(m, g)bjj(m
−1, g−1)

=
∑
i,j

∑
m∈M, g∈G

aii(m, g)bjj(m
−1, g−1) = |G||M |.

�

Theorem 9. If χ = (G,M,µ, ∂) is a finite crossed module and ψ1, ψ2 are the
irreducible and not equivalent characters of χ, then ψ1 6= ψ2.

Proof. If ψ1, ψ2 are not equivalent, by First Orthogonality Relation Theorem 6 we
have, ∑

m∈M, g∈G
ψ1(m, g)ψ2(m−1, g−1) = 0.

But if ψ1 6= ψ2 by Theorem 8 we have,∑
m∈M, g∈G

ψ1(m, g)ψ2(m−1, g−1) =
∑

m∈M, g∈G
ψ1(m, g)ψ1(m−1, g−1) = |M ||G|

that is a contradiction. �

The notion of direct sum of objects of M(χ) is the obvious one:

(V1, P1, Q1)⊕ (V2, P2, Q2) = (V1 ⊕ V2, P1 ⊕ P2, Q1 ⊕Q2).

Theorem 10. [2] (Maschke’s Theorem) For a finite crossed module χ, any object of
M(χ) decomposes uniquely (up to ordering) into a direct sum of irreducible objects.

Lemma 3. If χ = (G,M,µ, ∂) is a finite crossed module, ψ is the character of χ
and g ∈ G, m ∈M , (o(g), o(m)) = k, then

• ψ(g,m) is a sum of all kth roots of 1.
• ψ(m−1, g−1) = ψ(m, g).
•
∑
m∈M, g∈G ψ(m, g)ψ(m−1, g−1) > 0.

Proof. The proof is straightforward. �
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Definition 21. Let ψ be a character of crossed module χ = (G,M,µ, ∂). Then

Kerψ = {(m, g) | ψ(m, g) = ψ(1, 1), m ∈M, g ∈ G}.

Definition 22. Let ψ be a character of crossed module χ = (G,M,µ, ∂). Then

Z(ψ) = {(m, g) | |ψ(m, g)| = ψ(1, 1), m ∈M, g ∈ G}.

Lemma 4. Let ψ be a character of crossed module χ = (G,M,µ, ∂) with ψ =∑
niψi for ψi ∈ Irr(χ). Then Kerψ =

⋂
{Kerψi | ni > 0}. Also, we have⋂

{Kerψi | ψi ∈ Irr(χ)} = 1.

Proof. If (m, g) ∈ Kerψ, then ψ(m, g) = ψ(1, 1). But

ψ(1, 1) = |ψ(m, g)| = |
h∑
i=1

niψi(m, g)|

≤
h∑
i=1

ni|ψi(m, g)| ≤
h∑
i=1

niψi(1, 1) = ψ(1, 1).

So the above equality holds if and only if ψi(m, g) = ψ(1, 1) for all 1 ≤ i ≤
h. So (m, g) ∈ Kerψi for those of ψi that is positive for them. Thus Kerψ =⋂
{Kerψi | ni > 0}. Proof for second statement is outright. �

Lemma 5. Let χ = (G,M,µ, ∂) be a crossed module and Y = (Y1, Y2, µ, ∂) be a
normal subcrossed module of them, ψ be a character of χ

Y , then ψ̄ with criterion
ψ̄(m, g) = ψ(mY2, gY1) is a character of χ . For the converse, the characters of χ
and Y that are in the kernel of them, are characters of χ

Y .

Proof. The proof is straightforward. �
Corollary 1. Let χ = (G,M,µ, ∂) be a crossed module and Y be a normal sub-
crossed module of them, then Irr χY = {ψ ∈ Irr(χ) | Y ⊆ Kerψ}.

Proof. The proof is straightforward. �

7. Products of Characters

Let ψ and η be characters of crossed module χ = (G,M,µ, ∂). The fact that
ψ + η is a character, is a triviality. We may define a new class function ψη of χ be
setting (ψη)(m, g) = ψ(m, g)η(m, g). It is true but somewhat less trivial that ψη is
a character.
Let V1 and V2 be C[G]-modules. We shall construct a new C[G]-module V1 ⊗ V2

called the tensor product of V1 and V2. If {v1, . . . , vn} be a bases for V1 and
{w1, . . . , wm} for V2, then V1 ⊗ V2 is the C-space spanned by the mn symbols
vi ⊗ wj . If v ∈ V1 and w ∈ V2, suppose v =

∑
aivi and w =

∑
bjwj , then

v ⊗ w =
∑
aibj(vi ⊗ wj) ∈ V1 ⊗ V2.

We define an action of G on V1 ⊗ V2 by setting (vi ⊗ wj)g = vig ⊗ wjg and
extending this by linearity to all of V1 ⊗ V2.
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Definition 23. The tensor product of the objects (V1, P1, Q1) and (V2, P2, Q2) is
the triple (V1 ⊗ V2, P12, Q12) where P12 : m −→

∑
n∈M P1(n) ⊗ P2(n−1m) and

Q12 : g −→ Q1(g)⊗Q2(g).

The category M(χ) may be shown to be a monoidal tensor category, which
in general fails of to be symmetric, but it is always braided, the braiding being
provided by the map

R12 : V1 ⊗ V2 −→ V2 ⊗ V1

v1 ⊗ v2 −→
∑
m∈M

Q2(∂m)v2 ⊗ P1(m)v1.

Characters behave well under the direct sums and tensor products. The character of
a direct sum is just the sum of the characters of the summands, while the character
of a tensor products is given by the formula

ψA⊗B(m, g) =
∑
n∈M

ψA(n, g)ψB(n−1m, g),

if ψA and ψB are the characters of the factors.

Lemma 6. If ψ1, ψ2 and ψ3 are characters of a crossed module χ = (G,M,µ, ∂),
then < ψ1ψ2, ψ3 >=< ψ1, ψ̄2ψ3 >.

Proof.

< ψ1ψ2, ψ3 > =
1

|G|
∑

m∈M,g∈G
ψ1(m, g)ψ2(m, g)ψ3(m, g)

=
1

|G|
∑

m∈M,g∈G
ψ1(m, g)ψ2(m, g)ψ3(m, g) =< ψ1, ψ̄2ψ3 > .

�
Proposition 6. If ψ1 and ψ2 are the irreducible characters of crossed module
χ = (G,M,µ, ∂), then

< ψ1ψ2, 1χ >=

{
1 ψ1 = ψ̄2

0 otherwise

Proof. By Lemma 6 we have < ψ1ψ2, ψ3 >=< ψ1, ψ̄2ψ3 >, so < ψ1ψ2, 1χ >=<
ψ1, ψ̄21χ >=< ψ1, ψ̄2 >. Also, if ψ1 is a character of χ, then ψ̄1 is a character and
ψ1 is irreducible, then ψ̄1 is irreducible. Hence

< ψ1ψ2, 1χ >=< ψ1, ψ̄2 >=

{
1 ψ1 = ψ̄2

0 otherwise.

�
In general, products of irreducible characters are not irreducible. For instance, if

ψ ∈ Irr(χ), nevertheless, 1χ is a constituent of ψψ̄, since < ψψ̄, 1χ >=< ψ,ψ1χ >=
1.
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Theorem 11. If M and G are finite abelian groups and χ = (G,M,µ, ∂) a crossed
modules, then irreducible characters are linear characters.

Proof. If G and M are finite abelian groups, then ∀m ∈M, g ∈ G,

class(m, g) =
{

(m′, g′) | (m′, g′h, h−1gh), h ∈ G
}

= {(m, g)} .

So M ×G has |G||M | conjugate class, and hence it has |G||M | irreducible charac-
ters, for example ψ1, ψ2, . . . , ψ|G||M |. Therefore,

∑|G||M |
i=1 ψ2

i (1, 1) = |G||M |, hence
ψ(1, 1) = 1. �

In the end we present a few examples. But, first recall that:

Theorem 12. If H, K and φ are as in the above definition, then G = H oφ K is
a group of order |G| = |H||K|.

Theorem 13. (The orthogonality relations).

(1) Let ψ be a character of a representation (V, P ), then ψ is irreducible if and
only if < ψ,ψ >= 1.

(2) If ψ1, ψ2 are characters of two non-isomorphic irreducible representations,
then < ψ1, ψ2 >= 0.

Theorem 14. The numbers of irreducible characters are the same as the number
of conjugate classes of G.

Example 6. If χ = (Zp,Zp, µ, ∂) is a finite crossed module by p a prime, then we
first observe that the conjugate classes of a direct products is the products of a class
in each of the factors, thus we have in our case p2 conjugate classes, for Zp × Zp.
We make the assumption that the characters will be

ψψ1ψ2(m, g) = ψψ1(m)ψψ2(g),

where ψ1 and ψ2 are irreducible characters of Zp. Now, we want to verify that these
functions are p2 irreducible characters by using Theorem 13 and by Theorem 14 we
know that there are no other irreducible character and we are done.

< ψψ1ψ2 , ψψ1ψ2 >=
1

|Zp × Zp|
∑

m,g∈Zp

ψψ1ψ2(m, g)ψψ1ψ2(m, g)

=
1

p2

∑
m,g∈Zp

ψ1(m)ψ2(g)ψ1(m)ψ2(g) =
1

p2

∑
m,g∈Zp

e
2πi
p αme

2πi
p βge

−2πi
p α′me

−2πi
p β′g

=
1

p2

∑
m∈Zp

e
2πi
p (α−α′)m

∑
g∈Zp

e
2πi
p (β−β′)g =

1

p2
pδαα′pδββ′ = δαα′δββ′ .

Here we have used that the sum over all the p-th roots of unity is zero and thus we
have found all of characters.
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Example 7. If χ = (Zp,Zp2 o Zp, µ, ∂) is a finite crossed module, by p a prime,
then conjugate classes of (Zp2 o Zp)× Zp are represented by the products of the
representatives of the classes in Zp2 o Zp and Zp. So, we have p(p2 +p−1) classes in
(Zp2 o Zp)× Zp represented by ((xmod p, y), z) and the center is {((pr, o), z) | r, z ∈ Zp} .
We then proceed as we did in Example 6 and the characters as are

((pr, 0), z) ((xmod p, y), z)

ψψ1ψ2ψ3 λψ3(z) λψ1(x)λψ2(y)λψ3(z)

φφ1φ2 pλφ1(r)λφ2(z) 0

Example 8. If χ = (Zp, (Zp × Zp)o Zp, µ, ∂) is a finite crossed module, then we
know the characters of (Zp × Zp)o Zp from Example 7 and the conjugate classes, so
we conclude that we have p(p2 + p − 1) classes represented by (((x, 0), z), w) and
the center is (((0, y), 0), w). Thus the character table looks like, where, φ1 6= 0

(((0, y), 0), w) (((x, 0), z), w)

ψψ1ψ2ψ3 λψ3(w) λψ1(x)λψ2(z)λψ3(w)

φφ1φ2 pλφ1(y)λφ2(z) 0

Example 9. Let


1 x y

0 1 z
0 0 1

 | x, y, z ∈ Fp
 ≤ GL3(Fp) where Fp is the finite

field of p elements and the operation is matrix multiplication. This group is of
order p3, since we have p-choices at three locations and also it is non-abelian. It is
easily which this group has no element of order p2 and every element in G raised to
the power p is the identity. So G is a non-abelian group of order p3 and every non-
identity element has order p. Hence G ∼= (Zp × Zp)o Zp. Now, since we know the
irreducible characters of both Zp and Zp × Zp, we can look at the induced characters
of these subgroups, but we are only interested in the case Zp × Zp, since the degree
of an induced representation is related to H and so we want [G : H] = p.
We need to find the conjugate classes of G. But if g = ((x, y), z) ∈ G, then g

is equivalent to the matrix

1 z y
0 1 x
0 0 1

, and that multiplication in G is with this

presentation just matrix multiplication which gives the formula

((x, y), z) ∗ ((x′, y′), z′) = ((x+ x′, y + y′ + x′z), z + z′).
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Now, in order to find the conjugates of g by h, if h = ((a, b), c), then h−1gh is1 −c ca− b
0 1 −a
0 0 0

1 z y
0 1 x
0 0 1

1 c b
0 1 a
0 0 1

 =

1 z y + za− xc
0 1 x
0 0 1

 .

Let x and z be non zero. We get p conjugates and if x = z = 0, then g is
in the center of G. Hence we have p2 − 1 different classes of this type, and
Z(G) = {((0, y), 0) | y ∈ Zp}. If H = {((x, y), 0)} ∼= Zp × Zp, then [G : H] = p.
Let ψεη(x, y) = λεxληy be the characters of H. Then

ψ((x, y), z) =
1

|H|
∑

t∈G,t−1gt∈H

ψεη(t−1gt).

Hence

ψ((x, y), z) =
1

p2

∑
((a, b), c) ∈ G

((x, y + za− xc), z) ∈ H

λεxλη(y+za−xc),

and with the definition of H we get that ψ = 0 if z 6= 0 and ψ((x, y), 0) =
λεxληy

∑
c λ
−ηcx. The sum

∑
c λ
−ηxc is a sum of all roots of unity and will vanish

when ηx 6= 0, but η is arbitrary and this implies that ψ vanishes whenever x 6= 0.
But ψ(g) is zero whenever g /∈ Z(G), so character ψ which takes its non-zero values
on the center as ψη((0, y), 0) = pληy. But

< ψη, ψη′ >=
1

|G|
∑
g∈G

ψη(g)ψη′(g) =
1

p3

∑
y

pληypλ−η
′y =

1

p

∑
y

λ(η−η′)y = δηη′ ,

hence characters are irreducible.
Also, we have

< ψη, φαβ >=
1

|G|
∑
g∈G

ψη(g)φαβ(g) =
1

p3

∑
((x,y),z)∈Z(G)

pληyλ−αxλ−βz =
1

p2

∑
y

ληy

and if η 6= 0, then < ψη, φαβ >= 0 which is what we needed to prove that the
characters are orthogonal. So, we have p2 characters of degree 1 and p−1 characters
of degree p.
Let ((0, y), 0) be the elements in Z(G) and let ((x, 0), z) be the representatives

of the non-trivial conjugate classes, and α, β, η ∈ Zp and η 6= 0. Then, the character
table is

((0, y), 0) ((x, 0), y)

φαβ 1 λαx+βz

ψη pληy 0
Now, we consider the cat1-group of crossed module (Zp,Zp, µ, ∂). Since (Zp o Zp,Zp,∼,≈,i)

where t, s : Zp o Zp −→ Zp, s(a, b) = b, t(a, b) = ∂(a)b and i : Zp −→ Zp o Zp, where
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i(b) = (1zp, b), observe that we have p(p2+p−1) classes represented by (((x, 0), z), c)
and the center is (((0, y), 0), c). Thus the character table is

(((0, y), 0), c) (((x, 0), z), c)

φαβγ λγc λαxλβzλγc

Θεη pλεyληz 0
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