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ON SOME INEQUALITIES FOR THE EXPECTATION AND

VARIANCE

ZHENG LIU

Abstract. Some elementary inequalities for the expectation and variance of

a continuous random variable whose probability density function is defined on
a finite interval are obtained by using an identity due to P. Cerone for the

Chebyshev functional and some standard results from the theory of inequali-
ties. Thus some mistakes in the literatures are corrected.

1. INTRODUCTION

Let X be a continuous random variable having the probability density func-
tion f defined on a finite interval [a, b].

By definition

(1.1) E(X) :=

∫ b

a

tf(t) dt

the expectation of X, and

(1.2)
σ2(X) :=

∫ b
a

[t− E(X)]2f(t) dt

=
∫ b
a
t2f(t) dt− [E(X)]2

the variance of X.
For two integral functions f, g : [a, b]→ R, define the Chebyshev functional

(1.3) T (f, g) :=
1

b− a

∫ b

a

f(t)g(t) dt− 1

b− a

∫ b

a

f(t) dt · 1

b− a

∫ b

a

g(t) dt.

In [1], P. Cerone has obtained the following identity that involves a Riemann-
Stieltjes integral:
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Lemma 1.1. Let f, g : [a, b] → R be such that f is of bounded variation on [a, b]
and g is continuous on [a, b]. Then

(1.4) T (f, g) =
1

(b− a)2

∫ b

a

Ψ(t) df(t),

where

(1.5) Ψ(t) := (t− a)A(t, b)− (b− t)A(a, t),

with

(1.6) A(c, d) :=

∫ d

c

g(x) dx.

In [1] we can also find the following useful result:

Lemma 1.2. Let f, g : [a, b] → R be such that f is of bounded variation and g is
continuous on [a, b]. Then

(1.7)

(b− a)2|T (f, g)| ≤


supt∈[a,b]|Ψ(t)|

∨b
a(f),

L
∫ b
a
|Ψ(t)| dt, for f L-Lipschitzian,∫ b

a
|Ψ(t)| df(t), for f monotonic nondecreasing,

where
∨b
a(f) is the total variation of f on [a, b].

The purpose of this paper is to derive some elementary inequalities for the ex-
pectation (1.1) and variance (1.2) by using Lemma 1.1 and Lemma 1.2. Thus some
mistakes in [1] and [2] are corrected.

2. INEQUALITIES FOR THE EXPECTATION

We prove the following theorem by using the Lemma 1.1.

Theorem 2.1. Let f : [a, b]→ R+ be an absolutely continuous probability density
function associated with a random variable X, then the expectation E(X) satisfies
the inequalities

(2.1)

|E(X)− a+b
2 |

≤


(b−a)3

12 ‖f
′‖∞, f ′ ∈ L∞[a, b];

1
2 (b− a)2+

1
q [B(q + 1, q + 1)]

1
q ‖f ′‖p, f ′ ∈ Lp[a, b], p > 1,

1
p + 1

q = 1;
(b−a)2

8 ‖f ′‖1, f ′ ∈ L1[a, b].

where ‖ · ‖p, 1 ≤ p ≤ ∞ are the usual Lebesgue norms on [a, b], i.e.,

(2.2) ‖g‖p :=

{
[
∫ b
a
|g(t)|p dt]

1
p , 1 ≤ p <∞,

ess supt∈[a,b] |g(t)|, p =∞.
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Proof. Notice that
∫ b
a
f(t) dt = 1 and f is absolutely continuous on [a, b], by

(1.3) and (1.4)-(1.6) we get

E(X)− a+ b

2
= (b− a)T (t, f(t)) =

1

2

∫ b

a

(t− a)(b− t)f ′(t) dt,

and so

|E(X)− a+ b

2
| ≤ 1

2

∫ b

a

(t− a)(b− t)|f ′(t)| dt.

Using the Hölder’s integral inequality, we have

∫ b

a

(t− a)(b− t)f ′(t) dt ≤


1
2‖f

′‖∞
∫ b
a

(t− a)(b− t) dt, f ′ ∈ L∞[a, b];
1
2‖f

′‖p[
∫ b
a
|(t− a)(b− t)|q dt]

1
q , f ′ ∈ Lp[a, b],

p > 1, 1p + 1
q = 1;

1
2‖f

′‖1 supt∈[a,b](t− a)(b− t), f ′ ∈ L1[a, b].

Clearly, ∫ b

a

(t− a)(b− t) dt =
(b− a)3

6
,

sup
t∈[a,b]

(t− a)(b− t) =
(b− a)2

4
,

and it is easy to find by substitution u = a+ (b− a)t that

∫ b

a

[(t− a)(b− t)]q dt = (b− a)2q+1

∫ 1

0

uq(1− u)q du = (b− a)2q+1B(q + 1, q + 1).

Thus we have proved the inequalities (2.1).

Remark 2.1. The inequalities (2.1) provide a correction of the inequalities (3.22)
in [2].

Theorem 2.2. Let f : [a, b]→ R+ be a probability density function associated with
a random variable X. Then the expectation E(X) satisfies the inequalities

(2.3) |E(X)− a+ b

2
| ≤


(b−a)2

8

∨b
a(f), for f of bounded variation,

(b−a)3
12 L, for f L-Lipschitzian,

(b−a)2
8 [f(b)− f(a)], for f monotonic nondecreasing.

Proof. Notice that
∫ b
a
f(t) dt = 1, by (1.3), (1.4) and (1.6) we get

E(X)− a+ b

2
= (b− a)T (t, f(t)) =

1

2

∫ b

a

(t− a)(b− t) df(t),

and so it follows from Lemma 1.2,

|E(X)−a+ b

2
| ≤


1
2 supt∈[a,b](t− a)(b− t)

∨b
a(f), for f of bounded variation,

L
2

∫ b
a

(t− a)(b− t) dt, for f L-Lipschitzian,
1
2

∫ b
a

(t− a)(b− t) df(t), for f monotonic nondecreasing.
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We need only to calculate and estimate that

∫ b
a

(t− a)(b− t) df(t) = (t− a)(b− t)f(t)|ba + 2
∫ b
a

(t− a+b
2 )f(t) dt

= 2[
∫ a+b

2

a
(t− a+b

2 )f(t) dt+
∫ b

a+b
2

(t− a+b
2 )f(t) dt]

≤ 2f(a)
∫ a+b

2

a
(t− a+b

2 ) dt+ 2f(b)
∫ b

a+b
2

(t− a+b
2 ) dt

= (b−a)2
4 [f(b)− f(a)].

Consequently, the inequalities (2.2) are proved.

Remark 2.2. The inequalities (2.2) provide a correction of inequalities (3.14) in [1].

3. INEQUALITIES FOR THE VARIANCE

For convenience in further discussions, we will first to derive some technical
results in what follows. Put

(3.1) φ(t) := (t− γ)3 +
1

b− a
[(b− t)(γ − a)3 − (t− a)(b− γ)3]

for t ∈ [a, b] and γ ∈ R.
It is easy to find that

(3.2)
φ(t) = t3 − 3γt2 − [a2 + ab+ b2 − 3(a+ b)γ]t− ab[3γ − (a+ b)]

= (t− a)(t− b)(t− c),
where c = 3γ − a− b. This implies that

(3.3) c


> γ, γ > a+b

2 ,
= γ, γ = a+b

2 ,
< γ, γ < a+b

2 .

Moreover, we see that c < a for γ < 2a+b
3 , c > b for γ > a+2b

3 and a ≤ c ≤ b for
2a+b
3 ≤ γ ≤ a+2b

3 . Therefore, by (3.2) we can conclude that φ(t) ≤ 0 for t ∈ [a, b] if

γ < 2a+b
3 , φ(t) ≥ 0 for t ∈ [a, b] if γ > a+2b

3 and φ(t) > 0 for t ∈ (a, c) with φ(t) < 0

for t ∈ (c, b) if 2a+b
3 ≤ γ ≤ a+2b

3 .
Thus we have

(3.4)

∫ b

a

|φ(t)| dt = −
∫ b

a

φ(t) dt =
1

2
(
a+ b

2
− γ)(b− a)3

in case γ < 2a+b
3 ,

(3.5)

∫ b

a

|φ(t)| dt =

∫ b

a

φ(t) dt =
1

2
(γ − a+ b

2
)(b− a)3

in case a+2b
3 < γ, and

(3.6)∫ b
a
|φ(t)| dt =

∫ c
a
φ(t) dt−

∫ b
c
φ(t) dt

= 1
4 [18(γ − a)(b− γ)(b− a)2 − 54(γ − a)2(b− γ)2 − (b− a)4]
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in case 2a+b
3 ≤ γ ≤ a+2b

3 .
Also, it is not difficult to get by elementary calculus that

(3.7) sup
t∈[a,b]

|φ(t)| = 2{[(γ − a+ b

2
)2 +

(b− a)2

12
]
3
2 − (γ − a)(b− γ)|γ − a+ b

2
|},

for γ ∈ R.
Now we would like to give some inequalities for the variance with different

bounds.

Theorem 3.1. Let f : [a, b]→ R+ be an absolutely continuous probability density
function associated with a random variable X. If f ′ ∈ L∞[a, b], then the variance
σ2(X) satisfies the inequalities

(3.8)

|σ2(X)− (γ − a+b
2 )2 − (b−a)2

12 |

≤ ‖f ′‖∞


1
6 (a+b2 − γ)(b− a)3, a < γ < 2a+b

3
1
12 [18(γ − a)(b− γ)(b− a)2 − 54(γ − a)2(b− γ)2 − (b− a)2], 2a+b

3 ≤ γ ≤ a+2b
3 ,

1
6 (γ − a+b

2 )(b− a)3, a+2b
3 < γ < b,

where a < γ = E(X) < b.

Proof. It is easy to find from (1.3)-(1.6) that

(3.9) σ2(X)− (γ − a+ b

2
)2 − (b− a)2

12
= −1

3

∫ b

a

φ(t)f ′(t) dt,

where φ(t) is as defined in (3.1).
Thus the inequalities (3.8) follow from (3.4), (3.5) and (3.6).

Theorem 3.2. Let f : [a, b]→ R+ be an absolutely continuous probability density
function associated with a random variable X. If f ′ ∈ L1[a, b], then the variance
σ2(X) satisfies the inequality

(3.10)
|σ2(X)− (γ − a+b

2 )2 − (b−a)2
12 |

≤ 2
3{[(γ −

a+b
2 )2 + (b−a)2

12 ]
3
2 − (γ − a)(b− γ)|γ − a+b

2 |}‖f
′‖1,

where a < γ = E(X) < b.

Proof. The inequality (3.10) follows immediately from (3.7) and (3.9).

Remark 3.1. The inequalities (3.8) and inequality (3.10) provide a correction of
inequalities (3.23) in [2].

Theorem 3.3. Let f : [a, b]→ R+ be a probability density function associated with
a random variable X which is of bounded variation on [a, b]. Then the variance
σ2(X) satisfies the inequality

(3.11)
|σ2(X)− (γ − a+b

2 )2 − (b−a)2
12 |

≤ 2
3{[(γ −

a+b
2 )2 + (b−a)2

12 ]
3
2 − (γ − a)(b− γ)|γ − a+b

2 |}
∨b
a(f),

where a < γ = E(X) < b and
∨b
a(f) is the total variation of f on [a, b].
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Proof. By Lemma 1.1 and Lemma 1.2 we can conclude that

|σ2(X)− (γ − a+ b

2
)2 − (b− a)2

12
| ≤ 1

3
sup
t∈[a,b]

|φ(t)|
∨b

a
(f),

where φ(t) is as defined in (3.1).
Thus the inequality (3.11) follows from (3.7).

Theorem 3.4. Let f : [a, b]→ R+ be a probability density function associated with
a random variable X which is L-Lipschitzian on [a, b]. Then the variance σ2(X)
satisfies the inequalities

(3.12)

|σ2(X)− (γ − a+b
2 )2 − (b−a)2

12 |

≤ L


1
6 (a+b2 − γ)(b− a)3, a < γ < 2a+b

3 ,
1
12 [18(γ − a)(b− γ)(b− a)2 − 54(γ − a)2(b− γ)2 − (b− a)4], 2a+b

3 ≤ γ ≤ a+2b
3 ,

1
6 (γ − a+b

2 )(b− a)3, a+2b
3 < γ < b,

where a < γ = E(X) < b.

Proof. By Lemma 1.1 and Lemma 1.2 we can conclude that

|σ2(X)− (γ − a+ b

2
)2 − (b− a)2

12
| ≤ L

3

∫ b

a

|φ(t)| dt,

where φ(t) is as defined in (3.1).
Thus the inequalities (3.12) follow from (3.4), (3.5) and (3.6).

Theorem 3.5. Let f : [a, b] → R+ be a probability density function associated
with a random variable X which is monotonic nondecreasing on [a, b]. Then the
variance σ2(X) satisfies the inequality

(3.13)

|σ2(X)− (γ − a+b
2 )2 − (b−a)2

12 |

≤


5b+4a−9γ

18 (b− a)2[f(b)− f(a)], a < γ < 2a+b
3 ,

3b−2a−c
18 (c− a)2[f(c)− f(a)] + 2b+c−3a

18 (b− c)2[f(b)− f(c)], 2a+b
3 ≤ γ ≤ a+2b

3 ,
9γ−5a−4b

18 (b− a)2[f(b)− f(a)], a+2b
3 < γ < b,

where a < γ = E(X) < b and c = 3γ − a− b.

Proof. By Lemma 1.1 and Lemma 1.2 we can conclude that

|σ2(X)− (γ − a+ b

2
)2 − (b− a)2

12
| ≤ 1

3

∫ b

a

|φ(t)| df(t),

where φ(t) is as defined in (3.1).
Notice that

φ(t) = (t− a)(t− b)(t− c)

for t ∈ [a, b], where c = 3γ − a− b, it is easy to calculate that
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∫ b
a
|φ(t)| df(t) = −

∫ b
a
φ(t) df(t) =

∫ b
a
φ′(t)f(t) dt

=
∫ b
a

[(t− b)(t− c) + (t− a)(t− c) + (t− a)(t− b)]f(t) dt

≤ f(a)
∫ b
a

(t− b)(t− c) dt+ f(b)
∫ b
a

(t− a)(t− c) dt+ f(a)
∫ b
a

(t− a)(t− b) dt
= 5b+4a−9γ

6 (b− a)2[f(b)− f(a)],

in case a < γ < 2a+b
3 ,

∫ b
a
|φ(t)| df(t) =

∫ b
a
φ(t) df(t) = −

∫ b
a
φ′(t)f(t) dt

= −
∫ b
a

[(t− b)(t− c) + (t− a)(t− c) + (t− a)(t− b)]f(t) dt

≤ −f(a)
∫ b
a

(t− b)(t− c) dt− f(b)
∫ b
a

(t− a)(t− c) dt− f(b)
∫ b
a

(t− a)(t− b) dt
= 9γ−5a−4b

6 (b− a)2[f(b)− f(a)],

in case a+2b
3 < γ < b, and

∫ b
a
|φ(t)| df(t) =

∫ c
a
φ(t) df(t)−

∫ b
c
φ(t) df(t)

= −
∫ c
a
φ′(t)f(t) dt+

∫ b
c
φ′(t)f(t) dt

= −
∫ c
a

[(t− b)(t− c) + (t− a)(t− c) + (t− a)(t− b)]f(t) dt

+
∫ b
c

[(t− b)(t− c) + (t− a)(t− c) + (t− a)(t− b)]f(t) dt
≤ −f(a)

∫ c
a

(t− b)(t− c) dt− f(c)
∫ c
a

(t− a)(t− c) dt− f(c)
∫ c
a

(t− a)(t− b) dt
+f(c)

∫ b
c

(t− b)(t− c) dt+ f(b)
∫ b
c

(t− a)(t− c) dt+ f(c)
∫ b
c

(t− a)(t− b) dt
= 3b−2a−c

6 (c− a)2[f(c)− f(a)] + 2b+c−3a
6 (b− c)2[f(b)− f(c)]

in case 2a+b
3 ≤ γ ≤ a+2b

3 .
Consequently, the inequalities (3.13) are proved.

Corollary 3.1. Let f : [a, b] → R+ be a probability density function associated
with a random variable X. If E(X) = a+b

2 , then the variance σ2(X) satisfies the
inequalities

|σ2(X)− (b− a)2

12
| ≤


(b−a)3

36
√
3

∨b
a(f), f of bounded variation,

(b−a)4
96 L, f L-Lipschitzian,

5(b−a)3
144 [f(b)− f(a)], f monotonic nondecreasing.

Proof. It is immediate from the inequalities (3.11), (3.12) and (3.13).

Remark 3.2. The inequalities (3.11), (3.12) and (3.13) provide a correction of in-
equalities (3.15) in [1].

Remark 3.3. The mistakes of Corollary 8 and Corollary 9 1n [2] as well as the
mistakes of Corollary 3.7 and Corollary 3.8 in [1] seemed as if they are originated
from having wrongly examined the behaviour of φ(t) as given by

φ(t) = (t− γ)n+1 + (
b− t
b− a

)(γ − a)n+1 − (
t− a
b− a

)(b− γ)n+1

for t ∈ [a, b] in case n is even. (See (3.13) of Lemma 2 in [2] and also (3.6) of Lemma
3.3 in [1] and compare them with the assertions expressed at the beginning of this
section as a special case of n = 2.)



ON SOME INEQUALITIES FOR THE EXPECTATION AND VARIANCE 61

References

[1] P. Cerone, On an identity for the Chebychev functional and some ramifications, J. Inequal.
Pure and Appl. Math., 3(1) (2002), Art. 4. (http://jipam.vu.edu.au/).

[2] P. Cerone and S. S. Dragomir, On some inequalities arising from Montgomery’s identity, J.

Comput. Anal. Applics., 5(4) (2003), 341-368.

Institute of Applied Mathematics, School of Science, University of Science and
Technology Liaoning, Anshan 114051, Liaoning, China

E-mail address: lewzheng@163.net


