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A DIFFERENT LOOK FOR PARANORMED

RIESZ SEQUENCE SPACE DERIVED BY

FIBONACCI MATRIX

MURAT CANDAN AND GÜLSEN KILINÇ

Abstract. This paper presents the generalized Riesz sequence space rq(F̂ p
u )

which is formed all sequences whose Rq
uF̂ -transforms are in the space `(p),

where F̂ is a Fibonacci matrix. α- β- and γ-duals of the newly described

sequence space have been given in addition to some topological properties of

its. Also, it has been established the basis of rq(F̂ p
u ). Finally, we have been

described a matrix class on the sequence space. Results obtained are more

general and more comprehensive than presented up to now.

1. Preliminaries

The concept of sequence is widely considered to be one of the important concepts
in summability theory, so let us begin by remembering the definition of it. A
sequence is a function of which domain set is natural numbers N = {0, 1, 2, . . . }.
In other words, an ordered list of numbers x0, x1, ..., xn, ... is a sequence. If it is
an infinite sequence, it is illustrated with notation {xn}∞n=0, as a convenience, we
write {xn} briefly. A sequence {xn} converges with limit a if each neighborhood
of a contains almost all terms of the sequence, i.e., there must be at most only
finitely many elements of {xn} outside any neighborhood of a. In this case, we say
that {xn} converges to a as n goes to ∞. The set of all real or complex convergent
sequences is indicated by c. Let {xn} be a sequence and define a new sequence
{sn} called the sequence of partial sums of {xn}with relation sn =

∑n
k=1 xk. When

{sn} is convergent, we say that {xn} is summable and we point out the lim
n
sn

by
∑∞
j=0 xj . A real or complex number sequence converges to zero is called null

sequence. The set of all real or complex null sequences is denoted by c0. A sequence
is bounded, if all its terms remain between two numbers. The set of all bounded
sequences is denoted by l∞. We denote the family of all {xn} sequences by w, where
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xn belongs to real or complex numbers set. Then w is a linear space under the
usual pointwise addition and scalar multiplication over C and R. Since any linear
subspace of w is called a sequence space, also c, c0 and `∞ are the subspaces of w,
we concludes that they are sequence spaces. Further, we symbolizes the spaces of
all bounded, convergent, absolutely and p−absolutely convergent series by bs, cs,
`1, `p; respectively.

These spaces are Banach spaces with following norms:
‖x‖`∞ = ‖x‖c = ‖x‖c0 = supk |xk|, ‖x‖bs = ‖x‖cs = supn |

∑n
k=1 xk|, and

‖x‖`p = (
∑
k |xk|p)

1
p .

For sake of brevity, here and after the summation without limits runs from 1 to
∞.

Now, let us look at historical information about Fibonacci sequence. Fibonacci
sequence consist of {fn} numbers such that each its term is the sum of two terms
preceding its. In this sequence, the first two terms are 1. If we write it clearly, it is
a sequence of numbers 1, 1, 2, 3, 5, 8, 13, · · · . We can define it by the equation fn =
fn−1 + fn−2, where n ≥ 2 and f1 = f0 = 1. Fibonacci numbers were come out by
Leonardo Pisano Bogollo (c-1170-c1250), he is known with his nickname Fibonacci.
Numbers of the sequence is seen in the book “Liber Abaci ”firstly written by
Leonardo of Pisa. He helped to replace Roman numerical system with the numbers
system used today consists of numbers from 0 to 9 in Europa. Fibonacci sequence
has some well-known properties such as Golden Ratio and Cassini Formula. If we
take ratio of two successive terms of Fibonacci sequences, limit of the this ratio is
famous Golden Ratio which is 1.61803 and written by φ.

lim
n→∞

fn+1

fn
=

1 +
√

5

2
= φ (Golden Ratio).

n∑
k=0

fk = fn+2 − 1 for each n ∈ N.

∑
k

1

fk
converges.

fn−1.fn+1 − f2
n = (−1)n+1 for each n ≥ 1 (Cassini Formula).

Let A = (ank) be a triangle matrix, that is ank = 0 for k > n and ann 6= 0 for
all n ∈ N. The equality A(Bx) = (AB)x holds for the triangle matrices A,B and
a sequence x. Furthermore, a triangle matrix A has an inverse A−1which is also a
triangle matrix and unique such that for each x ∈ ω, x = A(A−1x) = A−1(Ax).

The domain XA of an infinite matrix A which is a sequence space is defined as

(1.1) XA :=
{
x = (xk) ∈ ω : Ax ∈ X

}
,

in a sequence space X.
Generally XA constructed by the limitation matrix A is either the expansion or

the contraction of the space X itself, where X is a sequence space. Sometimes they
are overlap. The inclusion XS ⊂ X is provided strictly for X ∈ {`∞, c, c0}. From
this property, it can be concluded that the inclusion X ⊂ X∆(1) is also provided
firmly for X ∈ {`∞, c, c0, `p}. But, if X is taken as X := c0 ⊕ span{z} for each
x ∈ X, there exist an s ∈ c0 and an α ∈ C such that x := s+αz, where z = ((−1)k)
and it is considered the matrix A with the rows An defined by An := (−1)ne(n) for
all n ∈ N, then we obtain Ae = z ∈ λ when Az = e /∈ λ resulting in the sequences
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z ∈ X \ XA and e ∈ XA \ λ, here e = (1, 1, 1, . . .) and e(n) represents a sequence
of which nth term is 1 for each n ∈ N and the others are 0. Namely, the sequence
spaces XA and X are overlap when none of them contains the other one [10].

A linear topological space X over the real field R is said to be a paranormed
space if there is subadditive function g : X → R such that g(θ) = 0, g(x) = g(−x),
|αn − α| → 0 and g(xn − x) → 0 imply g(αnxn − αx) → 0 for all α ∈ R and all
x ∈ X, where θ is the zero vector in the linear space X.

Let us suppose that (pk) be a bounded sequence of strictly positive real numbers

with sup pk = H and M = max {1, H} and 1/pk + 1/p
′

k = 1 provided 1 < infpk ≤
H <∞. The linear spaces `∞(p) and `(p) were defined by Maddox in [56, 57] (see
also Simons [68] and Nakano [63]) as follows:

`(p) =

{
x = (xk) ∈ w :

∑
k

|xk|pk <∞

}
,

and

`∞(p) =

{
x = (xk) ∈ w : sup

k∈N
|xk|pk <∞

}
,

which are the complete spaces paranormed by

h1(x) =

(∑
k

|xk|pk
)1/M

and h2(x) = sup
k∈N
|xk|pk/M iff inf pk > 0,

respectively. In addition to this, by notation F , we denote the collection consisting
of all nonempty and finite subsets of N.

Constructing a new sequence space by means of the matrix domain of a particular
triangle has been used in literature as the sequence spaces Xp = (`p)C1

[64], rt(p) =
(`(p))Rt

[2], erp = (`p)Er and er(p) = (`(p))Er [7, 48, 61]. Z(u, v, `p) = (`p)G(u,v)

and `(u, v, p) = (`(p))G(u,v) [4, 60], ar(p) = (`p)Ar and ar(u, p) = (`(p))Ar
u

[8, 9],

bvp = (`p)∆ and bv(u, p) = (`(p))Au [3, 11, 59], `(p) = (`(p))S [37], `λp = (`p)Λ in

[62], λB(r,s) in [53] λB(r̃,s̃) in [25], f0(B) and f(B) in [12], f0(B̃) and f(B̃) in [26],
where C1 = {cnk}, Rt = {rtnk}, Er = {ernk}, S = {snk}, ∆ = {δnk}, G(u, v) =

{gnk}, ∆(m) = {∆(m)
nk }, Ar = {arnk}, Aru = {ank(r)}, Au = {aunk}, B(r, s) =

{bnk(r, s)}, B(r̃, s̃) = {bnk(r̃, s̃)}, Λ = {λnk}∞n,k=0 and A(λ) = {ank(λ)} denote the
Cesàro, Riesz, Euler, generalized weighted means or factorable matrix, summation
matrix, difference matrix, generalized difference matrix and sequential band matrix,
respectively [6, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 27, 28, 29, 40, 41, 42, 50, 51,
52, 54, 55, 66]. Let us note here, there are many different ways to construct new
sequence spaces from old ones. To get more detailed information, one can look at
the articles [24, 30, 35, 36, 69].

Given any infinite matrix A = (ank) of real numbers ank, where n, k ∈ N and
let X,Y be sequence spaces. For any sequence x, A-transform of x is written as
Ax =

(
(Ax)n

)
. If it is A-transform of x, it means that (Ax)n =

∑
k ankxk converges

for each n ∈ N. If x ∈ X implies that Ax ∈ Y then A is called a matrix mapping
from X into Y and is denoted by A : X → Y . We illustrate the class of all infinite
matrices such that A : X → Y by (X : Y ).

The new sequence spaces derived by Riesz mean (R, qn) and Fibonacci matrix

F̂ = {f̂nk} are given in this study.
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In this paper, section 2 is dedicated for the spaces of difference sequences and
given some historical developments about this subject. In addition, the definition

of Fibonacci Matrix and the paranormed sequence space rq(F̂ pu ) of non-absolute

type which is the set of all sequences whose RquF̂ -transforms are in the space `(p)
are presented. In section 3, alpha-, beta- and gamma-duals of the sequence space

rq(F̂ pu ) are found. Moreover, the basis of the space rq(F̂ pu ) is attained. In the final
section, we characterize a matrix class on the sequence space.

2. Difference operator and the Riesz Sequence Space rq(F̂ pu ) of
Non-absolute Type

Before following non-absolute type the Riesz sequence space rq(F̂ pu ), firstly, let us
recall some definitions. We remember the idea of difference operator. The difference
sequence spaces have been introduced by Kızmaz [49]. For λ ∈ {`∞, c, c0}, λ(∆)
consisting of the sequences x = (xk) such that (xk−xk+1) ∈ λ is called the difference
sequence spaces [49]. The difference spaces bvp consisting of the sequences x = (xk)
such that (xk − xk−1) ∈ `p have been studied in the case 0 < p < 1 by Altay and
Başar [5], and in the case 1 ≤ p < ∞ by Başar and Altay [11], and Çolak, et.al.
[38].

The concept of difference sequences was generalized by Çolak and Et [39]. They
defined and analyzed some property of these sequence spaces

∆mλ =
{
x = (xk) ∈ ω : ∆mx ∈ λ

}
,

where ∆1x = (xk−xk+1) and ∆mx = ∆(∆m−1x) for m ∈ {1, 2, 3, . . .}. Malkowsky
and Parashar [58] introduced the sequence spaces as follows

∆(m)λ =
{
x = (xk) ∈ ω : ∆(m)x ∈ λ

}
,

where m ∈ N, ∆(1)x = (xk − xk−1) and ∆(m)x = ∆(1)(∆(m−1)x). Polat and
Başar [65] introduced the spaces er0(∆(m)), erc(∆

(m)) and er∞(∆(m)) consisting of
all sequences whose mth order differences are in the Euler spaces er0, erc and er∞,
respectively. Altay [1] studied the space `p(∆

(m)) consisting of all sequences whose
mth order differences are p−absolutely summable which is a generalization of the
spaces bvp [11, 38].

The transformation given by

qn =
q1s1 + · · ·+ qnsn

Qn

is called the Riesz mean (R, qn) or simply the (R, qn) mean, where (qk) is a sequence
of positive numbers and Qn = q1 + q2 + · · ·+ qn.

The (R, qn) matrix method is given by

rtnk :=

{ qk
Qn

, (0 ≤ k ≤ n),

0 , (k > n).

The Riesz sequence spaces rq(u, p) and rq(∆p
u) of non-absolute type had been

studied by Ganie and Sheikh [43, 67]. After then, Candan and Güneş [32] had
examined the sequence space rq(Bpu).

Many mathematician used Fibonacci numbers to construct new sequence space.

Some of them are here. Kara [46] defined `p(F̂ ) sequence space. After Kara et
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al. [47] characterized some class of compact operators on the spaces `p(F̂ ) and

`∞(F̂ ), where 1 ≤ p ≤ ∞. Also, Başarır et al. [15] introduced the sequence space

λ(F̂ ) and λ(F̂ , p). Later, Candan [31] presented the sequence spaces c0(F̂ (r, s))

and c(F̂ (r, s)). After then, Candan and Kayaduman [34] introduced the sequence
space ĉf(r,s) derived by generalized difference Fibonacci matrix. Finally, Candan

and Kara [33] studied the space `p(F̂ (r, s)), where 1 ≤ p ≤ ∞.
Let fn be the n−th Fibonacci number for every n ∈ N. Then we define the

Fibonacci matrix F̂ = {f̂nk} by

f̂nk :=


fn
fn+1

, k = n,

− fn+1

fn
, k = n− 1,

0 , 0 ≤ k < n− 1 or k > n,

for all k, n ∈ N.

For 0 < pk ≤ H < ∞, let us define the set rq(F̂ pu ) as the set of all sequences

whose RquF̂ -transforms are in the sequence space `(p), that is

rq(F̂ pu ) =

x = (xk) ∈ w :
∑
k

∣∣∣∣∣∣ 1

Qk

k∑
j=0

ujqjF̂ xj

∣∣∣∣∣∣
pk

<∞

 .

We can rewrite the set rq(F̂ pu ) by means of the notation of (1.1) as follow

rq(F̂ pu ) = {`(p)}Rq
uF̂
,

where RquF = (r
quF
nk) is a matrix defined as follows:

r
qu
F̂

nk =


1
Qn

(
fk
fk+1

ukqk − fk+2

fk+1
uk+1qk+1

)
, 0 ≤ k ≤ n− 1,

fn
fn+1

qnun

Qn
, k = n,

0 , k > n.

If y = (yk) is a RquF̂ - transform of any given sequence x = (xk), then it is written
as

(2.1) yk =
1

Qk

k∑
j=0

ujqjF̂ xj .

Hereafter, when we talk about the sequences x = (xk) and y = (yk), we will
mean that they are connected with the relation (2.1).

For the sake of simplicity, here and what follows, we shall write

πi :=
fi+1

fiuiqi
− fi+1

fi+2ui+1qi+1
, ϕi :=

fi
fi+1

uiqi −
fi+2

fi+1
ui+1qi+1

for every i ∈ N.
Now, it is time to give the following theorem.

Theorem 2.1. The set rq(F̂ pu ) is a linear space together with coordinatewise addi-

tion and scalar multiplication, that is, rq(F̂ pu ) is a sequence space.

Proof. The proof of this theorem is obtained by using elementary calculations of
linear algebra. �
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Theorem 2.2. Let 0 < pk ≤ H <∞. Then, rq(F̂ pu ) is the complete linear metric
space with h paronorm defined by the following equality

hF̂ (x) =

∑
k

∣∣∣∣∣∣ 1

Qk

k−1∑
j=0

ϕjxj +
fk
fk+1

ukqk
Qk

xk

∣∣∣∣∣∣
pk

1
M

.

Proof. According to the definition of paranorm reminded in introduction, it is suffi-
cient to show that the conditions of the paranorm are satisfied. It is easy to see that

hF̂ (θ) = 0 for the null element of rq(F̂ pu ) and hF̂ (x) = hF̂ (−x) for all x ∈ rq(F̂ pu ).

Now, we shall show the subadditivity of h. By taking z, x ∈ rq(F̂ pu ), we have

hF̂ (x+ z) =

∑
k

∣∣∣∣∣∣ 1

Qk

k−1∑
j=0

ϕj(xj + zj) +
fk
fk+1

ukqk
Qk

(xk + zk)

∣∣∣∣∣∣
pk

1
M

(2.2)

≤

∑
k

∣∣∣∣∣∣ 1

Qk

k−1∑
j=0

ϕjxj +
fk
fk+1

ukqk
Qk

xk

∣∣∣∣∣∣
pk

1
M

+

∑
k

∣∣∣∣∣∣ 1

Qk

k−1∑
j=0

ϕjzj +
fk
fk+1

ukqk
Qk

zk

∣∣∣∣∣∣
pk

1
M

= hF̂ (x) + hF̂ (z).

For an arbitrary α ∈ R (see [57, p. 30])

(2.3) |α|pk ≤ max{1, |α|M}.

Again, the inequalities (2.2) and (2.3) are come out by the subadditivity of h
and the following inequality clearly holds

hF̂ (αx) ≤ max{1, |α|M}hF̂ (x).

Finally, we show that the scalar multiplication is continuous. Let α be any

complex number and (xn) be any sequence in rq(F̂ pu ) such that hF̂ (xn − x) → 0.
Additionally, let (αn) be an arbitrary sequence of scalars such that αn → α, we get

hF̂ (αnx
n − αx) =

∑
k

∣∣∣∣∣∣ 1

Qk

k−1∑
j=0

ϕj(αnx
n
j − αxj)

∣∣∣∣∣∣
pk

1
M

≤ |αn − α|
1
M hF̂ (xn) + |α| 1

M hF̂ (xn − x),

tending to zero, for n→∞, since
{
hF̂ (xn)

}
is bounded due to the inequality

hF̂ (xn) ≤ hF̂ (x) + hF̂ (xn − x).

Because of subadditive of hF̂ , it is valid. It means that the scalar multiplication is

continuous and hF̂ is a paranorm on the space rq(F̂ pu ).

Let us suppose that {xi} is an arbitrary Cauchy sequence in the space rq(F̂ pu ),
where xi = {xi0, xi1, ...}. In that case, there exists a positive integer n0(ε)

(2.4) hF̂ (xi − xj) <∞,
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for all i, j ≥ n0(ε) for a given ε > 0. By using definition of hF̂ , for each fixed k ∈ N

∣∣∣(RquF̂ xi)k − (RquF̂ x
j)k

∣∣∣ ≤ [∑
k

∣∣∣(RquF̂ xi)k − (RquF̂ x
j)k

∣∣∣pk] 1
M

<∞,

for i, j ≥ n0(ε), and
{

(RquF̂ x
0)k, (R

q
uF̂ x

1)k, ...
}

is a Cauchy sequence of real num-

bers for every fixed k ∈ N. Since R is complete, it converges. Therefore, we can write

(RquF̂ x
i)k → (RquF̂ x)k, for i→∞. Using these infinitely limits (RquF̂ x)0, (R

q
uF̂ x)1, ...,

we can constitute the sequence
{

(RquF̂ x)0, (R
q
uF̂ x)1, ...

}
. From inequality (2.4) for

each m ∈ N and i, j ≥ n0(ε), we have

(2.5)

m∑
k=0

∣∣∣(RquF̂ xi)k − (RquF̂ x
j)k

∣∣∣pk ≤ hF̂ (xi − xj)M < εM .

For j and m→∞ inequality (2.5) becomes

hF̂ (xi − x) <∞.

Taking ε = 1, i ≥ n0(1) in inequality (2.5) and using Minkowsky’s inequality, for
each m ∈ N, we get[

m∑
k=0

∣∣∣(RquF̂ x)k

∣∣∣pk] 1
M

≤ hF̂ (xi − x) + hF̂ (xi) ≤ 1 + hF̂ (xi),

i.e., x ∈ rq(F̂ pu ). Because hF̂ (xi − x) ≤ ∞ for all i ≥ n0(ε), xi → x as i→∞, thus

it is proved that rq(F̂ pu ) is complete. �

It is seen that the absolute property is invalid on the space rq(F̂ pu ), in other

words hF̂ (x) 6= hF̂ (| x |) holds for at least one sequence in the space rq(F̂ pu ) i.e.,

rq(F̂ pu ) is a sequence space of non-absolute type.

Theorem 2.3. Let 0 < pk ≤ H < ∞. Then the sequence space rq(F̂ pu ) is linearly
isomorphic to the space `(p).

Proof. To prove this theorem’s assertion, we firstly have to make sure that there

exists a transformation T between the spaces rq(F̂ pu ) and `(p). Let us take into

account the transformation T from rq(F̂ pu ) to `(p) by x → y = Tx. Since it is
obvious to show that T is linear, we omit the details. Now, it is necessary to prove
that both T is injective and surjective. If we take x = θ, we obtain that Tx = θ
and this shows that T is injective.

We consider an arbitrary sequence y ∈ `(p) and later define the sequence x = (xk)

xk =

k−1∑
n=0

k−1∏
j=n

(
fj+2

fj+1

)2

πnQnyn +
fk+1

fk

Qk
ukqk

yk,
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for k ∈ N. If we use the newly defined sequence x = (xk), then we have

hF̂ (x) =

∑
k

∣∣∣∣∣∣ 1

Qk

k−1∑
j=0

ϕjxj +
fk
fk+1

ukqk
Qk

xk

∣∣∣∣∣∣
pk

1
M

=

∑
k

∣∣∣∣∣∣
k∑
j=0

δkjyj

∣∣∣∣∣∣
pk

1
M

=

[∑
k

|yk|pk
] 1

M

= h1(y) <∞
where

δkj =

{
1 , k = j,
0 , k 6= j.

This shows that x ∈ rq(F̂ pu ). In other words, T is surjective and paranorm
preserving. Thus, the transformation T is a linear bijection which means that

rq(F̂ pu ) and `(p) are linearly isomorphic. This completes the proof. �

3. Schauder Basis and α−, β− and γ− duals of the space rq(F̂ pu )

In the present section, firstly, let us recall the definitions of alpha-, beta-, and
gamma- dual concepts.

If λ, µ ⊂ w and z is an arbitrary sequence, we write

z−1 ∗ λ = {x = (xk) ∈ w : xz ∈ λ},
and

M(λ, µ) = ∩x∈λx−1 ∗ µ.
If we choose µ = `1, cs and bs, then we obtain the α−, β− and γ− duals of the
space λ, respectively as

λα = M(λ, `1) = {a = (ak) ∈ w : ax = (akxk) ∈ `1 for all x ∈ λ},

λβ = M(λ, cs) = {a = (ak) ∈ w : ax = (akxk) ∈ cs for all x ∈ λ},
λγ = M(λ, bs) = {a = (ak) ∈ w : ax = (akxk) ∈ bs for all x ∈ λ}.

Now, we are going to give the following lemmas necessary to prove the theorems

related to the α−, β− and γ− duals of the space rq(F̂ pu ).

Lemma 3.1. [44]

(i) Let 1 < pk ≤ H < ∞. Then A ∈ (`(p) : `1) if and only if there exists an
integer B > 1 such that

sup
K∈F

∑
k

∣∣∣∣∣∑
n∈K

ankB
−1

∣∣∣∣∣
p
′
k

<∞.

(ii) Let 0 < pk ≤ 1. Then A ∈ (`(p) : `1) if and only if

sup
K∈F

sup
k

∣∣∣∣∣∑
n∈K

ank

∣∣∣∣∣
pk

<∞.
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Lemma 3.2. [45]

(i) Let 1 < pk ≤ H < ∞. Then A ∈ (`(p) : `∞) if and only if there exists an
integer B > 1 such that

(3.1) sup
n

∑
k

∣∣ankB−1
∣∣p′k <∞.

(ii) Let 0 < pk ≤ 1 for every k ∈ N . Then A ∈ (`(p) : `∞) if and only if

(3.2) sup
n,k
|ank|pk <∞.

Lemma 3.3. [45] A ∈ (`(p) : c) if and only if there exists an integer B > 1 provided
that (3.1) and (3.2) hold,

(3.3) lim
n
ank = βk for k ∈ N,

also holds, where 0 < pk ≤ H <∞ for every given k ∈ N.

Theorem 3.1. Let 0 < pk ≤ 1 for all k ∈ N. The sets D1(u, p), D2(u, p) and
D3(u, p) are defined by following equations:

D1(u, p) =
⋃
B>1

a = (ak) ∈ w : sup
K∈F

∑
k

∣∣∣∣∣∣
∑
n∈K

n−1∏
j=k

(
fj+2

fj+1

)2

πkanQk +
fn+1

fn

an
unqn

Qn

B−1

∣∣∣∣∣∣
pk

<∞

 ,

D2(u, p) =
⋃
B>1

a = (ak) ∈ w :
∑
k

∣∣∣∣∣∣
fk+1

fk

ak
ukqk

+ πk

n∑
i=k+1

ai

i∏
j=k+1

(
fj+1

fj

)2
Qk

B−1

∣∣∣∣∣∣
p
′
k

<∞

 ,

D3(u, p) =

a = (ak) ∈ w :

∞∑
i=k+1

ai

i∏
j=k+1

(
fj+1

fj

)2

exists

 .

In this case,

[rq(Bpu)]
α

= D1(u, p), [rq(Bpu)]
β

= D2(u, p)∩D3(u, p), [rq(Bpu)]
γ

= D2(u, p).

Proof. Let us take any a = (ak) ∈ w. Then, we obtain

anxn =

n−1∑
k=0

n−1∏
j=k

(
fj+2

fj+1

)2

πkanQkyk +
fn+1

fn

an
unqn

Qnyn(3.4)

= (Dy)n,

where the matrix D = (dnk) is defined by

dnk =


∏n−1
j=k

(
fj+2

fj+1

)2

πkanQk , 0 ≤ k ≤ n− 1,
fn+1

fn
an
unqn

Qn , k = n,

0 , k > n,

for all n, k ∈ N. Thus from Eq.(3.4) that ax = (anxn) ∈ `1 whenever x = (xn) ∈
rq(F pu ) if and only if Dy ∈ `1 whenever y ∈ `(p). This means that D ∈ (`(p), `1),

and Lemma 3.1(ii) gives that
[
rq(F̂ pu )

]α
= D1(u, p).



A DIFFERENT LOOK FOR PARANORMED RIESZ SEQUENCE SPACE ... 71

For β− dual of space rq(F pu ), let us consider following equation,

n∑
k=0

akxk =

n∑
k=0

fk+1

fk

ak
ukqk

+ πk

n∑
i=k+1

ai

i∏
j=k+1

(
fj+1

fj

)2
Qk

 yk(3.5)

= (Ey)n,

where, E = (enk) is defined as

enk =


[
fk+1

fk
ak
ukqk

+ πk
∑n
i=k+1 ai

∏i
j=k+1

(
fj+1

fj

)2
]
Qk , 0 ≤ k ≤ n,

0 , k > n.

From Eq.(3.5), ax = (akxk) ∈ cs whenever x ∈ rq(F̂ pu ) if and only if Ey ∈ c

whenever y ∈ `(p). In other words, E ∈ (`(p), c). We obtain
[
rq(F̂ pu )

]β
= D2(u, p)∩

D3(u, p), using Lemma 3.3.

For γ− dual of space rq(F̂ pu ), using Eq.(3.5) ax = (akxk) ∈ bs whenever x ∈
rq(F̂ pu ) iff Ey ∈ `∞ whenever y ∈ `(p). In other words, a = (ak) ∈ [rq(F̂ pu )]γ iff

E ∈ (`(p), `∞). Then from Lemma 3.2 (ii) we obtain [rq(F̂ pu )]γ = D2(u, p). �

Theorem 3.2. Let 1 < pk ≤ H <∞ for every k ∈ N and define the sets D4(u, p)
and D5(u, p) with the following equations:

D4(u, p) =

{
a = (ak) ∈ w : sup

K∈F
sup
k

∣∣∣∣∣∣
∑
n∈K

 k∏
j=n+1

(
fj+2

fj+1

)2

πnanQn +
fk+1

fk

an
ukqk

Qk

∣∣∣∣∣∣
pk

<∞
}
,

D5(u, p) =

{
a = (ak) ∈ w : sup

k

∣∣∣∣∣∣
fk+1

fk

ak
ukqk

+ πk

n∑
i=k+1

ai

i∏
j=k+1

(
fj+1

fj

)2
Qk

∣∣∣∣∣∣
pk

<∞
}
.

Then

[rq(F pu )]
α

= D4(u, p),
[
rq(F̂ pu )

]β
= D3(u, p)∩D5(u, p),

[
rq(F̂ pu )

]γ
= D5(u, p).

Proof. It can be done as that of Theorem 3.1. �

Theorem 3.3. Let 0 < pk ≤ H <∞ for all k ∈ N. Define the sequence b(k)(q) ={
b
(k)
n (q)

}
of the elements of the space rq(F̂ pu ) for every fixed k ∈ N by

b(k)
n (q) =


fk+1

fk

Qk

ukqk
, n = k,∏n

j=k+1

(
fj+1

fj

)2

πkQk , n > k,

0 , n < k.

Then, the sequence b(k)(q) is a basis for the space rq(F̂ pu ) and any x ∈ rq(F̂ pu ) has
a unique representation of the form

(3.6) x =
∑
k

λk(q)bk(q),

where λk(q) = (RquF̂ x)k for all k ∈ N.
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Proof. Let 0 < pk ≤ H <∞, and for k ∈ N

(3.7) RquF̂ b
(k)(q) = e(k) ∈ `(p),

where e(k) is a sequence of which kth term is 1 and the others are 0 for each k ∈ N.

Moreover, let x ∈ rq(F̂ pu ). For all non-negative integer m, we get

(3.8) x[m] =

m∑
k=0

λk(q)b(k)(q).

Putting RquF̂ to Eq.(3.8), for i,m ∈ N, we have

RquF̂ x
[m] =

m∑
k=0

λk(q)RquF̂ b
(k)(q) =

m∑
k=0

(RquF̂ x)ke
(k),

and hence (
RquF̂ (x− x[m])

)
i

=

{
0 , 0 ≤ i ≤ m,

(RquF̂ x)i , i > m.

Also, for any given ε > 0, there exists an integer m0 such that for every m ≥ m0( ∞∑
i=m0

∣∣∣(RquF̂ x)i

∣∣∣pk) 1
M

<
ε

2
.

Hence, it is obtained that for all m ≥ m0

hF̂ (x− xm) =

( ∞∑
i=m

∣∣∣(RquF̂ x)i

∣∣∣pk) 1
M

≤

( ∞∑
i=m0

∣∣∣(RquF̂ x)i

∣∣∣pk) 1
M

<
ε

2
< ε.

By using limit properties, limm→∞hF̂ (x − xm) = 0 is obtained. Thus x is repre-
sented as Eq.(3.6).

Let us suppose that it has two representation as x =
∑
k µk(q)b(k) and x =∑

k λk(q)b(k). Since the linear transformation from rq(F̂ pu ) to `(p) is continuous, we
get

(RquF̂ x)n =
∑
k

µk(q)
(
RquFb

(k)(q)
)
n

=
∑
k

µk(q)e(k)
n = µn(q),

for n ∈ N. Taking (RquF̂ x)n = λn for all n ∈ N, it is obtained λn(q) = µn(q) thus
we get Eq. (3.6). �

4. Matrix Mapping on the Space rq(F̂ pu )

In this section, we characterize the matrix class
(
rq(F̂ pu ), `∞

)
.

Theorem 4.1.
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(i) A ∈
(
rq(F̂ pu ), `∞

)
if and only if there exists an integer B > 0 such that

(4.1)

C(B) = sup
n

∑
k

∣∣∣∣∣∣
fk+1

fk

ank
ukqk

+ πk

n∑
i=k+1

ani

i∏
j=k+1

(
fj+1

fj

)2
QkB−1

∣∣∣∣∣∣
p
′
k

<∞,

and

{ank}k∈N ∈ cs (n ∈ N),

where 1 < pk ≤ H <∞ for every k ∈ N.

(ii) A ∈
(
rq(F̂ pu ), `∞

)
if and only if

(4.2) sup
n,k

∣∣∣∣∣∣
fk+1

fk

ank
ukqk

+ πk

n∑
i=k+1

ani

i∏
j=k+1

(
fj+1

fj

)2
Qk

∣∣∣∣∣∣
pk

<∞,

and

{ank}k∈N ∈ cs (n ∈ N),

where 0 < pk ≤ 1 <∞ for every k ∈ N.

Proof.

(i) Let 1 < pk ≤ H <∞ for every k ∈ N and A ∈
(
rq(F̂ pu ), `∞

)
. Then Ax exists for

x ∈ rq(F̂ pu ), {ank}k∈N ∈
[
rq(F̂ pu )

]β
for each n ∈ N. Further, let us consider the

following equality obtained by using the relation (3.4) that

(4.3)

m∑
k=0

ankxk =

m∑
k=0

fk+1

fk

 ank
ukqk

+ πk

m∑
i=k+1

anj

i∏
j=k+1

(
fj+1

fj

)2
Qk

 yk.
From Lemma 3.1 and Eq.(4.3), we obtain the expression.

Conversely, {ank}k∈N ∈ cs for each n ∈ N, x ∈ rq(F̂ pu ). Since {ank}k∈N ∈[
rq(F̂ pu )

]β
for every fixed n ∈ N A-transform of x exists. We derive from Eq.(4.3)

as m→∞ that

(4.4)

∞∑
k=0

ankxk =

∞∑
k=0

fk+1

fk

ank
ukqk

+ πk

∞∑
i=k+1

ani

i∏
j=k+1

(
fj+1

fj

)2
Qk

 yk.
Now, by combining Eq.(4.4) and inequality holding for an arbitrary B > 0 and
complex numbers a, b

|ab| ≤ B
{
|aB−1|p

′

+ |b|p
}
,

where p > 1 and 1/p+ 1/p
′

= 1. We obtain

sup
n∈N

∣∣∣∣∣
∞∑
k=0

ankxk

∣∣∣∣∣ ≤ sup
n∈N

∞∑
k=0

∣∣∣∣∣∣
fk+1

fk

ank
ukqk

+ πk

∞∑
i=k+1

ani

i∏
j=k+1

(
fj+1

fj

)2
Qk

∣∣∣∣∣∣ |yk|
≤ B[C(B) + hM1 (y)] <∞.

This mean that Ax ∈ `∞ whenever x ∈ rq(F̂ pu ).
(ii) The proof of (ii) can be obtained same way. �
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[9] C. Aydın, F. Başar, Some generalizations of the sequence spaces arp, Iran J. Sci. Technol.

Trans. A. Sci., 30A(2)(2006), 175–190.
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[37] B. Choudhary, S. K Mishra, On Köthe-Toeplitz duals of certain sequence spaces and their

matrix transformations, Indian J. Pure Appl. Math., 245(1993), 291–301.
[38] R. Çolak, M. Et, Malkowsky E, Some Topics of Sequence Spaces, Lecture Notes in Mathe-
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