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ON SOME ČEBYŠEV TYPE INEQUALITIES FOR FUNCTIONS

WHOSE SECOND DERIVATIVES ARE (h1, h2)-CONVEX ON THE

CO-ORDINATES

B. MEFTAH AND K. BOUKERRIOUA∗

Abstract. The aim of this paper is to establish some new Čebyšev type

inequalities involving functions whose mixed partial derivatives are (h1, h2)-

convex on the co-ordinates.

1. Introduction

In 1882, Čebyšev [4] gave the following inequality :

(1.1) |T (f, g)| ≤ 1

12
(b− a)

2 ‖f ′‖∞ ‖g
′‖∞

where f, g : [a, b]→ R are absolutely continuous functions, whose first derivatives
f ′ and g′ are bounded,

(1.2) T (f, g) =
1

b− a

b∫
a

f (x) g (x) dx−

 1

b− a

b∫
a

f (x) dx

 1

b− a

b∫
a

g (x) dx

 ,

and ‖.‖∞ denotes the norm in L∞ [a, b] defined as ‖f‖∞ = ess sup
t∈[a,b]

|f (t)| .

During the past few years many researchers have given considerable attention to
the inequality (1.1), various generalizations, extensions and variants of this inequal-
ity have appeared in the literature, see [1, 3, 6, 8, 9, 10] . Recently, Guezane-Lakoud
and Aissaoui [6] established new Čebyšev type inequalities similar to (1.1) for func-
tions f, g defined on bidimensional intervals ∆ = [a, b] × [c, d] ⊂ [0,∞)2 whose
mixed partial derivatives fst and gst are integrable and bounded. The authors of
the paper [12] further extend these results in special cases when the mixed partial
derivatives belong to certain classes of functions that generalize convex function on
the co-ordinates.
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The main purpose of this work is to obtain new Čebyšev type inequalities in-
volving functions whose mixed partial derivatives are (h1, h2)-convex on the co-
ordinates.

2. Preliminaries

Throughout this paper we denote by ∆ the bidimensional interval in [0,∞)2,
∆ =: [a, b] × [c, d] with a < b and c < d, k = (b− a) (d − c) and fλα for
∂2f
∂λ∂α .

Definition 2.1 ([5]). A function f : ∆→ R is said to be convex on the co-ordinates
on ∆, if the following inequality

f (λx+ (1− λ) t, αy + (1− α) v) ≤ λαf(x, y) + λ (1− α) f(x, v)

+ (1− λ)αf(t, y) + (1− λ) (1− α) f(t, v)(2.1)

holds for all λ, α ∈ [0, 1] and (x, y), (x, v), (t, y), (t, v) ∈ ∆.

Clearly, every convex mapping f : ∆ → R is convex on the co-ordinates. Fur-
thermore, there exists co-ordinated convex function which is not convex.

Definition 2.2 ([2]). A function f : ∆ → R is said to be s-convex in the second
sense on the co-ordinates on ∆, if the following inequality

f (λx+ (1− λ) t, αy + (1− α) v) ≤ λsαsf(x, y) + λs (1− α)
s
f(x, v)

+ (1− λ)
s
αsf(t, y) + (1− λ)

s
(1− α)

s
f(t, v)(2.2)

holds for all λ, α ∈ [0, 1] and (x, y), (x, v), (t, y), (t, v) ∈ ∆,
for some fixed s ∈ (0, 1] .

s-convexity on the co-ordinates does not imply the s-convexity, that is there exist
functions which are s-convex on the co-ordinates but are not s-convex.

Definition 2.3 ([7]). Let h : J ⊆ R→ R be a positive function. A mapping f : ∆
→ R is said to be h-convex on ∆, if the following inequality

(2.3) f(αx+ (1− α)t, αy + (1− α)v) ≤ h(α)f(x, y) + h(1− α)f(t, v)

holds, for all (x, y), (t, v) ∈ ∆ and α ∈ (0, 1).

Definition 2.4 ([7]). A function f : ∆ → R is said to be (h1, h2)-convex on the
coordinates on ∆, if the following inequality

f (λx+ (1− λ) t, αy + (1− α) v) ≤ h1(λ)h2(α)f(x, y) + h1(λ)h2 (1− α) f(x, v)

+h1 (1− λ)h2(α)f(t, y)

+h1 (1− λ)h2 (1− α) f(t, v)(2.4)

holds for all λ, α ∈]0, 1[ and (x, y), (x, v), (t, y), (t, v) ∈ ∆.

h-convexity on the co-ordinates does not imply the h-convexity, that is there
exist functions which are h-convex on the co-ordinates but are not h-convex.

Lemma 2.1 (Lemma 1. [11]). Let f : ∆ → R be a partial differentiable mapping
on ∆ in R2. If fλα ∈ L1(∆), then for any
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(x, y) ∈ ∆, we have the equality:

f(x, y) =
1

b− a

b∫
a

f(t, y)dt+
1

d− c

d∫
c

f(x, v)dv − 1

k

b∫
a

d∫
c

f(t, v)dvdt

+
1

k

b∫
a

d∫
c

(x− t) (y − v)

×

 1∫
0

1∫
0

f
λα

(λx+ (1− λ)t, αy − (1− α)v) dαdλ

 dvdt(2.5)

3. Main result

Theorem 3.1. Let hi : Ji ⊆ R→ R be positive functions, for i = 1, 2. f, g : ∆ → R
be partially differentiable functions, such that their second derivatives fλα and gλα
are integrable on ∆. If |fλα| and |gλα| are (h1, h2)-convex on the co-ordinates, then
we have

(3.1) |T (f, g)| ≤ 49

3600
k2

 1∫
0

h1(λ)dλ

2 1∫
0

h2(α)dα

2

MN

where

T (f, g) =
1

k

b∫
a

d∫
c

f (x, y) g (x, y) dydx− (d− c)
k2

b∫
a

d∫
c

g (x, y)

 b∫
a

f (t, y) dt

 dydx

− (b− a)

k2

b∫
a

d∫
c

g (x, y)

 d∫
c

f (x, v) dv

 dydx

+
1

k2

 b∫
a

d∫
c

f (x, y) dydx

 b∫
a

d∫
c

g (t, v) dvdt

(3.2)

M = ess sup
x,t∈[a,b],y,v∈[c,d]

[|fλα (x, y)|+ |fλα (x, v)|+ |fλα (t, y)|+ |fλα (t, v)|] ,

N = ess sup
x,t∈[a,b],y,v∈[c,d]

[|gλα (x, y)|+ |gλα (x, v)|+ |gλα (t, y)|+ |gλα (t, v)|]

and k = (b− a) (d− c) .

Proof. Let F, G, F̃ and G̃ be defined as follows

F = f(x, y)− 1

b− a

b∫
a

f(t, y)dt− 1

d− c

d∫
c

f(x, v)dv +
1

k

b∫
a

d∫
c

f(t, v)dvdt

G = g(x, y)− 1

b− a

b∫
a

g(t, y)dt− 1

d− c

d∫
c

g(x, v)dv +
1

k

b∫
a

d∫
c

g(t, v)dvdt

F̃ =
1

k

b∫
a

d∫
c

(x− t) (y − v)×

 1∫
0

1∫
0

f
λα

(λx+ (1− λ)t, αy − (1− α)v) dαdλ

 dvdt
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G̃ =
1

k

b∫
a

d∫
c

(x− t) (y − v)×

 1∫
0

1∫
0

g
λα

(λx+ (1− λ)t, αy − (1− α)v) dαdλ

 dvdt.

By Lemma 2.1, we have

F = F̃ and G = G̃,

then

(3.3) FG = F̃ G̃.

Integrating (3.3) over ∆, with respect to x, y, multiplying the resultant equality
by 1

k , using Fubini’s Theoerm and modulus, we get

|T (f, g)| =
1

k3

∣∣∣∣∣∣
b∫
a

d∫
c

 b∫
a

d∫
c

(x− t) (y − v)

×

 1∫
0

1∫
0

f
λα

(λx+ (1− λ)t, αy − (1− α)v) dαdλ

 dvdt


×

 b∫
a

d∫
c

(x− t) (y − v)

×

 1∫
0

1∫
0

g
λα

(λx+ (1− λ)t, αy − (1− α)v) dαdλ

 dvdt

 dydx
∣∣∣∣∣∣

≤ 1

k3

b∫
a

d∫
c

 b∫
a

d∫
c

|x− t| |y − v|

×

 1∫
0

1∫
0

|f
λα

(λx+ (1− λ)t, αy − (1− α)v)| dαdλ

 dvdt


×

 b∫
a

d∫
c

|x− t| |y − v|

×

 1∫
0

1∫
0

|g
λα

(λx+ (1− λ)t, αy − (1− α)v)| dαdλ

 dvdt

 dydx.(3.4)

Using the (h1, h2)-convexity and taking into account that

b∫
a

 b∫
a

|x− t| dt

2

dx =
7

60
(b− a)

5
,

d∫
c

 d∫
c

|y − v| dv

2

dy =
7

60
(d− c)5

,
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1∫
0

h1(1− λ)dλ =

1∫
0

h1( λ)dλ and

1∫
0

h2(1− α)dα =

1∫
0

h2( α)dα,

we obtain

|T (f, g)| ≤ 1

k3

 1∫
0

h1(λ)dλ

2 1∫
0

h2(α)dα

2

×
b∫
a

d∫
c

 b∫
a

d∫
c

|x− t| |y − v| × [|f
λα

(x, y)|+ |f
λα

(x, v)|

+ |f
λα

(t, y)|+ |f
λα

(t, v)|] dvdt

×

 b∫
a

d∫
c

|x− t| |y − v| × [|g
λα

(x, y)|+ |g
λα

(x, v)|

+ |g
λα

(t, y)|+ |g
λα

(t, v)|] dvdt] dydx

≤ MN

k3

 1∫
0

h1(λ)dλ

2 1∫
0

h2(α)dα

2

×
b∫
a

d∫
c

 b∫
a

d∫
c

|x− t| |y − v| dvdt

2

dydx

=
MN

k3

 1∫
0

h1(λ)dλ

2 1∫
0

h2(α)dα

2

×

 b∫
a

 b∫
a

|x− t| dt

2

dx


 d∫
c

 d∫
c

|y − v| dv

2

dy


=

49

3600
k2

 1∫
0

h1(λ)dλ

2 1∫
0

h2(α)dα

2

MN.

This completes the proof of Theorem 3.1. �

Corollary 3.1. Let h : J ⊆ R→ R be positive function, f, g : ∆ → R be partially
differentiable functions, such that their second derivatives fλαand gλα are integrable
on ∆. If |fλα| and |gλα| are h-convex on the co-ordinates, then we have

(3.5) |T (f, g)| ≤ 49

3600
k2

 1∫
0

h(λ)dλ

4

MN,

where T (f, g), M, N, k are defined as in Theorem 3.1.

Proof. Applying Theorem 3.1, for h1(v) = h2(v) = h(v), we obtain the desired
inequality. �
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Corollary 3.2. Let f, g : ∆ → R be partially differentiable functions, such that
their second derivatives fλα and gλα are integrable on ∆. If |fλα| and |gλα| are
convex on the co-ordinates, then we have

(3.6) |T (f, g)| ≤ 49

57600
k2MN,

where T (f, g), M, N, k are defined as in Theorem 3.1.

Proof. In Theorem 3.1, if we replace h1 and h2 by the identity, we obtain

|T (f, g)| ≤ 49

3600
k2

 1∫
0

λdλ

2 1∫
0

αdα

2

MN

=
49

3600
k2

(
λ2

2

∣∣∣∣λ=1

λ=0

)2(
α2

2

∣∣∣∣α=1

α=0

)2

MN

=
49

3600
k2 × 1

4
× 1

4
MN

=
49

57600
k2MN.

This is the desired inequality in (3.6). The proof is completed. �

Remark 3.1. The result of Corollary 3.2 is similar to the inequality (6) of Theorem
2.1 in [12].

Corollary 3.3. Let f, g : ∆ → R be partially differentiable functions, such that
their second derivatives fλα and gλα are integrable on ∆. If |fλα| and |gλα| are
(s1, s2)-convex in the second sense on the co-ordinates, then

(3.7) |T (f, g)| ≤ 49

3600
k2 1

(1 + s1)
2

1

(1 + s2)
2 MN,

where T (f, g), M, N, k are defined as in Theorem 3.1 and s1, s2 ∈ (0, 1] .

Proof. Taking in Theorem 3.1, h1(λ) = λs1 and h2(α) = αs2 , we obtain

|T (f, g)| ≤ 49

3600
k2

 1∫
0

λs1dλ

2 1∫
0

αs2dα

2

MN

=
49

3600
k2 1

(1 + s1)
2

1

(1 + s2)
2 MN.

This is the desired inequality in (3.7). The proof is completed. �

Corollary 3.4. Let f, g : ∆ → R be partially differentiable functions, such that
their second derivatives fλα and gλα are integrable on ∆. If |fλα| and |gλα| are
s-convex in the second sense on the co-ordinates, then

(3.8) |T (f, g)| ≤ 49

3600
k2 1

(1 + s)
4 MN,

where T (f, g), M, N, k are defined as in Theorem 3.1 and s ∈ (0, 1] .
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Proof. Putting in Theorem 3.1, h1(λ) = λs and h2(α) = αs, we get

|T (f, g)| ≤ 49

3600
k2

 1∫
0

λsdλ

2 1∫
0

αsdα

2

MN

=
49

3600
k2 1

(1 + s)
4 MN.

(3.9)

This is the required inequality in (3.8). The proof is completed. �

Theorem 3.2. Let hi : Ji ⊆ R→ R be positive functions, for i = 1, 2, f, g : ∆ → R
be partially differentiable functions, such that their second derivatives fλα and gλα
are integrable on ∆. If |fλα| and |gλα| are (h1, h2)-convex on the co-ordinates, then
we have

|T (f, g)| ≤ 1

8k2

 1∫
0

h1(λ)dλ

 1∫
0

h2(α)dα


×

b∫
a

d∫
c

[M |g(x, y)|+N |f(x, y)|]

×
(

(x− a)
2

+ (b− x)
2
)(

(y − c)2
+ (d− y)

2
)
dydx.

(3.10)

where T (f, g), M, N, k are defined as in Theorem 3.1.

Proof. By Lemma 2.1, we have

f(x, y) =
1

b− a

b∫
a

f(t, y)dt+
1

d− c

d∫
c

f(x, s)dv − 1

k

b∫
a

d∫
c

f(t, v)dvdt

+
1

k

b∫
a

d∫
c

(x− t) (y − v)

×

 1∫
0

1∫
0

f
λα

(λx+ (1− λ)t, αy − (1− α)v) dαdλ

 dvdt,

(3.11)
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and

g(x, y) =
1

b− a

b∫
a

g(t, y)dt+
1

d− c

d∫
c

g(x, v)ds− 1

k

b∫
a

d∫
c

g(t, v)dvdt

+
1

k

b∫
a

d∫
c

(x− t) (y − v)

×

 1∫
0

1∫
0

g
λα

(λx+ (1− λ)t, αy − (1− α)v) dαdλ

 dvdt.

(3.12)

Multiplying (3.11) by 1
2kg(x, y) and (3.12) by 1

2kf(x, y), summing the resultant
equalities, then integrating on ∆, we get

T (f, g) =
1

2k2

 b∫
a

d∫
c

g(x, y)

 b∫
a

d∫
c

(x− t) (y − v)

×

 1∫
0

1∫
0

f
λα

(λx+ (1− λ)t, αy − (1− α)v) dαdλ

 dvdt

 dydx
+

b∫
a

d∫
c

f(x, y)

 b∫
a

d∫
c

(x− t) (y − v)

×

 1∫
0

1∫
0

g
λα

(λx+ (1− λ)t, αy − (1− α)v) dαdλ

 dvdt

 dydx
 ,

(3.13)

using the properties of modulus, (3.13) becomes

|T (f, g)| ≤ 1

2k2

 b∫
a

d∫
c

|g(x, y)|

 b∫
a

d∫
c

|x− t| |y − v|

×

 1∫
0

1∫
0

|f
λα

(λx+ (1− λ)t, αy − (1− α)v)| dαdλ

 dvdt

 dydx
+

b∫
a

d∫
c

|f(x, y)|

 b∫
a

d∫
c

|x− t| |y − v|

×

 1∫
0

1∫
0

|g
λα

(λx+ (1− λ)t, αy − (1− α)v)| dαdλ

 dvdt

 dydx
 .

(3.14)
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Using the (h1, h2)-convexity, (3.14) gives

|T (f, g)| ≤ 1

2k2

 b∫
a

d∫
c

|g(x, y)|

 1∫
0

h1(λ)dλ

 1∫
0

h2(α)dα


×

 b∫
a

d∫
c

|x− t| |y − v| [|f
λα

(x, y)|+ |f
λα

(x, v)|

+ |f
λα

(t, y)|+ |f
λα

(t, v)|] dvdt ] dydx

+

b∫
a

d∫
c

|f(x, y)|

 1∫
0

h1(λ)dλ

 1∫
0

h2(α)dα


×

 b∫
a

d∫
c

|x− t| |y − v| [|g
λα

(x, y)|+ |g
λα

(x, v)|

+ |g
λα

(t, y)|+ |g
λα

(t, v)|] dvdt] dydx] ,

(3.15)

By a simple calculation we get

|T (f, g)| ≤ 1

2k2

 1∫
0

h1(λ)dλ

 1∫
0

h2(α)dα


×

b∫
a

d∫
c

M |g(x, y)|

 b∫
a

d∫
c

|x− t| |y − v| dvdt


+N |f(x, y)|

 b∫
a

d∫
c

|x− t| |y − v| dvdt

 dydx
=

1

8k2

 1∫
0

h1(λ)dλ

 1∫
0

h2(α)dα


×

b∫
a

d∫
c

[M |g(x, y)|+N |f(x, y)|]

×
(

(x− a)
2

+ (b− x)
2
)(

(y − c)2
+ (d− y)

2
)
dydx.

(3.16)

This completes the proof of Theorem 3.2. �

Corollary 3.5. Let h : J ⊆ R→ R be positive function, f, g : ∆ → R be partially
differentiable functions, such that their second derivatives fλα and gλαare integrable
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on ∆. If |fλα| and |gλα| are h-convex on the co-ordinates, then we have

|T (f, g)| ≤ 1

8k2

 1∫
0

h(λ)dλ

2 b∫
a

d∫
c

[(M |g(x, y)|+N |f(x, y)|)

×
(

(x− a)
2

+ (b− x)
2
)(

(y − c)2
+ (d− y)

2
)]
dydx.

where T (f, g), M, N, k are defined as in Theorem 3.1.

Proof. Applying Theorem 3.2, for h1(λ) = h2(λ), we obtain the desired inequality.
�

Corollary 3.6. Let f, g : ∆ → R be partially differentiable functions, such that
their second derivatives fλα and gλα are integrable on ∆. If |fλα| and |gλα| are
convex on the co-ordinates, then we have

|T (f, g)| ≤ 1

32k2

b∫
a

d∫
c

[M |g(x, y)|+N |f(x, y)|]

×
(

(x− a)
2

+ (b− x)
2
)(

(y − c)2
+ (d− y)

2
)
dydx.

(3.17)

where T (f, g), M, N, k are defined as in Theorem 3.1.

Proof. In Theorem 3.2, if we replace h1 and h2 by the identity, we obtain

|T (f, g)| ≤ 1

8k2

 1∫
0

λdλ

 1∫
0

αdα


×

b∫
a

d∫
c

[M |g(x, y)|+N |f(x, y)|]

×
(

(x− a)
2

+ (b− x)
2
)(

(y − c)2
+ (d− y)

2
)
dydx.

=
1

32k2

b∫
a

d∫
c

[M |g(x, y)|+N |f(x, y)|]

×
(

(x− a)
2

+ (b− x)
2
)(

(y − c)2
+ (d− y)

2
)
dydx.

This is the desired inequality in (3.17). The proof is completed. �

Remark 3.2. The result of Corollary 3.6, is similar to the inequality (7) of Theorem
2.1 in [12].

Corollary 3.7. Let f, g : ∆ → R be partially differentiable functions, such that
their second derivatives fλα and gλα are integrable on ∆. If |fλα| and |gλα| are
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(s1, s2)-convex in the second sense on the co-ordinates, then we have

|T (f, g)| ≤ 1

8k2 (1 + s1) (1 + s2)

×
b∫
a

d∫
c

[M |g(x, y)|+N |f(x, y)|]

×
(

(x− a)
2

+ (b− x)
2
)(

(y − c)2
+ (d− y)

2
)
dydx,

(3.18)

where T (f, g), M, N, k are defined as in Theorem 3.1 and s1, s2 ∈ (0, 1] .

Proof. Putting in Theorem 3.2, h1(λ) = λs1 and h2(α) = αs2 , we get

|T (f, g)| ≤ 1

8k2

 1∫
0

λs1dλ

 1∫
0

αs2dα


×

b∫
a

d∫
c

[M |g(x, y)|+N |f(x, y)|]

×
(

(x− a)
2

+ (b− x)
2
)(

(y − c)2
+ (d− y)

2
)
dydx.

=
1

8 (1 + s1) (1 + s2) k2

×
b∫
a

d∫
c

[M |g(x, y)|+N |f(x, y)|]

×
(

(x− a)
2

+ (b− x)
2
)(

(y − c)2
+ (d− y)

2
)
dydx.

This is the required inequality in (3.18). The proof is completed. �

Corollary 3.8. Let f, g : ∆ → R be partially differentiable functions, such that
their second derivatives fλα and gλα are integrable on ∆. If |fλα| and |gλα| are
s-convex in the second sense on the co-ordinates, then we have

|T (f, g)| ≤ 1

8k2 (1 + s)
2

×
b∫
a

d∫
c

[M |g(x, y)|+N |f(x, y)|]

×
(

(x− a)
2

+ (b− x)
2
)(

(y − c)2
+ (d− y)

2
)
dydx,

(3.19)

where T (f, g), M, N, k are defined as in Theorem 3.1 and s ∈ (0, 1] .
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Proof. Taking in Theorem 3.2, h1(λ) = λs and h2(α) = αs, we get

|T (f, g)| ≤ 1

8k2

 1∫
0

λsdλ

 1∫
0

αsdα


×

b∫
a

d∫
c

[M |g(x, y)|+N |f(x, y)|]

×
(

(x− a)
2

+ (b− x)
2
)(

(y − c)2
+ (d− y)

2
)
dydx.

=
1

8k2 (1 + s)
2

×
b∫
a

d∫
c

[M |g(x, y)|+N |f(x, y)|]

×
(

(x− a)
2

+ (b− x)
2
)(

(y − c)2
+ (d− y)

2
)
dydx.

This is the desired inequality in (3.19). The proof is completed. �
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