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ON SOME CEBYSEV TYPE INEQUALITIES FOR FUNCTIONS
WHOSE SECOND DERIVATIVES ARE (h1,h)-CONVEX ON THE
CO-ORDINATES

B. MEFTAH AND K. BOUKERRIOUA*

ABSTRACT. The aim of this paper is to establish some new CebySev type
inequalities involving functions whose mixed partial derivatives are (hi, ha)-
convex on the co-ordinates.

1. INTRODUCTION

In 1882, Cebysev [4] gave the following inequality :
1 2
(1.1) T (.9 < 15 (0= a) [ lloc 191l
where f, g : [a,b] — R are absolutely continuous functions, whose first derivatives
' and ¢’ are bounded,

b b b
(12) T(.9) = [f@a@de— | 2 [raan ) (5 [s@s ],

¢
a

and ||.|| ., denotes the norm in Lo [a, b] defined as || f|| ., = esssup|f (t)].

t€la,b]

During the past few years many researchers have given considerable attention to
the inequality (1.1), various generalizations, extensions and variants of this inequal-
ity have appeared in the literature, see [1, 3,6, 8,9, 10] . Recently, Guezane-Lakoud
and Aissaoui [6] established new Cebysev type inequalities similar to (1.1) for func-
tions f,g defined on bidimensional intervals A = [a,b] X [¢,d] C [0,00)? whose
mixed partial derivatives fg; and g are integrable and bounded. The authors of
the paper [12] further extend these results in special cases when the mixed partial
derivatives belong to certain classes of functions that generalize convex function on
the co-ordinates.
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The main purpose of this work is to obtain new Cebysev type inequalities in-
volving functions whose mixed partial derivatives are (hi, hs)-convex on the co-
ordinates.

2. PRELIMINARIES

Throughout this paper we denote by A the bidimensional interval in [0, c0)?,
A =: [a,b] x [e,d] with a < band ¢ < d, k = (b—a)(d — ¢) and fr, for
i
OO ®

Definition 2.1 ([5]). A function f : A — R is said to be convex on the co-ordinates
on A, if the following inequality

fAz+ (1 =Nt,ay+(1—a)v) < Aaf(z,y)+A(1—a)f(z,0)
(2.1) +(1=Naf(t,y)+ (1 =X (1-a)f(tv)
holds for all A\, € [0,1] and (z,¥), (x,v), (t,y), (t,v) € A.

Clearly, every convex mapping f : A — R is convex on the co-ordinates. Fur-
thermore, there exists co-ordinated convex function which is not convex.

Definition 2.2 ([2]). A function f : A — R is said to be s-convex in the second
sense on the co-ordinates on A, if the following inequality

FOc+(1-Ntag+(1-a)) < Na'flz,y)+ X (1-a)° f(z,0)
(2.2) F (L= N F(ty) + (1= N (L— ) £(t,0)

holds for all A\, € [0,1] and (z,¥), (z,v), (t,9), (t,v) € A,
for some fixed s € (0,1].

s-convexity on the co-ordinates does not imply the s-convexity, that is there exist
functions which are s-convex on the co-ordinates but are not s-convex.

Definition 2.3 ([7]). Let h: J CR — R be a positive function. A mapping f : A
— R is said to be h-convex on A, if the following inequality

(2.3) flax+ (1 —a)t,ay + (1 — a)v) < (@) f(z,y) + h(1 — a)f(t,v)
holds, for all (z,y), (t,v) € A and « € (0,1).

Definition 2.4 ([7]). A function f: A — R is said to be (hq, ha)-convex on the
coordinates on A, if the following inequality
fOz+ (1 -=Ntay+ (1 —-a)v) < hi(Mha(a)f(z,y) + hi(MNh2 (1 - a) f(x,v)
+h1 (1= A) hao(a) f(t,y)
(2.4) +h1 (1 =X he (1 —a) f(t,v)
holds for all A, @ €]0,1[ and (z,y), (z,v), (t,y), (t,v) € A.

h-convexity on the co-ordinates does not imply the h-convexity, that is there
exist functions which are h-convex on the co-ordinates but are not h-convex.

Lemma 2.1 (Lemma 1. [11]). Let f: A — R be a partial differentiable mapping
on A in R%. If faa € L1(A), then for any
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(z,y) € A, we have the equality:

flz,y) = bi(}]f(t,y)dt—&—dl_cjf(x,v)dv—;77f(t,v)dvdt
+,1€77<z—t> (v )

(2.5) X foow Qz+ (1= Nt,ay — (1 — a)v) dadX | dvdt
Il

3. MAIN RESULT

Theorem 3.1. Let h; : J; C R — R be positive functions, fori =1,2. f,g: A — R
be partially differentiable functions, such that their second derivatives fro and gia
are integrable on A. If | faa| and |gra| are (hi, ha)-convex on the co-ordinates, then
we have

1 2 /1 2
(3.1) IT(f,9)] mkz /h1 )dA /hg(a)da MN
0 0

where

b d d b
1(f9) = 1 [ [F@ws 9(20) (/f(t,y)dt) dyda
—a) ]79 (x,y) 7f (z,v)dv | dydz
(] o) (o)

M= esssup  [[faa (z,y)|+ [faa (@, 0)] + [fra (& y)| + [fra (£ 0)]]
z,t€la,b],y,vE|c,d]
N = €8S sup [|g/\o¢ (.Z‘, y)' + ‘g)\a (.’I,‘,U)| + |g)\o¢ (t,y)\ + |g>\oz (t’ U)l]

z,t€la,bl,y,vE|c,d]
and k=(b—a)(d—c).

Proof. Let F, G, F and G be defined as follows

b d b d
F = fla,y) - ﬁ/f(t,y)dt - ﬁ/f(a:, v)dv + %//f(t, v)dvdt

c

d

G =g(z,y) — b1a7g(t, y)dt — ﬁ/g(m,v)dv + ]19779(1?, v)dvdt
F= 277 (z—1t)(y —v) x (]]f Az + (1= Mt ay — (1 — a)v) dadA) dvdt

00



80 B. MEFTAH AND K. BOUKERRIOUA*

G= ;77 (z —t) (y — v) x (Zzgm Az + (1 =Nt ay — (1 — a)v) dad)\) dvdt.

By Lemma 2.1, we have
F=Fand G = é,
then
(3.3) FG = FG.

Integrating (3.3) over A, with respect to ,y, multiplying the resultant equality
by %, using Fubini’s Theoerm and modulus, we get

b d b d
1ol = w5\ @-w-0
y ( { [ o ()\a:+(1—/\)t,ay—(1—a)v)dad/\) dvdt]
b d
[ [@-tw-0

\R‘ @\w
N ——
oS~ —

@I B
s =
* .
(4 ~
N~ ~——
N N
& &
Il Il
gl~ &
—~ —
o >
| I
& &
il 1
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1 1 1

{hl(l—/\)d/\:{hl()\)d)\ and {hg(l—a)da:/hg(a)da,

0
we obtain

1 2 1 2
IT(f,9)] < % (/}h()\)d)\) (/hg(&)d&)
0 0

b

//|m—t| = ol % [l (@) + |fr (@, 0)]

+|fko< tay |+ |f)a t v)Hdvdt

x {//Ix—tl = ] % [lg,. (@ 9)] + |9, (@, 0)]

1950 G u)| + 195 (t,0)]] dodt] dyd

1 2 1 2
% ( [ hl(/\)d)\) ( / hg(&)d&)

<
0
b d
// (//mt |yv|dvdt> dydx
2, 2
= Z\iﬁ\f /hl()\)d)\ /hg(a)da
0 0
b /b 2 d /d 2
/(/|x—t| dt) dx /(/y—v|dv) dy
1 2 /1 2
- D ( / hl()\)d)\) ( / hg(a)da) MN.
3600
0 0
This completes the proof of Theorem 3.1. O

Corollary 3.1. Let h: J CR — R be positive function, f,g : A — R be partially
differentiable functions, such that their second derivatives faoand gxe are integrable
on A. If | faal and |gra| are h-convez on the co-ordinates, then we have

4
(3.5) (/. )|_3600k2 (/h d)\) MN,

where T'(f,g), M, N, k are defined as in Theorem 3.1.

Proof. Applying Theorem 3.1, for hi(v) = ha(v) = h(v), we obtain the desired
inequality. (I
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Corollary 3.2. Let f,g : A — R be partially differentiable functions, such that
their second derivatives fro and gra are integrable on A. If |faa| and |gra| are
convex on the co-ordinates, then we have

49
3.6 T < —K’MN
(3.6) IT(/.9)| < g=655K MN.

where T(f,q), M, N, k are defined as in Theorem 3.1.

Proof. In Theorem 3.1, if we replace hy and he by the identity, we obtain

1 2 /1 2
IT(f,9) < A9 /)\d)\ /ada MN
= 3600
0 0
2 1A=1 2 2 =1 2
= ﬂ}f )‘7 @ MN
3600 2 |\, 2| o
49 1 1
= —k?x-x=-MN
3600° 171
49
= —— k*MN.
57600
This is the desired inequality in (3.6). The proof is completed. O

Remark 3.1. The result of Corollary 3.2 is similar to the inequality (6) of Theorem
2.1 in [12].

Corollary 3.3. Let f,g : A — R be partially differentiable functions, such that
their second derivatives fro and gra are integrable on A. If |faa| and |gra| are
(s1, 82)-convez in the second sense on the co-ordinates, then

9 , 1 1
| < k 2 p)
3600 (1+s1)" (1+s2)
where T(f,q), M, N, k are defined as in Theorem 3.1 and s1,s2 € (0,1].

(3.7) IT(f.9)

)

Proof. Taking in Theorem 3.1, h1(A) = A** and ho(a) = a2, we obtain

1 2 /1 2
T(f9)| < 29 4 /AsldA /oﬁ?da MN
3600
0 0
_ 49, 1 1
3600 (14 51)% (1+s2)°
This is the desired inequality in (3.7). The proof is completed. O

Corollary 3.4. Let f,g : A — R be partially differentiable functions, such that
their second derivatives fro and gra are integrable on A. If |faa| and |gra| are
s-convex in the second sense on the co-ordinates, then

49 1
3.8 T < —— k2 MN
(33) T0.9) < 3e00F (g MV

where T(f,g), M, N, k are defined as in Theorem 3.1 and s € (0,1].
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Proof. Putting in Theorem 3.1, hy(A) = A* and ha(a) = o, we get

1 2 /1 2
49
T < k2| [ rsar sda | MN
79 < gk | [ [oda
0 0
1
_ k2 MN.

3600° (1 +s)"
(3.9)

This is the required inequality in (3.8). The proof is completed.

83

Theorem 3.2. Let h; : J; C R — R be positive functions, fori =1,2, f,g: A — R
be partially differentiable functions, such that their second derivatives fyo and gia
are integrable on A. If | faa| and |gra| are (b1, he)-convex on the co-ordinates, then

we have
1 1
IT(f,9)] < 8% /h1(>\)d/\ /hz(a)da
- 0 0
< [ [ 1gta) + ¥ 15w
x (2= + b -2)") (v =) + (d—y)*) dyda.
(3.10)

where T(f,q), M, N, k are defined as in Theorem 3.1.

Proof. By Lemma 2.1, we have

b d

b d
fa) = 5o [femar e 2 [reoio—y [ [0
b d

i [@-0w-v

a c
11

X fow Qz+ (1 =Nt ay — (1 — a)v) dadX | dudt,
{Z
(3.11)
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and

b b d
1 1 1
sa) = oo fattdr+ 7= [otaoris— 1 [ [atv)ava

11
X ({{gm M+ (1 - Nt,ay — (1 — a)v) dad)\) dvdt.

Multiplying (3.11) by ig(x,y) and (3.12) by if(ac,y)7 summing the resultant
equalities, then integrating on A, we get

b d b d
T(f.9) = Q;[//g(a@,y) l//@:—t)(y—v)
11
y ({/f ()\m—f—(l—/\)t,ay—(1—a)v)dad)\> dvdt] dydz

b dO b d
+[ [1ww) [//(m—w(y—v)
X ({/gM A+ (1 —=Nt,ay — (1 — a)v) dad)\) dvdt] dydx] ,

0

(3.12)

(3.13)

using the properties of modulus, (3.13) becomes

b d b d
TG0 < 5 [// 9z 3)] {/ o tlly ol
X |fi, Az + (1= Nt,ay — (1 — a)v)] dad/\) dvdt] dydx
1

b d

+77|f(w>y) l/ @ =ty — vl

a

1
X (/[ lg,. Az + (1= Nt,ay — (1 — a)v) dad)\) dvdt] dydx] )

0
(3.14)
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Using the (hq, ho)-convexity, (3.14) gives

b

Tl < 2,;[/7|g<x,y>| (]wm) ( / h2<a>da)
> 0 0

a c

b d
X [//Iﬂf—tl ly = ol [lfsa (2 9)| + | (2, 0)]

+ o G+ [fra (8 0)]] dodt | dyda

+7 ] F(.y) (]hlwcu) (/1m<a>da)
c 0

a 0

b d
x //|x—t|\y—v|ugM (@,9)] + lg... ()]

+ 1920 &Y+ 19,5, (0)]] dvdt] dydz],
(3.15)

By a simple calculation we get

IT(f,9)| < # (/hl()\)d)\) (/hg(a)da)

0 0

b d b d
<[] [M|g<x7y> (//|x—t| y—v|dvdt)
+N |f(z,y)] (77|x—t| y—v|dvdt) dydx

a ¢

_ # (]hl(A)dA) (]hg(a)da)
0

0
b d
x / / M lg(z, )| + N | £z, 9)]

X ((a: — a)2 +(b— x)2> ((y — 6)2 +(d— y)g) dydz.
(3.16)

This completes the proof of Theorem 3.2. (]

Corollary 3.5. Let h: J CR — R be positive function, f,g : A — R be partially
differentiable functions, such that their second derivatives fro and g are integrable
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on A. If | faa| and |gra| are h-convex on the co-ordinates, then we have
L 2

b d
179l < g | [ran] [ [101en)l+ N i)

0

% (2= ay + b -2)°) (y= 07+ (d—y)*) | dyda.
where T(f,q), M, N, k are defined as in Theorem 3.1.

Proof. Applying Theorem 3.2, for hq(A) = ha(A), we obtain the desired inequality.
O

Corollary 3.6. Let f,g : A — R be partially differentiable functions, such that
their second derivatives fr, and gra are integrable on A. If |fra| and |gra| are
convex on the co-ordinates, then we have

b d
19 < gy [ [ Mlglen)] + N |

x (2= a)* + b -2)") (v =)+ (d—v)*) dyda.
(3.17)

where T'(f,g), M, N, k are defined as in Theorem 3.1.

Proof. In Theorem 3.2, if we replace h; and ho by the identity, we obtain

1 1
1
IT(f,9)] < e /Ad/\ /ada
0 0

b d
x// M |g(z, )] + N [ £(2,5)]]

x (= +0-27) (-0 +([d-1)?*) dyds.
b d
_ 321k2/ [M |g(2,y)] + N | f(2,3)]]

a

X ((x —a)’+ (b— x)2) ((y — )’ 4 (d— y)2) dydz.
This is the desired inequality in (3.17). The proof is completed. O

Remark 3.2. The result of Corollary 3.6, is similar to the inequality (7) of Theorem
2.1 in [12].

Corollary 3.7. Let f,g : A — R be partially differentiable functions, such that
their second derivatives fro and gra are integrable on A. If |faa| and |gra| are
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(s1, 82)-convez in the second sense on the co-ordinates, then we have

1
8k2 (1 +s1) (1+ s2)

T(f 9l <

b d
<[ [ lgte) + ¥ 10
< (@=a)’+0-27) (4= + (@~ y)*) dyda,
(3.18)
where T(f,q), M, N, k are defined as in Theorem 3.1 and s1,s2 € (0,1].

Proof. Putting in Theorem 3.2, hy(\) = A*! and ho(a) = a2, we get

1 1

1 S1 S2
IT(f,9)] < el /)\ d\ /a da

0

N

0
b d
y / / M |g(z, )] + N |f(z,3)]

X ((:c —a)’+ (b— x)2) ((y —¢)® 4+ (d - y)2) dydz.
1
8(1+s1)(1+s2)k?

b d
« / / M |g(z, )| + N |f(z,3)]

x (2= + b -2)") (v =)+ (d—v)*) dyda.

This is the required inequality in (3.18). The proof is completed. (]

Corollary 3.8. Let f,g : A — R be partially differentiable functions, such that
their second derivatives fro and gro are integrable on A. If |faa| and |gra| are
s-convex in the second sense on the co-ordinates, then we have

1

IT(f,9) < m

b d
x / / M lg(z,9)| + N (@, 9)]]

% (@ = ay+ 0 -2)) (h— 0+ (d—)*) dydz,
(3.19)

where T(f,q), M, N, k are defined as in Theorem 3.1 and s € (0,1].
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Proof. Taking in Theorem 3.2, h1(A) = A® and ha(a) = o, we get

1 1
1
IT(f,9) < 52 /Asd)\ /asda
0 0

b d
x / / M lg(z, )| + N | £z, 9)]

% ((z=a) + b -2)) (=) + (d—y)*) dyda.
1
8k2 (14 s)

b d
« / / [M |g(z, )| + N |f(z, )]

% ((z=a) + b -2)) (s )+ (d—y)*) dyda.
This is the desired inequality in (3.19). The proof is completed. (I
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