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LP LOCAL UNCERTAINTY PRINCIPLE FOR THE DUNKL
TRANSFORM

FETHI SOLTANI

ABSTRACT. In this paper, we establish LP local uncertainty principle for the
Dunkl transform on R%; and we deduce LP version of the Heisenberg-Pauli-
Weyl uncertainty principle for this transform. We use also the LP local uncer-
tainty principle for the Dunkl transform and the techniques of Donoho-Stark,
we obtain uncertainty principles of concentration type in the LP theory, when
I1<p<2

1. INTRODUCTION

In this paper, we consider R? with the Euclidean inner product (.,.) and norm
ly| := \/{y,y). For a € R?\{0}, let o, be the reflection in the hyperplane H, C R?
orthogonal to a:

2o, y)
|al?

A finite set ® C R¥\{0} is called a root system, if ® N R.a = {—a,a} and
oo =R for all & € R. We assume that it is normalized by |a|? = 2 for all a € R.
For a root system R, the reflections o,, a € R, generate a finite group G. The
Coxeter group G is a subgroup of the orthogonal group O(d). All reflections in
G, correspond to suitable pairs of roots. For a given g € R\ Uaen Hay we fix
the positive subsystem R, := {a& € ® : (o, ) > 0}. Then for each a € R either
OZE§R+ orfa€§R+.

Let k£ : ® — C be a multiplicity function on R (a function which is constant
on the orbits under the action of G). As an abbreviation, we introduce the index

V=Y = Daen, ko).

Oy ‘=Y —
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Throughout this paper, we will assume that k(«) > 0 for all « € . Moreover,
let wy denote the weight function wi(y) = [[,en, [(a, y)|2*(@) for all y € RY,
which is G-invariant and homogeneous of degree 2~.

Let ¢ be the Mehta-type constant given by ¢ := ([ga e"y|2/2wk(y)dy)*1. We
denote by py the measure on RY given by dux(y) := cpwi(y)dy; and by LP(uy),
1 < p < o0, the space of measurable functions f on R%, such that

1/p
iy = ([ 1 @Pdm)”" <o, 1<p< .

1Nl oo () = ess sup |f(y)| < oo,
yER?
and by L . (uy) the subspace of LP(uy) consisting of radial functions.

For f € L'(uy) the Dunkl transform is defined (see [4]) by

Fi(f)(x) = » Ey(—iz,y) f(y)due(y), x€R%

where Ej(—ix,y) denotes the Dunkl kernel (for more details, see the next section).
Many uncertainty principles have already been proved for the Dunkl transform,

namely by Rosler [10] and Shimeno [11] who established the Heisenberg-Pauli-Weyl

inequality for the Dunkl transform, by showing that for every f € L?(uy),

2
(1.1) 1172 ) < mll |21 22 (o) |11 FR (N 22 () -

Recently the author [17] proved the following LP version of the Heisenberg-Pauli-
Weyl inequality for the Dunkl transform Fj. Let 0 < a < (2y +d)/q, b > 0, if
1<p<2g=p/(p—1) and f € LP(u), then

(1.2) 1Fe(H) auy < Cla O el P15 P F DI, .

where C(a,b) is a positive constant.

Building on the ideas of Faris [5] and Price [8, 9] for the Fourier transform, we
show a local uncertainty principles for the Dunkl transform Fj. More precisely,
we will show the following results. Let E be a measurable subset of R? such that
0<pr(E)<oo,anda>0.If1<p<2 g=p/(p—1)and f € LP(uy), then

K1) (1 (B) 55| |21 | 1o (e 0<a<2H,
29+d
IXEFR(F) ) < § Ko@) (ue(EDYAUS b |2l f 50 ) > 2,
a 1/2 1/2
2K () (i (B)) % | Iy 21 £y @ = 222,

where g is the characteristic function of the set E and K (a), K3(a) are positive
constants given explicitly by Theorem 2.1.

We shall use the L? local uncertainty principle to show LP version of the Heisenberg-
Pauli-Weyl uncertainty principle for the Dunkl transform Fi. Let a,b > 0, if
1<p<2,qg=p/(p—1)and f € LP(uy), then

b a
=5 =55 2vtd.
K0 1l P ol FelFIEET, . 0< <2
T SO | 11 At 2v+d
a + a 2 d b
IFe s < 3 Kol DA | oo I ZE45 | oy |7 g 2k,
Py Py Tt 2v+d
Ko(a DI el FIEE Iyl FeFIET o= 2t
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where K1(a,b), Ka(a,b) and K3(a,b) are positive constants given explicitly by The-
orem 2.2. The inequalities which generalize the Heisenberg-Pauli-Weyl inequalities
given by (1.1) and (1.2). In the case k = 0 and g = 2, these inequalities are due to
Cowling-Price [1] and Hirschman [6].

We shall use also the local uncertainty principle, and building on the techniques
of Donoho-Stark [2, 14, 15, 16, 18], we show uncertainty principles of concentration
type in the LP theory, when 1 < p < 2.

This paper is organized as follows. In Section 2 we show a local uncertainty
principle for the Dunkl transform Fj; and we deduce LP version of the Heisenberg-
Pauli-Weyl uncertainty principle for this transform. The last section is devoted
to present uncertainty principles of concentration type in the LP theory, when
l<p<2

2. LP UNCERTAINTY PRINCIPLES

The Dunkl operators D;; j = 1,...,d, on R? associated with the finite reflection
group G and multiplicity function k are given, for a function f of class C' on R,
by

D) =5 )+ Y k(a)ajJW.
! ey )

For y € RY, the initial problem Dju(.,y)(z) = yju(z,y), j = 1,..,d, with
u(0,7) = 1 admits a unique analytic solution on R? which will be denoted by
Ex(x,y) and called Dunkl kernel [3, 7]. This kernel has a unique analytic extension
to C? x C?. In our case (see [3, 4]),

(2.1) |Ep(—iz,y)| <1, z,y € R

The Dunkl kernel gives rise to an integral transform, which is called Dunkl
transform on R?, and was introduced by Dunkl in [4], where already many basic
properties were established. Dunkl’s results were completed and extended later by
De Jeu [7]. The Dunkl transform of a function f in L'(uy), is defined by

]:/C(f)(x) = Ra Ek(_l$7y)f(y)dﬂk(y>, S Rd-
We notice that Fy agrees with the Fourier transform F that is given by
F()w)i= r) 2 [ e gy, o e R
R4

Some of the properties of Dunkl transform Fj, are collected bellow (see [4, 7]).
(a) L' — L**-boundedness. For all f € L*(uy), Fr(f) € L*(ux) and

(2.2) IFR (Lo ) < ANt -
(b) Inversion theorem. Let f € L'(uy), such that Fi(f) € L' (uy). Then
(2.3) f(z) = Fe(Fr(f))(-2), ae. zeR™

(c) Plancherel theorem. The Dunkl transform Fy, extends uniquely to an isomet-
ric isomorphism of L*(uy) onto itself. In particular,

(2.4) 11122 ey = IFR (D22 ) -



L? LOCAL UNCERTAINTY PRINCIPLE FOR THE DUNKL TRANSFORM 103

Using relations (2.2) and (2.4) with Marcinkiewicz’s interpolation theorem [19,
20], we deduce that for every 1 < p < 2, and for every f € LP(uy), the function
Fi(f) belongs to the space L(uy), ¢ =p/(p — 1), and

(2.5) [ Fe (O Lague) < NF1 Lo (u)-
If fe Ll () with f(z) = F(|z]), then
1
2.6 )d F(r)yr2td=14
(2.6) / FMne) = / N

In the following we use the inequality (2.5) to establish LP local uncertainty
principle for the Dunkl transform Fj, more precisely, we will show the following
theorem.

Theorem 2.1. Let E be a measurable subset of R such that 0 < uy(E) < co, and
a>0.Ifl<p<2,g=p/(p—1) and f € LP(uy), then

K1) (1 (B) 55| |21 | 1o (e 0<a<2H,

2y+d

1
K@) (ue( BV Sl Il 2l e, 0> 22,

2K (%) (i (B)) % | I oy 21 £y @ = 222,

IN

IxEFr ()l La(u)

where a
Ki(a) = —2 T4 2y +d—ga)i=t |7
1 2’Y+d—qa 2”/+%71F(,Y+ %)(qa)q )
1
T wsh-di\n+d 2751 pga?l(y + )0(2)

Proof. (i) The first inequality holds if |||z|*f||1r(u,) = 00. Assume that
[ 12|%f[| e (ug) < 00. For 7 >0, let B, = {z: |z| <r} and B¢ = R*\B,. Denote
by x&, xB, and xpe the characteristic functions. Let f € LP(uz), 1 < p < 2 and
let ¢ = p/(p — 1). By Minkowski’s inequality, for all » > 0,
IxeFk(HllLaw) < IxeFr(s, e + IxeFe(XBe )l La(u)

< (u(ENY N Fr(xm Pl oo o) + 1Fe e ) La(un);
hence it follows from (2.2) and (2.5) that
(2.7) IXEF () Latuny < (BN NXB, Nl ue) + IXBE |0 (i) -
On the other hand, by Holder’s inequality,

X8, Lty < Il XB, Lo guo 21 Fll 2o -
By (2.6) and hypothesis a < (2v+d)/q,

2| =X B, | La(uy) = axr™*TEHD/,
where
d d 71/‘1
ay = (27+d7qa)2v+§7lr(v+§) ’

and therefore,

(2.8) IXB, Fll Lt (o) < arr ™ T D9 (2|9 £ oy
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Moreover,

(2.9)  lxseflloruo < Hael™*XBell o guo el Flloe oy < 77 el Flloe gu-

Combining the relations (2.7), (2.8) and (2.9), we deduce that

(
||XE]:k(f)||L<1(M) < {T—a+ak(uk(E))l/qr—a-&-(Q'y-&-d)/q ” |$|af||LP(;¢k)-

We choose r = (m) e (g (E))_ﬁ, we obtain the first inequality.

(ii) The second inequality holds if || f|| z»(,.,) = o0 o1 || [2]* f|| £r () = 00. Assume
that || f|| e )+ 2| fll p (uy) < 00. From the hypothesis a > (2y+d)/q, we deduce
that the function z — (1+ |z|P*)~/? belongs to L4(uz), and by Hélder’s inequality,

gy = ([ 0+ P @I+ ) o))

d p/q
- (Loahmm) 1+ Nt ]

Then the function f belongs to L'(uy). Replacing f(x) by f(rz), r > 0, in the last
inequality gives

dpur(z) o/ d d a
Hf”il(uk) < (/Rd W [ (2v+d)(p— 1)||fHLp () + @) p=1)-p |zl £117, ,U«k)j| ]

1

a 1/0.
1) (W) and the fact that
M

We choose r = (2 d

/ dpk () _ 1 /oo r2y+d=14, F(%{:—d)r(gl%d)
( (v+9Jo (

L Jafpeyale — gr+g-ip L rre)ile = gt pal (4 + 4T(E)

we deduce that

1l oy < Ka@II 1 Il 2l F1 5

Thus,
IxeFe(Allzag) < G ENYINF(H)llo (u)
< (kBN 2 )
< Ko@) (BN o,

which gives the second inequality.

2y+d 2v4d
(iii) Let r > 0. From the inequality (‘ |> o<1+ (M) it follows that

2y-+d 2y+d 27+d
25l <7 50 (1 lorgo +r 5 275 fllisg
Optimizing in r, we get
2y+d 1/2 1/2
2l %0 Flloga < 2011l e /

Thus, we deduce that

IXEFe(llLagn) < Kl

1/2

A
Do
=

) (i (B)) 3 || £ o |25
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which gives the result for a = (2y + d)/q.
Remark 2.1. Let a > 0. If 1 <p<2 g=p/(p—1) and f € LP(uy), then

||fH S < Ki(a)[l 2" flloo(uy), 0 <a<(2y+d)/q,
223

. a
11l zoesapu) < Kz(a)llfHLp(m [NEd fIILp Ly 0> (2v+d)/g,

1/2 1/2
20y < 2K N el IR, 0= 23+ d)/a,
where L®9(py) is the Lorentz-space defined by the norm
11
[fllLea(uy) == sup ((Mk(E))S L ||XEfHLq(uk,))-
ECR?
0<pi(E)<oco

105

In the next part of this section, we shall use the LP local uncertainty principle
(Theorem 2.1) to extend the Heisenberg-Pauli-Weyl uncertainty principles (1.1)

and (1.2) to more general case.

Theorem 2.2. Let a,b>0,If1<p<2,q=p/(p—1) and f € LP(uy), then

_b_ _a_
K1 (@, O)l 2l 1155 o Y Fr U £

||]: (f)” < Z((q(erg'v:rg) a(l;<~,2+;f3;b) b 2,Y+d+qb
R LaGuy < 9 Ka(a, I ey Il Fll e ™ Nyl PO i
Ks(a,b)llf\lzzf;k)ll IwI“fIIZZEZk)\\ Iylb]-'k(f)”%k),
where
{( ) ( >a+b:|1/q
Kifa.b) = — o (K1(a)) 7,
2v+d)(a+b
[2 F(w—i— +1)}(+>(+)
[( qb )% n (27+d)27+j’+@}1/f1
= 2rtd 9 2 qdb 3
Ks(a,b) = - p—— (K2 (a))7raras,
[2etrey+ 4 41)] T
and

2 ﬁ a a+2b 1/q

() + (%) @)

Koo, b) = 2K ()
[2’7+%I‘(7 +44 1)} e

Proof. (i) Let 0 < a < (2y+4d)/q, b > 0 and r > 0. Then

210)  IF DNy = X8 Fal D) + X8 Fe(F) L
Firstly,
(2.11) X BeFr (NG uy < 7Y Frl N o -

By (2.6) and Theorem 2.1, we get
(2.12) X8, Fe )% < K2l £

0<a<27+d

a >

2v+d
q )

_ 2v+d
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where a
q d d ~ma
Ky = (K1 (a)) [Q'H'ZF(V +5+ 1)]
Combining the relations (2.10), (2.11) and (2.12), we obtain

1Fe )0y < Kl A1 oy + TP F D

1
awrm (P Fi ()l ot . :
We choose r = (azb(1> ! < i Ir:flmiz,i‘;k)> , we get the first inequality.

(ii) Let a > (2y +d)/q, b > 0 and r > 0. By (2.6) and Theorem 2.1, we get

(2.13) X8, Frl P ) < Ko £

where

+d o ey 220
el -

d —1
Ky = (K3(a))? [27+3I‘("y +5+ 1)] .
Combining the relations (2.10), (2.11) and (2.13), we obtain

IFe () ey < Ear? P A1 o el iy + 7 P F O

1 b q 2'Y+d+qb
We ch o qb 2y+d+qb Iyl ]:k(f)HLq(Mk) h
e choose r = (CZETINe o7 PR , we get the sec-

112y M2l f 1l s,
ond inequality.
(iii) Let a = (2y +d)/q, b > 0 and r > 0. From Theorem 2.1, we get

| 1R ) < Kar Il
B,
where 1o
2v+d d d B
Ky = (Ky(FL5)7 (25T (v + 5+ 1)
2q 2
Therefore,
2 2
1Fe (N0 y < Kar 5170 v AT

PRz 2 L Fe()1 s
3y FdT2qb k
We choose r = ( 5220 L (e we get the
(2v+d)K3 1/2 2kd 1o ’
IFIY2, el T A2,

third inequality.

Remark 2.2. The inequalities of Theorem 2.2 generalize the results of the papers
[12, 13, 17]. Furthermore, we have explicitly given the values of the constants
Ki(a,b), Ks(a,b) and Ks(a,b). In particular case, if ¢ = 2, the inequalities of
Theorem 2.2 are given by

b
1122y < K@, 0| 2] FIl Gy | [WIPFi(f )Hp(m,

where
Ki(a,b), 0<a<(2y+d)/2, b>0,
a(2v+d+2b)
K(a,b) = ¢ (Ka(a,b))@®+a@n a> (2y+d)/2, b> 0,
a+2b

(K3(a,b))ets a=(2y+d)/2, b>0.
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Here Ki(a,b), K2(a,b) and K3(a,b) are the constants given by Theorem 2.2 with
p=q=2.
3. LP DONOHO-STARK UNCERTAINTY PRINCIPLES

Let T and E be a measurable subsets of R?. We introduce the time-limiting
operator Pr by

PTf = XTf7
and, we introduce the partial Dunkl integral Sg f by
(3.1) Fu(Sef) = xeFu(f).

We shall use the LP local uncertainty principle (Theorem 2.1) to obtain the
following results for the partial Dunkl integral Sg f.

Lemma 3.1. (i) If up(F) < oo and f € LP(ug), 1<p<2,
Sef(x) =F; ' (xeFe(f))(@).
(i) If 0 < pp(E) <00, a>0,1<p S 2, q=p/(p—1) and f € LP(u), then
Ky (a) (e (B)) 74555 72 2] £l o ) 0<a< 2t

15 fllzeu) < Ka(@) (e EDY2IL Iy alofll i) 0> 224,

2K (8) (i (B)) 2 || FI o Nl Iy = 222,

where Ki(a) and Ks(a) are the constants given by Theorem 2.1.

Proof. (i) Let f € LP(ux), 1 < p <2 and let ¢ =p/(p —1). Then by Holder’s
inequality and (2.5), we have
IXEFi (N < (e ENYPIF() Lo < GlEDYPIF N o gu) s

and

IXEFR(z2m) < (o) 5 17k zagu) < (s (E)) T F Lo
Thus xgFi(f) € L*(ur) N L%(pr). Then by (2.3) and (3.1), we obtain

Sef =T, (xeFu(f))-

(ii) Let f € LP(ug), 1 < p < 2 and let ¢ = p/(p —1). By (2.5) and Holder’s
inequality, we have

1S Laguy < IxeFe(H)lleg) < (@) 7~ ixeFe(HllLagn)-

Then we obtain the results from Theorem 2.1. |
Let T be a measurable subset of R%. We say that a function f € LP(us),
1 < p <2, is e-concentrated to T in LP(u)-norm, if
(32) If = Prflleeuy < erllflloegu)-
Let E be a measurable subset of R? and f € LP(uz), 1 < p < 2. We say that
Fi(f) is eg-concentrated to E in L7(uy)-norm, ¢ = p/(p — 1), if
(3.3) IF&(f) = Fr(SellLau) < epllFr(HllLagun)-
Let By(E), 1 < p < 2, be the set of functions f € LP(uy) that are bandlimited
to E (ie. f € B,(E) implies Sgf = f).
Then, the space B,(F) satisfies the following property.
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Lemma 3.2. Let T and E be a measurable subsets of R? such that 0 < i (E) < 0o,
anda>0. If1<p<2, ¢g=p/(p—1) and f € B,(E), then

1, a
K1 () (s (7)) P (o (B)) 7 555 | |21 1| 26 () 0<a< 2t

1Pr o <3 Kala) TNV (E)IF 1 I 1ol o> 2t

2K (4) (i (D) (i (B)F 2 FIN2 e fIN2, . o= 2k,

Proof. If Mk( ) = 00, the inequality is clear. Assume that ug(T) < co.
For f € B,(E), 1 < p <2, from Lemma 3.1 (i), we have

Sef(x) = F  (xeFr(f))(@).
By (2.1) and Hélder’s inequality, we obtaln

f(@)] < (e ENPIxeFe(HllLag), ¢=p/(p=1).
Hence,
1Pz fll 2o uy < (uae(T)P (i EN VP2 F () 2 () -
Then we obtain the results Theorem 2.1. O

The following theorem, states an uncertainty principle of concentration type for
the LP theory.

Theorem 3.1. Let T and E be a measurable subsets of R? such that 0 < ux(E) <
o0, anda>0. If1l<p<2,qg=p/(p—1), f € Bp(E) and f is ep-concentrated to
T in LP(ui)-norm, then

a 1, _ a
53 (g (D) P (i (B)) 7 =57 || 2] f ]| 1o ) 0<a< 2t

178'1"

Ko(a ia __ga__ _ga_ o
1oy < 3 (2) 7™ (un(1)) 757 (ua(B)) 257 | 212 | uyys @ > 22,
2K, (2)) 2 1 a
(B2 G @) (DS ] o a =25
Proof. Let f € By(E), 1 < p < 2. Since f is ep-concentrated to T in LP(ug)-
norm, then by (3.2), we have
2o ey < el Flleeguy + 1P FllLe u-
Thus,

1 ze () < 77 ||PTf||LP (1)

Then we obtain the results from Lemma 3.2. O
Another uncertainty principle of concentration type for the LP theory is given
by the following theorem.

Theorem 3.2. Let E be a measurable subset of R? such that 0 < uy(E) < oo, and
a>0. Ifl<p<2 q=p/(p—1), f € LP(ux) and Fi(f) is eg-concentrated to E
in Li(uy)-norm, then

T (i (B)) 755 | | F ] o ) 0<a< 2,
1Fe(P o) < 4 229 (ui (B ))l/quHLp(M) I || f||Lp oy a> 2

2K (% 1/2 1/2

28 (1 (B)) % | 1 I |af||Léw), 0=t

Lr(py)
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Proof. Let f € LP(ug), 1 < p < 2. Since Fi(f) is eg-concentrated to E in
(p)-norm, ¢ = p/(p — 1), then by (3.3), we deduce that

IFk( ey < eBlF(H e + IxeFre(Hl Lo

Thus,

1
||]:k(f)||L‘I(uk) < @HXE.Fk(f)HLq(My

Then we obtain the results from Theorem 2.1. O
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