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Lp LOCAL UNCERTAINTY PRINCIPLE FOR THE DUNKL

TRANSFORM

FETHI SOLTANI

Abstract. In this paper, we establish Lp local uncertainty principle for the
Dunkl transform on Rd; and we deduce Lp version of the Heisenberg-Pauli-

Weyl uncertainty principle for this transform. We use also the Lp local uncer-

tainty principle for the Dunkl transform and the techniques of Donoho-Stark,
we obtain uncertainty principles of concentration type in the Lp theory, when

1 < p ≤ 2.

1. Introduction

In this paper, we consider Rd with the Euclidean inner product 〈., .〉 and norm

|y| :=
√
〈y, y〉. For α ∈ Rd\{0}, let σα be the reflection in the hyperplane Hα ⊂ Rd

orthogonal to α:

σαy := y − 2〈α, y〉
|α|2

α.

A finite set < ⊂ Rd\{0} is called a root system, if < ∩ R.α = {−α, α} and
σα< = < for all α ∈ <. We assume that it is normalized by |α|2 = 2 for all α ∈ <.
For a root system <, the reflections σα, α ∈ <, generate a finite group G. The
Coxeter group G is a subgroup of the orthogonal group O(d). All reflections in
G, correspond to suitable pairs of roots. For a given β ∈ Rd\

⋃
α∈<Hα, we fix

the positive subsystem <+ := {α ∈ < : 〈α, β〉 > 0}. Then for each α ∈ < either
α ∈ <+ or −α ∈ <+.

Let k : < → C be a multiplicity function on < (a function which is constant
on the orbits under the action of G). As an abbreviation, we introduce the index
γ = γk :=

∑
α∈<+

k(α).
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Throughout this paper, we will assume that k(α) ≥ 0 for all α ∈ <. Moreover,
let wk denote the weight function wk(y) :=

∏
α∈<+

|〈α, y〉|2k(α), for all y ∈ Rd,
which is G-invariant and homogeneous of degree 2γ.

Let ck be the Mehta-type constant given by ck := (
∫
Rd e

−|y|2/2wk(y)dy)−1. We

denote by µk the measure on Rd given by dµk(y) := ckwk(y)dy; and by Lp(µk),
1 ≤ p ≤ ∞, the space of measurable functions f on Rd, such that

‖f‖Lp(µk) :=
(∫

Rd
|f(y)|pdµk(y)

)1/p
<∞, 1 ≤ p <∞,

‖f‖L∞(µk) := ess sup
y∈Rd

|f(y)| <∞,

and by Lprad(µk) the subspace of Lp(µk) consisting of radial functions.
For f ∈ L1(µk) the Dunkl transform is defined (see [4]) by

Fk(f)(x) :=

∫
Rd
Ek(−ix, y)f(y)dµk(y), x ∈ Rd,

where Ek(−ix, y) denotes the Dunkl kernel (for more details, see the next section).
Many uncertainty principles have already been proved for the Dunkl transform,

namely by Rösler [10] and Shimeno [11] who established the Heisenberg-Pauli-Weyl
inequality for the Dunkl transform, by showing that for every f ∈ L2(µk),

(1.1) ‖f‖2L2(µk)
≤ 2

2γ + d
‖ |x|f‖L2(µk)‖ |y|Fk(f)‖L2(µk).

Recently the author [17] proved the following Lp version of the Heisenberg-Pauli-
Weyl inequality for the Dunkl transform Fk. Let 0 < a < (2γ + d)/q, b > 0, if
1 < p ≤ 2, q = p/(p− 1) and f ∈ Lp(µk), then

(1.2) ‖Fk(f)‖Lq(µk) ≤ C(a, b)‖ |x|af‖
b
a+b

Lp(µk)
‖ |y|bFk(f)‖

a
a+b

Lq(µk)
,

where C(a, b) is a positive constant.
Building on the ideas of Faris [5] and Price [8, 9] for the Fourier transform, we

show a local uncertainty principles for the Dunkl transform Fk. More precisely,
we will show the following results. Let E be a measurable subset of Rd such that
0 < µk(E) <∞, and a > 0. If 1 < p ≤ 2, q = p/(p− 1) and f ∈ Lp(µk), then

‖χEFk(f)‖Lq(µk) ≤


K1(a)(µk(E))

a
2γ+d ‖ |x|af‖Lp(µk), 0 < a < 2γ+d

q ,

K2(a)(µk(E))1/q‖f‖1−
2γ+d
qa

Lp(µk)
‖ |x|af‖

2γ+d
qa

Lp(µk)
, a > 2γ+d

q ,

2K1(a2 )(µk(E))
1
2q ‖f‖1/2Lp(µk)

‖ |x|af‖1/2Lp(µk)
, a = 2γ+d

q ,

where χE is the characteristic function of the set E and K1(a), K2(a) are positive
constants given explicitly by Theorem 2.1.

We shall use the Lp local uncertainty principle to show Lp version of the Heisenberg-
Pauli-Weyl uncertainty principle for the Dunkl transform Fk. Let a, b > 0, if
1 < p ≤ 2, q = p/(p− 1) and f ∈ Lp(µk), then

‖Fk(f)‖Lq(µk) ≤


K1(a, b)‖ |x|af‖

b
a+b

Lp(µk)
‖ |y|bFk(f)‖

a
a+b

Lq(µk)
, 0 < a < 2γ+d

q ,

K2(a, b)‖f‖
b(qa−2γ−d)
a(qb+2γ+d)

Lp(µk)
‖ |x|af‖

b(2γ+d)
a(2γ+d+qb)

Lp(µk)
‖ |y|bFk(f)‖

2γ+d
2γ+d+qb

Lq(µk)
, a > 2γ+d

q ,

K3(a, b)‖f‖
b

a+2b

Lp(µk)
‖ |x|af‖

b
a+2b

Lp(µk)
‖ |y|bFk(f)‖

a
a+2b

Lq(µk)
, a = 2γ+d

q ,
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where K1(a, b), K2(a, b) and K3(a, b) are positive constants given explicitly by The-
orem 2.2. The inequalities which generalize the Heisenberg-Pauli-Weyl inequalities
given by (1.1) and (1.2). In the case k = 0 and q = 2, these inequalities are due to
Cowling-Price [1] and Hirschman [6].

We shall use also the local uncertainty principle, and building on the techniques
of Donoho-Stark [2, 14, 15, 16, 18], we show uncertainty principles of concentration
type in the Lp theory, when 1 < p ≤ 2.

This paper is organized as follows. In Section 2 we show a local uncertainty
principle for the Dunkl transform Fk; and we deduce Lp version of the Heisenberg-
Pauli-Weyl uncertainty principle for this transform. The last section is devoted
to present uncertainty principles of concentration type in the Lp theory, when
1 < p ≤ 2.

2. Lp uncertainty principles

The Dunkl operators Dj ; j = 1, ..., d, on Rd associated with the finite reflection
group G and multiplicity function k are given, for a function f of class C1 on Rd,
by

Djf(y) :=
∂

∂yj
f(y) +

∑
α∈<+

k(α)αj
f(y)− f(σαy)

〈α, y〉
.

For y ∈ Rd, the initial problem Dju(., y)(x) = yju(x, y), j = 1, ..., d, with
u(0, y) = 1 admits a unique analytic solution on Rd, which will be denoted by
Ek(x, y) and called Dunkl kernel [3, 7]. This kernel has a unique analytic extension
to Cd × Cd. In our case (see [3, 4]),

(2.1) |Ek(−ix, y)| ≤ 1, x, y ∈ Rd.

The Dunkl kernel gives rise to an integral transform, which is called Dunkl
transform on Rd, and was introduced by Dunkl in [4], where already many basic
properties were established. Dunkl’s results were completed and extended later by
De Jeu [7]. The Dunkl transform of a function f in L1(µk), is defined by

Fk(f)(x) :=

∫
Rd
Ek(−ix, y)f(y)dµk(y), x ∈ Rd.

We notice that F0 agrees with the Fourier transform F that is given by

F(f)(x) := (2π)−d/2
∫
Rd
e−i〈x,y〉f(y)dy, x ∈ Rd.

Some of the properties of Dunkl transform Fk are collected bellow (see [4, 7]).
(a) L1 − L∞-boundedness. For all f ∈ L1(µk), Fk(f) ∈ L∞(µk) and

(2.2) ‖Fk(f)‖L∞(µk) ≤ ‖f‖L1(µk).

(b) Inversion theorem. Let f ∈ L1(µk), such that Fk(f) ∈ L1(µk). Then

(2.3) f(x) = Fk(Fk(f))(−x), a.e. x ∈ Rd.

(c) Plancherel theorem. The Dunkl transform Fk extends uniquely to an isomet-
ric isomorphism of L2(µk) onto itself. In particular,

(2.4) ‖f‖L2(µk) = ‖Fk(f)‖L2(µk).
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Using relations (2.2) and (2.4) with Marcinkiewicz’s interpolation theorem [19,
20], we deduce that for every 1 ≤ p ≤ 2, and for every f ∈ Lp(µk), the function
Fk(f) belongs to the space Lq(µk), q = p/(p− 1), and

(2.5) ‖Fk(f)‖Lq(µk) ≤ ‖f‖Lp(µk).

If f ∈ L1
rad(µk) with f(x) = F (|x|), then

(2.6)

∫
Rd
f(x)dµk(x) =

1

2γ+
d
2−1Γ(γ + d

2 )

∫ ∞
0

F (r)r2γ+d−1dr.

In the following we use the inequality (2.5) to establish Lp local uncertainty
principle for the Dunkl transform Fk, more precisely, we will show the following
theorem.

Theorem 2.1. Let E be a measurable subset of Rd such that 0 < µk(E) <∞, and
a > 0. If 1 < p ≤ 2, q = p/(p− 1) and f ∈ Lp(µk), then

‖χEFk(f)‖Lq(µk) ≤


K1(a)(µk(E))

a
2γ+d ‖ |x|af‖Lp(µk), 0 < a < 2γ+d

q ,

K2(a)(µk(E))1/q‖f‖1−
2γ+d
qa

Lp(µk)
‖ |x|af‖

2γ+d
qa

Lp(µk)
, a > 2γ+d

q ,

2K1(a2 )(µk(E))
1
2q ‖f‖1/2Lp(µk)

‖ |x|af‖1/2Lp(µk)
, a = 2γ+d

q ,

where

K1(a) =
2γ + d

2γ + d− qa

[
(2γ + d− qa)q−1

2γ+
d
2−1Γ(γ + d

2 )(qa)q

] a
2γ+d

,

K2(a) =
qa

qa− 2γ − d

(
qa

2γ + d
− 1

) 2γ+d
pqa

[
(qa− 2γ − d)Γ( qa−2γ−dpa )Γ( 2γ+d

pa )

2γ+
d
2−1pqa2Γ(γ + d

2 )Γ( qp )

] 1
q

.

Proof. (i) The first inequality holds if ‖ |x|af‖Lp(µk) = ∞. Assume that

‖ |x|af‖Lp(µk) < ∞. For r > 0, let Br = {x : |x| < r} and Bcr = Rd\Br. Denote
by χE , χBr and χBcr the characteristic functions. Let f ∈ Lp(µk), 1 < p ≤ 2 and
let q = p/(p− 1). By Minkowski’s inequality, for all r > 0,

‖χEFk(f)‖Lq(µk) ≤ ‖χEFk(χBrf)‖Lq(µk) + ‖χEFk(χBcrf)‖Lq(µk)
≤ (µk(E))1/q‖Fk(χBrf)‖L∞(µk) + ‖Fk(χBcrf)‖Lq(µk);

hence it follows from (2.2) and (2.5) that

(2.7) ‖χEFk(f)‖Lq(µk) ≤ (µk(E))1/q‖χBrf‖L1(µk) + ‖χBcrf‖Lp(µk).
On the other hand, by Hölder’s inequality,

‖χBrf‖L1(µk) ≤ ‖ |x|
−aχBr‖Lq(µk)‖ |x|

af‖Lp(µk).
By (2.6) and hypothesis a < (2γ + d)/q,

‖ |x|−aχBr‖Lq(µk) = akr
−a+(2γ+d)/q,

where

ak =

[
(2γ + d− qa)2γ+

d
2−1Γ(γ +

d

2
)

]−1/q
,

and therefore,

(2.8) ‖χBrf‖L1(µk) ≤ akr
−a+(2γ+d)/q‖ |x|af‖Lp(µk).
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Moreover,

(2.9) ‖χBcrf‖Lp(µk) ≤ ‖ |x|
−aχBcr‖L∞(µk)‖ |x|

af‖Lp(µk) ≤ r
−a‖ |x|af‖Lp(µk).

Combining the relations (2.7), (2.8) and (2.9), we deduce that

‖χEFk(f)‖Lq(µk) ≤
[
r−a + ak(µk(E))1/qr−a+(2γ+d)/q

]
‖ |x|af‖Lp(µk).

We choose r =
(

qa
(2γ+d−qa)ak

) q
2γ+d

(µk(E))−
1

2γ+d , we obtain the first inequality.

(ii) The second inequality holds if ‖f‖Lp(µk) =∞ or ‖ |x|af‖Lp(µk) =∞. Assume
that ‖f‖Lp(µk)+‖ |x|af‖Lp(µk) <∞. From the hypothesis a > (2γ+d)/q, we deduce

that the function x→ (1+ |x|pa)−1/p belongs to Lq(µk), and by Hölder’s inequality,

‖f‖pL1(µk)
=

(∫
Rd

(1 + |x|pa)1/p|f(x)|(1 + |x|pa)−1/pdµk(x)

)p
=

(∫
Rd

dµk(x)

(1 + |x|pa)q/p

)p/q [
‖f‖pLp(µk) + ‖ |x|af‖pLp(µk)

]
.

Then the function f belongs to L1(µk). Replacing f(x) by f(rx), r > 0, in the last
inequality gives

‖f‖pL1(µk)
≤
(∫

Rd

dµk(x)

(1 + |x|pa)q/p

)p/q [
r(2γ+d)(p−1)‖f‖pLp(µk) + r(2γ+d)(p−1)−pa‖ |x|af‖pLp(µk)

]
.

We choose r =
(

qa
2γ+d − 1

) 1
pa
(
‖ |x|af‖Lp(µk)

‖f‖Lp(µk)

)1/a
and the fact that∫

Rd

dµk(x)

(1 + |x|pa)q/p
=

1

2γ+
d
2−1Γ(γ + d

2 )

∫ ∞
0

r2γ+d−1dr

(1 + rpa)q/p
=

Γ( qa−2γ−dpa )Γ( 2γ+d
pa )

2γ+
d
2−1paΓ(γ + d

2 )Γ( qp )
,

we deduce that

‖f‖L1(µk) ≤ K2(a)‖f‖1−
2γ+d
qa

Lp(µk)
‖ |x|af‖

2γ+d
qa

Lp(µk)
.

Thus,

‖χEFk(f)‖Lq(µk) ≤ (µk(E))1/q‖Fk(f)‖L∞(µk)

≤ (µk(E))1/q‖f‖L1(µk)

≤ K2(a)(µk(E))1/q‖f‖1−
2γ+d
qa

Lp(µk)
‖ |x|af‖

2γ+d
qa

Lp(µk)
,

which gives the second inequality.

(iii) Let r > 0. From the inequality
(
|x|
r

) 2γ+d
2q ≤ 1 +

(
|x|
r

) 2γ+d
q

, it follows that

‖ |x|
2γ+d
2q f‖Lp(µ) ≤ r

2γ+d
2q ‖f‖Lp(µ) + r−

2γ+d
2q ‖ |x|

2γ+d
q f‖Lp(µ).

Optimizing in r, we get

‖ |x|
2γ+d
2q f‖Lp(µ) ≤ 2‖f‖1/2Lp(µ)‖ |x|

2γ+d
q f‖1/2Lp(µ).

Thus, we deduce that

‖χEFk(f)‖Lq(µk) ≤ K1(
2γ + d

2q
)(µk(E))

1
2q ‖ |x|

2γ+d
2q f‖Lp(µ)

≤ 2K1(
2γ + d

2q
)(µk(E))

1
2q ‖f‖1/2Lp(µ)‖ |x|

2γ+d
q f‖1/2Lp(µ),
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which gives the result for a = (2γ + d)/q. �

Remark 2.1. Let a > 0. If 1 < p ≤ 2, q = p/(p− 1) and f ∈ Lp(µk), then

‖f‖
L
q(2γ+d)
2γ+d−qa ,q(µk)

≤ K1(a)‖ |x|af‖Lp(µk), 0 < a < (2γ + d)/q,

‖f‖L∞,q(µk) ≤ K2(a)‖f‖1−
2γ+d
2a

Lp(µk)
‖ |x|af‖

2γ+d
2a

Lp(µk)
, a > (2γ + d)/q,

‖f‖L2q,q(µk) ≤ 2K1(
a

2
)‖f‖1/2Lp(µk)

‖ |x|af‖1/2Lp(µk)
, a = (2γ + d)/q,

where Ls,q(µk) is the Lorentz-space defined by the norm

‖f‖Ls,q(µk) := sup
E⊂Rd

0<µk(E)<∞

(
(µk(E))

1
s−

1
q ‖χEf‖Lq(µk)

)
.

In the next part of this section, we shall use the Lp local uncertainty principle
(Theorem 2.1) to extend the Heisenberg-Pauli-Weyl uncertainty principles (1.1)
and (1.2) to more general case.

Theorem 2.2. Let a, b > 0,If 1 < p ≤ 2, q = p/(p− 1) and f ∈ Lp(µk), then

‖Fk(f)‖Lq(µk) ≤


K1(a, b)‖ |x|af‖

b
a+b

Lp(µk)
‖ |y|bFk(f)‖

a
a+b

Lq(µk)
, 0 < a < 2γ+d

q ,

K2(a, b)‖f‖
b(qa−2γ−d)
a(qb+2γ+d)

Lp(µk)
‖ |x|af‖

b(2γ+d)
a(2γ+d+qb)

Lp(µk)
‖ |y|bFk(f)‖

2γ+d
2γ+d+qb

Lq(µk)
, a > 2γ+d

q ,

K3(a, b)‖f‖
b

a+2b

Lp(µk)
‖ |x|af‖

b
a+2b

Lp(µk)
‖ |y|bFk(f)‖

a
a+2b

Lq(µk)
, a = 2γ+d

q ,

where

K1(a, b) =

[(
b
a

) a
a+b

+
(
a
b

) b
a+b
]1/q

[
2γ+

d
2 Γ(γ + d

2 + 1)
] ab

(2γ+d)(a+b)

(K1(a))
b
a+b ,

K2(a, b) =

[(
qb

2γ+d

) 2γ+d
2γ+d+qb

+
(

2γ+d
qb

) qb
2γ+d+qb

]1/q
[
2γ+

d
2 Γ(γ + d

2 + 1)
] b

2γ+d+qb

(K2(a))
qb

2γ+d+qb ,

and

K3(a, b) =

[(
2b
a

) a
a+2b

+
(
a
2b

) 2b
a+2b

]1/q
[
2γ+

d
2 Γ(γ + d

2 + 1)
] b

2γ+d+2qb

(2K1(
a

2
))

2b
a+2b .

Proof. (i) Let 0 < a < (2γ + d)/q, b > 0 and r > 0. Then

(2.10) ‖Fk(f)‖qLq(µk) = ‖χBrFk(f)‖qLq(µk) + ‖χBcrFk(f)‖qLq(µk).

Firstly,

(2.11) ‖χBcrFk(f)‖qLq(µk) ≤ r
−qb‖ |y|bFk(f)‖qLq(µk).

By (2.6) and Theorem 2.1, we get

(2.12) ‖χBrFk(f)‖qLq(µk) ≤ K1r
qa‖ |x|af‖qLp(µk),
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where

K1 =
(
K1(a)

)q [
2γ+

d
2 Γ(γ +

d

2
+ 1)

]− qa
2γ+d

.

Combining the relations (2.10), (2.11) and (2.12), we obtain

‖Fk(f)‖qLq(µk) ≤ K1r
qa‖ |x|af‖qLp(µk) + r−qb‖ |y|bFk(f)‖qLq(µk).

We choose r =
(

b
aK1

) 1
q(a+b)

(
‖ |y|bFk(f)‖Lq(µk)

‖ |x|af‖Lp(µk)

) 1
a+b

, we get the first inequality.

(ii) Let a > (2γ + d)/q, b > 0 and r > 0. By (2.6) and Theorem 2.1, we get

(2.13) ‖χBrFk(f)‖qLq(µk) ≤ K2r
2γ+d‖f‖q−

2γ+d
a

Lp(µk)
‖ |x|af‖

2γ+d
a

Lp(µk)
,

where

K2 = (K2(a))q
[
2γ+

d
2 Γ(γ +

d

2
+ 1)

]−1
.

Combining the relations (2.10), (2.11) and (2.13), we obtain

‖Fk(f)‖qLq(µk) ≤ K2r
2γ+d‖f‖q−

2γ+d
a

Lp(µk)
‖ |x|af‖

2γ+d
a

Lp(µk)
+ r−qb‖ |y|bFk(f)‖qLq(µk).

We choose r =
(

qb
(2γ+d)K2

) 1
2γ+d+qb

(
‖ |y|bFk(f)‖qLq(µk)

‖f‖
q− 2γ+d

a
Lp(µk)

‖ |x|af‖
2γ+d
a

Lp(µk)

) 1
2γ+d+qb

, we get the sec-

ond inequality.
(iii) Let a = (2γ + d)/q, b > 0 and r > 0. From Theorem 2.1, we get∫

Br

|Fk(f)(y)|qdµk(y) ≤ K3r
γ+ d

2 ‖f‖q/2Lp(µk)
‖ |x|

2γ+d
q f‖q/2Lp(µk)

,

where

K3 = (K1(
2γ + d

2q
))q
[
2γ+

d
2 Γ(γ +

d

2
+ 1)

]−1/2
.

Therefore,

‖Fk(f)‖qLq(µk) ≤ K3r
γ+ d

2 ‖f‖q/2Lp(µk)
‖ |x|

2γ+d
q f‖q/2Lp(µk)

+ r−qb‖ |y|bFk(f)‖qLq(µk).

We choose r =
(

2qb
(2γ+d)K3

) 2
2γ+d+2qb

(
‖ |y|bFk(f)‖qLq(µk)

‖f‖1/2
Lp(µk)

‖ |x|
2γ+d
q f‖1/2

Lp(µk)

) 2q
2γ+d+2qb

, we get the

third inequality. �

Remark 2.2. The inequalities of Theorem 2.2 generalize the results of the papers
[12, 13, 17]. Furthermore, we have explicitly given the values of the constants
K1(a, b), K2(a, b) and K3(a, b). In particular case, if q = 2, the inequalities of
Theorem 2.2 are given by

‖f‖L2(µk) ≤ K(a, b)‖ |x|af‖
b
a+b

L2(µk)
‖ |y|bFk(f)‖

a
a+b

L2(µk)
,

where

K(a, b) =


K1(a, b), 0 < a < (2γ + d)/2, b > 0,

(K2(a, b))
a(2γ+d+2b)
(2γ+d)(a+b) , a > (2γ + d)/2, b > 0,

(K3(a, b))
a+2b
a+b , a = (2γ + d)/2, b > 0.
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Here K1(a, b), K2(a, b) and K3(a, b) are the constants given by Theorem 2.2 with
p = q = 2.

3. Lp Donoho-Stark uncertainty principles

Let T and E be a measurable subsets of Rd. We introduce the time-limiting
operator PT by

PT f := χT f,

and, we introduce the partial Dunkl integral SEf by

(3.1) Fk(SEf) = χEFk(f).

We shall use the Lp local uncertainty principle (Theorem 2.1) to obtain the
following results for the partial Dunkl integral SEf .

Lemma 3.1. (i) If µk(E) <∞ and f ∈ Lp(µk), 1 ≤ p ≤ 2,

SEf(x) = F−1k (χEFk(f))(x).

(ii) If 0 < µk(E) <∞, a > 0, 1 < p ≤ 2, q = p/(p− 1) and f ∈ Lp(µk), then

‖SEf‖Lq(µk) ≤


K1(a)(µk(E))

2
p+

a
2γ+d−1‖ |x|af‖Lp(µk), 0 < a < 2γ+d

q ,

K2(a)(µk(E))1/p‖f‖1−
2γ+d
qa

Lp(µk)
‖ |x|af‖

2γ+d
qa

Lp(µk)
, a > 2γ+d

q ,

2K1(a2 )(µk(E))
3
2p−

1
2 ‖f‖1/2Lp(µk)

‖ |x|af‖1/2Lp(µk)
, a = 2γ+d

q ,

where K1(a) and K2(a) are the constants given by Theorem 2.1.

Proof. (i) Let f ∈ Lp(µk), 1 ≤ p ≤ 2 and let q = p/(p − 1). Then by Hölder’s
inequality and (2.5), we have

‖χEFk(f)‖L1(µk) ≤ (µk(E))1/p‖Fk(f)‖Lq(µk) ≤ (µk(E))1/p‖f‖Lp(µk),
and

‖χEFk(f)‖L2(µk) ≤ (µk(E))
q−2
2q ‖Fk(f)‖Lq(µk) ≤ (µk(E))

q−2
2q ‖f‖Lp(µk).

Thus χEFk(f) ∈ L1(µk) ∩ L2(µk). Then by (2.3) and (3.1), we obtain

SEf = F−1k (χEFk(f)).

(ii) Let f ∈ Lp(µk), 1 < p ≤ 2 and let q = p/(p − 1). By (2.5) and Hölder’s
inequality, we have

‖SEf‖Lq(µk) ≤ ‖χEFk(f)‖Lp(µk) ≤ (µk(E))
2
p−1‖χEFk(f)‖Lq(µk).

Then we obtain the results from Theorem 2.1. �
Let T be a measurable subset of Rd. We say that a function f ∈ Lp(µk),

1 ≤ p ≤ 2, is ε-concentrated to T in Lp(µk)-norm, if

(3.2) ‖f − PT f‖Lp(µk) ≤ εT ‖f‖Lp(µk).

Let E be a measurable subset of Rd, and f ∈ Lp(µk), 1 ≤ p ≤ 2. We say that
Fk(f) is εE-concentrated to E in Lq(µk)-norm, q = p/(p− 1), if

(3.3) ‖Fk(f)−Fk(SEf)‖Lq(µk) ≤ εE‖Fk(f)‖Lq(µk).
Let Bp(E), 1 ≤ p ≤ 2, be the set of functions f ∈ Lp(µk) that are bandlimited

to E (i.e. f ∈ Bp(E) implies SEf = f).
Then, the space Bp(E) satisfies the following property.
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Lemma 3.2. Let T and E be a measurable subsets of Rd such that 0 < µk(E) <∞,
and a > 0. If 1 < p ≤ 2, q = p/(p− 1) and f ∈ Bp(E), then

‖PT f‖Lp(µk) ≤


K1(a)(µk(T ))1/p(µk(E))

1
p+

a
2γ+d ‖ |x|af‖Lp(µk), 0 < a < 2γ+d

q ,

K2(a)(µk(T ))1/pµk(E)‖f‖1−
2γ+d
qa

Lp(µk)
‖ |x|af‖

2γ+d
qa

Lp(µk)
, a > 2γ+d

q ,

2K1(a2 )(µk(T ))1/p(µk(E))
1
2p+

1
2 ‖f‖1/2Lp(µk)

‖ |x|af‖1/2Lp(µk)
, a = 2γ+d

q ,

Proof. If µk(T ) =∞, the inequality is clear. Assume that µk(T ) <∞.
For f ∈ Bp(E), 1 < p ≤ 2, from Lemma 3.1 (i), we have

SEf(x) = F−1k (χEFk(f))(x).

By (2.1) and Hölder’s inequality, we obtain

|f(x)| ≤ (µk(E))1/p‖χEFk(f)‖Lq(µk), q = p/(p− 1).

Hence,

‖PT f‖Lp(µk) ≤ (µk(T ))1/p(µk(E))1/p‖χEFk(f)‖Lq(µk).
Then we obtain the results Theorem 2.1. �

The following theorem, states an uncertainty principle of concentration type for
the Lp theory.

Theorem 3.1. Let T and E be a measurable subsets of Rd such that 0 < µk(E) <
∞, and a > 0. If 1 < p ≤ 2, q = p/(p− 1), f ∈ Bp(E) and f is εT -concentrated to
T in Lp(µk)-norm, then

‖f‖Lp(µk) ≤



K1(a)
1−εT (µk(T ))1/p(µk(E))

1
p+

a
2γ+d ‖ |x|af‖Lp(µk), 0 < a < 2γ+d

q ,(
K2(a)
1−εT

) qa
2γ+d

(µk(T ))
qa

p(2γ+d) (µk(E))
qa

2γ+d ‖ |x|af‖Lp(µk), a > 2γ+d
q ,(

2K1(
a
2 )

1−εT

)2
(µk(T ))2/p(µk(E))

1
p+1‖ |x|af‖Lp(µk), a = 2γ+d

q ,

Proof. Let f ∈ Bp(E), 1 < p ≤ 2. Since f is εT -concentrated to T in Lp(µk)-
norm, then by (3.2), we have

‖f‖Lp(µk) ≤ εT ‖f‖Lp(µk) + ‖PT f‖Lp(µk).
Thus,

‖f‖Lp(µk) ≤
1

1− εT
‖PT f‖Lp(µk).

Then we obtain the results from Lemma 3.2. �
Another uncertainty principle of concentration type for the Lp theory is given

by the following theorem.

Theorem 3.2. Let E be a measurable subset of Rd such that 0 < µk(E) <∞, and
a > 0. If 1 < p ≤ 2, q = p/(p− 1), f ∈ Lp(µk) and Fk(f) is εE-concentrated to E
in Lq(µk)-norm, then

‖Fk(f)‖Lq(µk) ≤


K1(a)
1−εE (µk(E))

a
2γ+d ‖ |x|af‖Lp(µk), 0 < a < 2γ+d

q ,

K2(a)
1−εE (µk(E))1/q‖f‖1−

2γ+d
qa

Lp(µk)
‖ |x|af‖

2γ+d
qa

Lp(µk)
, a > 2γ+d

q ,

2K1(
a
2 )

1−εE (µk(E))
1
2q ‖f‖1/2Lp(µk)

‖ |x|af‖1/2Lp(µk)
, a = 2γ+d

q ,
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Proof. Let f ∈ Lp(µk), 1 < p ≤ 2. Since Fk(f) is εE-concentrated to E in
Lq(µk)-norm, q = p/(p− 1), then by (3.3), we deduce that

‖Fk(f)‖Lq(µk) ≤ εE‖Fk(f)‖Lq(µk) + ‖χEFk(f)‖Lq(µk).
Thus,

‖Fk(f)‖Lq(µk) ≤
1

1− εE
‖χEFk(f)‖Lq(µk).

Then we obtain the results from Theorem 2.1. �

References

[1] M. Cowling and J.F. Price, Bandwidth versus time concentration: the Heisenberg-Pauli-Weyl

inequality, SIAM J. Math. Anal. Vol:15 (1984), 151-165.

[2] D.L. Donoho and P.B. Stark, Uncertainty principles and signal recovery, SIAM J. Appl. Math.
Vol:49, No.3 (1989), 906-931.

[3] C.F. Dunkl, Integral kernels with reflection group invariance, Canad. J. Math. Vol:43 (1991),
1213-1227.

[4] C.F. Dunkl, Hankel transforms associated to finite reflection groups, Contemp. Math. Vol:138

(1992), 123-138.
[5] W.G. Faris, Inequalities and uncertainty inequalities, Math. Phys. Vol:19 (1978), 461-466.

[6] I.I. Hirschman, A note on entropy, Amer. J. Math. Vol:79 (1957), 152-156.

[7] M.F.E.de Jeu, The Dunkl transform, Invent. Math. Vol:113 (1993), 147-162.
[8] J.F. Price, Inequalities and local uncertainty principles, J. Math. Phys. Vol:24 (1983), 1711-

1714.

[9] J.F. Price, Sharp local uncertainty principles, Studia Math. Vol:85 (1987), 37-45.
[10] M. Rösler, An uncertainty principle for the Dunkl transform, Bull. Austral. Math. Soc. Vol:59

(1999), 353-360.

[11] N. Shimeno, A note on the uncertainty principle for the Dunkl transform, J. Math. Sci. Univ.
Tokyo Vol:8 (2001), 33-42.

[12] F. Soltani, Heisenberg-Pauli-Weyl uncertainty inequality for the Dunkl transform on Rd,

Bull. Austral. Math. Soc. Vol:87 (2013), 316-325.
[13] F. Soltani, A general form of Heisenberg-Pauli-Weyl uncertainty inequality for the Dunkl

transform, Int. Trans. Spec. Funct. Vol:24, No.5 (2013), 401-409.
[14] F. Soltani, Donoho-Stark uncertainty principle associated with a singular secondorder differ-

ential operator, Int. J. Anal. Appl. Vol:4, No.1 (2014), 1-10.

[15] F. Soltani, Lp uncertainty principles on Sturm-Liouville hypergroups, Acta Math. Hungar.
Vol:142, No.2 (2014), 433-443.

[16] F. Soltani, Lp local uncertainty inequality for the Sturm-Liouville transform, CUBO Math.

J. Vol:16, No.1 (2014), 95-104.
[17] F. Soltani, An Lp Heisenberg-Pauli-Weyl uncertainty principle for the Dunkl transform,

Konuralp J. Math. Vol:2, No.1 (2014), 1-6.
[18] F. Soltani, Lp Donoho-Stark uncertainty principles for the Dunkl transform on Rd, J. Phys.

Math. Vol:5, No.1 (2014), 4 pages.
[19] E.M. Stein, Interpolation of linear operators, Trans. Amer. Math. Soc. Vol:83 (1956), 482-492.

[20] E.M. Stein and G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton
Univ. Press., Princeton, N.J, 1971.

Department of Mathematics, Faculty of Science, Jazan University, P.O.Box 277,

Jazan 45142, Saudi Arabia
E-mail address: fethisoltani10@yahoo.com


