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ON THE CONSTRUCTION OF GENERALIZED BOBILLIER
FORMULA

TÜLAY ERİS. İR, MEHMET ALİ GÜNGÖR, AND SOLEY ERSOY

Abstract. In this study, we consider the generalized complex number sys-
tem Cp =

{
x+ iy : x, y ∈ R, i2 = p ∈ R

}
corresponding to elliptical complex

number, parabolic complex number and hyperbolic complex number systems
for the special cases of p < 0, p = 0, p > 0, respectively. This system is
used to derive Bobillier Formula in the generalized complex plane. In accor-
dance with this purpose we obtain this formula by two different methods for
one-parameter planar motion in Cp ; the first method depends on using the geo-
metrical interpretation of the generalized Euler-Savary formula and the second
one uses the usual relations of the velocities and accelerations.

1. Introduction

A system of rigid elements (linkages) connected to transmit motion is called
mechanism. In other words, a mechanism is a combination of links which can
transform a determined motion. A planar mechanism is a mechanical system. So
that the trajectories of points in all the bodies of the system is constrained for lying
on planes parallel to a grand plane. The rotational axes of hinged joints that connect
the bodies in the system are perpendicular to this ground plane, [18]. Kinematics
concerned with the characteristics of movement without considering the concepts
of mass and force is sub-branch of mechanics and analyzes the displacement of one
point or a point system (object) with respect to time.
The Euler-Savary formula which is one of the most used formulas in kinematics

and fills an important place in many fields such as mathematics, engineering and
astronomy was found by Euler in 1765 and Savary in 1845, [21]. This formula giving
the relationship between the curvatures of trajectory curves drawn by the points
of the moving plane in the fixed plane was studied by [3, 4, 5, 24] in two and three
dimensional Euclidean spaces. The Euler-Savary formula in complex plane was
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given by Masal et al., [22]. Then the Euler-Savary formulas in the hyperbolic plane
and Galilean plane were obtained in [1, 7], respectively. Moreover, Akbıyık and
Yüce considered a base curve, a rolling curve and a roulette on complex plane and
obtained Euler-Savary formula which gives the relation between the curvatures of
these three curves, [2]. In addition to these, there are too many studies on the Euler-
Savary formula including its applications to kinematics, mechanical engineering of
robotics and sciences of machines and mechanisms.
The Euler-Savary formulas in Affi ne Cayley-Klein plane and in generalized com-

plex number plane CJ =
{
x+ Jy : x, y ∈ R, J2 = p, p ∈ {−1, 0, 1}

}
⊂ Cp were

given by [14] and [16], respectively.
In 1988, Fayet defined a formula giving the relation of the curvatures of second

order of one-parameter planar motion and generalizing the Euler-Savary formula.
Since this formula analytically solves the problem that the Bobillier’s construction
solved graphically it is called the Bobillier formula, [11].

In [12], it was demonstrated that the Bobillier formula can be obtained without
the use of the Euler-Savary formula by Fayet. In addition the Bobillier formula was
obtained by conventional procedures in [23].
Ersoy and Bayrak studied the Bobillier formula for the one-parameter planar

motion in the complex plane, [9]. Also, they investigated the Bobillier formula in
Lorentzian sense and saw that the same results can be achieved without the use
of the Euler-Savary formula for the Bobillier formula. In doing so, they considered
that the cases of polar curves to be timelike or spacelike, separately, [10].
In Galilean plane, Gürses et al. gave the Bobillier formula by using the geo-

metrical interpretation of Euler-Savary formula in Galilean plane. Moreover, they
obtained Bobillier formula without considering the Galilean Euler-Savary formula,
[13]. Moreover, Dündar et al. gave Bobillier formula for the elliptical harmonic
motion, [6].
The generalized complex numbers play the same role for Cayley-Klein geometry

like that the ordinary numbers play in the Euclidean geometry, [27, 28]. The Cayley-
Klein plane geometries including Euclidean, Galilean, Minkowskian and Bolyai-
Lobachevskian were introduced first by F. Klein and A. Cayley, [19, 20]. After
Cayley and Klein, I. M. Yaglom distinguished these geometries with choosing one
of three ways of measuring length (parabolic, elliptic or hyperbolic) between two
points on a line and one of the three ways of measuring angles (parabolic, elliptic
or hyperbolic) between two lines. This gives nine ways of measuring lengths and
angles, [28].
In the light of these studies, we construct the Bobillier formula with a new

generalization for generalized complex plane Cp . We introduce this generalization
in two different ways; using the Euler-Savary formula in the generalized complex
plane and an alternative way towards to it.
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2. Preliminaries

The generalized complex numbers or binary numbers are introduced as follows

z = x+ iy (x, y ∈ R), i2 = iq+ p (q, p ∈ R).

The double, dual and ordinary numbers are the particular members of two parame-
ter family of complex number systems. Moreover, the generalized complex number
systems are isomorphic to the double, ordinary and dual complex numbers when
p+ q2

/
4 is positive, negative and zero, respectively, [27].

Unless otherwise stated we assume that i2 = p and q = 0 (p ∈ R). This complex
number system is denoted by Cp =

{
x+ iy : x, y ∈ R, i2 = p, p ∈ R

}
.

The set Cp is called the generalized complex plane.

For z1 = (x1 + iy1), z2 = (x2 + iy2) ∈ Cp the addition, subtraction and product
are defined by

z1 ± z2 = (x1 + iy1)± (x2 + iy2) = x1 ± x2 + i(y1 ± y2)
and

Mp(z1, z2) = (x1x2 + py1y2) + i(x1y2 + x2y1),

respectively. The product definition yields the ordinary, Study and Clifford prod-
ucts as p is equal to −1, 0 and 1

M−1(z1, z2) = (x1x2 − y1y2) + i(x1y2 + x2y1) for p = −1,

M0(z1, z2) = (x1x2) + i(x1y2 + x2y1) for p = 0,

M1(z1, z2) = (x1x2 + y1y2) + i(x1y2 + x2y1) for p = 1,

respectively, [27].
For z1 = (x1, y1), z2 = (x2, y2) ∈ Cp , the scalar product is as follows

〈z1, z2〉p = Re (Mp(z1, z2)) = Re (Mp(z1, z2)) = x1x2 − py1y2 (1)

and the magnitude of z = (x, y) ∈ Cp is given by the non-negative real number

‖z‖p =
√
|Mp(z, z̄)| =

√
|x2 − py2| (2)

where the over bar denotes the complex conjugation. The equalities

〈z1, z2〉p = ‖z1‖p‖z2‖p cos pθp , (3)

and for p 6= 0

‖z1 ∧pz2‖p =
√
| −p|‖z1‖p‖z2‖p sinpθp (4)

and for p = 0, (from the special definition in Galilean plane)

‖z1 ∧pz2‖p = ‖z1‖p‖z2‖p sinpθp (5)

are valid in the generalized complex plane where θp is the p−rotation angle between
the vectors z1 and z2.
In the Euclidean plane, a circle is defined in two ways. The first definition is

the locus of points a fixed distance from a given fixed point. The second is the set
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of points from which a segment AB is seen at a constant directed angle θp . Using
these definitions, since a unit circle is the geometric locus of points z satisfying
‖z‖p = 1, the unit circles in the generalized complex planes are drawn as in Figure
1.Let us interpret Figure 1. If we take p < 0, then the unit circle corresponds to

Figure 1. Unit circles in Cp .

unit ellipse of the form x2 + |p| y2 = 1 and the complex number system Cp (p < 0)
corresponds to elliptical complex number system. In this case, if p = −1, the unit
circle in the generalized complex plane corresponds to a standard unit circle defined
by x2 + y2 = 1 and the generalized complex plane corresponds to the Euclidean
plane.
If we consider p = 0, the above circle definitions yield different sets of points

in Galilean geometry. According to the first definition, the equation ‖z‖20 = x2 is
hold and the unit circle is as x = ±1, (Figure 1) and for the first circle we cannot
talk of curvature. According to the second definition, the set of points is called a
cycle. The cycle (inflection cycle, red lines) on Galilean plane is the (Euclidean)
parabola, [28]. Therefore, the space C0 is the parabolic complex number system
and the generalized complex plane corresponds to the Galilean plane. Moreover, as
can be seen from Figure 1 the parabolic complex plane is divided into two area by
the imaginary axis.

Finally, when p > 0, unit circles in Cp (p > 0) are the hyperbolas of the form∣∣x2 − py2∣∣ = 1 whose asymptotes are y = ±x
/√
p (red dashed line in Figure 1).

Thus, the space Cp (p > 0) corresponds to hyperbolic complex number system.
Especially, if we take p = 1, the generalized complex plane is referred to as a
well-known hyperbolic plane and the asymptotes of the unit circles separate the
hyperbolic planes into four regions, [17].
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p−trigonometric functions ( p−cosine (cos p), p−sine (sinp) and p−tangent
(tan p) are, respectively, defined by

cos pθp =


cos
(
θp
√
|p|
)
, p < 0

1, p = 0 (branch I)
cosh

(
θp
√
p
)
, p > 0 (branch II)

,

sin pθp =


1√
|p|

sin
(
θp
√
|p|
)
, p < 0

θp , p = 0 (branch I)
1√
p sinh

(
θp
√
p
)
, p > 0 (branch II)

,

(6)

and

tan pθp =
sin pθp
cos pθp

. (7)

Additionally, the derivatives of p−trigonometric functions are as follows,
d

dθp
(cos pθp) = p sinpθp ,

d

dθp
(sin pθp) = cospθp (8)

and the generalized Euler’s formula is as follows

eiθp = cospθp + i sinpθp . (9)

The polar and exponential forms of any generalized complex number z are

z = rp(cos pθp + i sinpθp) = rpe
iθp

where rp = ‖z‖p and θp are the p−magnitude and argument of z, respectively, [17].

LetKp andK ′p be the moving and fixed generalized complex planes and {O; t1, t2}
and {O′; t′1, t′2} be the perpendicular coordinate system of these planes, respec-
tively. Moreover, we consider that the one-parameter planar motion Kp/K

′
p in the

generalized complex plane Cp . The geometric loci of the pole points in the fixed
and moving generalized complex planes K ′p and Kp are called fixed pole curve (Q′)
and moving pole curve (Q), respectively.

A point X taken in the moving generalized complex plane Kp draws a trajectory
which has curvature center X ′ in the fixed generalized complex plane K ′p . Con-
versely, in the reverse motion K ′p/Kp in Cp the point X ′ in K ′p draws a trajectory
with curvature center X in Kp . This relation between the points X and X ′ is given
by Euler-Savary Formula with the following equation

1

r′
− 1

r
= Im

(
eiθp

)( 1

a′
− 1

a

)
(10)

where r and r′ are the radii of curvature of the pole curves (Q) and (Q′) of one-
parameter planar motionKp/K

′
p and a, a

′ represent the distances from the rotation
pole to the point X,X ′, respectively. This formula for homothetic motion on the
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plane CJ =
{
x+ Jy : x, y ∈ R, J2 = p, p ∈ {−1, 0, 1}

}
⊂ Cp was given by Gürses

et al.

3. On the Construction of Generalized Bobillier Formula

In this section, we use a method to derive generalized Bobillier formula for gen-
eralized complex plane Cp . For this, we regard to the generalized Euler-Savary
formula given by the equation (10).
LetKp andK ′p be the moving and fixed generalized complex planes and {O; t1, t2}

and {O′; t′1, t′2} be the perpendicular coordinate system of these planes, respec-
tively. Moreover, we assume that the points N1

p , N
2
p and N

3
p are the fixed points

in the moving generalized complex plane Kp and the points γ1p , γ
2
p and γ

3
p are cen-

ters of curvature of trajectory drawn by these fixed points in the fixed generalized
complex plane K ′p .
The normals of trajectories drawn by these points pass from the instantaneous

rotation center I and there is a p−rotation pole at each t moment in Cp . The pole
curves rolls upon each other without sliding during the motion of the generalized
complex planes Kp/K

′
p . So, the pole curves (Q), (Q′) are tangent to each other

and have the same velocity at each t moment. Thus, the real axis is the common
tangent and the imaginary axis is the common normal for the pole curves in Cp .
If θp is the p−rotation angle of motion of the plane with respect to K ′p at each t

moment, then each point N i
p makes a rotation motion with θ̇p angular velocity at

the instantaneous center I.
Let

X1
p =

IN1
p∥∥IN1
p

∥∥ , X2
p =

IN2
p∥∥IN2
p

∥∥ , X3
p =

IN3
p∥∥IN3
p

∥∥ (11)

be the unit vectors in the direction of the pole rays IN1
p , IN

2
p and IN

3
p , respectively,

(see Figure 2 for the special cases of p < 0, p = 0, p > 0).
The p−distances of the points Nk

p and γkp from the origin I are ρk and ρ′k
(k = 1, 2, 3), respectively, then from the equations (3) and (4) we can write∣∣∣〈IN1

p ,X
1
p

〉
p

∣∣∣ = ρ1,
∣∣∣〈Iγ1p ,X1

p

〉
p

∣∣∣ = ρ′1. (12)

Similarly, ∣∣∣〈IN2
p ,X

2
p

〉
p

∣∣∣ = ρ2,
∣∣∣〈Iγ2p ,X2

p

〉
p

∣∣∣ = ρ′2

and ∣∣∣〈IN3
p ,X

3
p

〉
p

∣∣∣ = ρ3,
∣∣∣〈Iγ3p ,X3

p

〉
p

∣∣∣ = ρ′3.

An inflection point may be defined to be a point whose trajectory momentarily
has an infinite radius of curvature. Such points also have zero acceleration normal
to their trajectory, [3, 25, 26]. Let the inflection points be N1∗

p , N2∗
p and N3∗

p . The
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locus of such points is a circle in the moving generalized complex plane Kp called
as an inflection circle. So, from the equation (3) and (4) we can write∣∣∣∣〈IN1

p
∗
,X1

p

〉
p

∣∣∣∣ = ρ∗1,

∣∣∣∣〈IN2
p
∗
,X2

p

〉
p

∣∣∣∣ = ρ∗2,

∣∣∣∣〈IN3
p
∗
,X3

p

〉
p

∣∣∣∣ = ρ∗3 (13)

Figure 2. The special cases of the inflection circles of motion in
the generalized complex plane.

On the other hand the points move around an trajectory whose instantaneous
center is I during the motion Kp/K

′
p . So, the amount of displacement of the point

I is equal to the product of the diameter h with the amount of angular displacement.

We take that the inflection points N1∗
p , N2∗

p and N3∗
p are on the direction of

(I,X1
p ), (I,X2

p ) and (I,X3
p ), respectively. Moreover, we assume that, the images

of these inflection points are Q1p , Q
2
p and Q

3
p where IQ

k
p = 1

ρ∗k
Xk
p , (1 ≤ k ≤ 3),

(Figure 3,4,5). Then, from the equations (3) and (4) we have∣∣∣〈IQ1
p ,X

1
p

〉
p

∣∣∣ =
1

ρ∗1
,

∣∣∣〈IQ2
p ,X

2
p

〉
p

∣∣∣ =
1

ρ∗2
,

∣∣∣〈IQ3
p ,X

3
p

〉
p

∣∣∣ =
1

ρ∗3
. (14)

So, the following equations hold;

IQ1
p sin pθ1p = 1

ρ∗1
X1
p sin pθ1p = 1

hX
1
p ,

IQ2
p sin pθ2p = 1

ρ∗2
Xpp2 sinpθ2p = 1

hX
2
p ,

IQ3
p sinpθ3p = 1

ρ∗3
X3
p sinpθ3p = 1

hX
3
p .

(15)
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where the diameter of the inflection cycle is h. The last three equations show that∣∣∣〈IQ1
p ,X

1
p

〉
p

∣∣∣ sin pθ1p =
∣∣∣〈IQ2

p ,X
2
p

〉
p

∣∣∣ sin pθ2p =
∣∣∣〈IQ3

p ,X
3
p

〉
p

∣∣∣ sin pθ3p =
1

h
. (16)

So, the set of the points Qp is a straight line D parallel to axis x. Thus, the line
D is an image of the inflection circle of the generalized complex plane by means of
an inversion at the rotation center I, (Figure 3,4,5).
Since the pointsQ1p , Q

2
p , Q

3
p are linear, the vectors

(
IQ1

p − IQ2
p

)
and

(
IQ2

p − IQ3
p

)
are linearly dependent. So, the p−cross product of these vectors is(

IQ1
p − IQ2

p

)
∧p
(
IQ2

p − IQ3
p

)
= 0.

Thus, we can write(
IQ1

p ∧pIQ2
p

)
+
(
IQ3

p ∧pIQ1
p

)
+
(
IQ2

p ∧pIQ3
p

)
= 0.

If we consider the equation (20), we can easily write

1

ρ∗1ρ
∗
2

(
X1
p ∧pX2

p

)
+

1

ρ∗1ρ
∗
3

(
X3
p ∧pX1

p

)
+

1

ρ∗2ρ
∗
3

(
X2
p ∧pX3

p

)
= 0.

Considering that ρ∗1ρ
∗
2ρ
∗
3 6= 0, the last equation and the equation (5), we obtain

that

ρ∗1 sin pθ23p + ρ∗2 sin pθ31p + ρ∗3 sinpθ12p = 0 (17)

where 1
ρ∗k

= 1
ρk
− 1

ρ′k
and θlmp are the p−rotation angles between X l

p and X
m
p for

the permutations of the indices k, l,m = 1, 2, 3 ; 2, 3, 1 ; 3, 1, 2.

This formula is called of the generalized Bobillier formula in Cp . The special
cases of the generalized Bobillier formula with respect to the sign of real number p
are as follows;
Case 1. If we take p < 0, the generalized complex number system Cp corresponds

to the elliptical complex number system. From the equation (6), the generalized
Bobillier formula is equal to

ρ∗1 sinp
(
θ23p
√
|p|
)

+ ρ∗2 sinp
(
θ31p
√
|p|
)

+ ρ∗3 sinp
(
θ12p
√
|p|
)

= 0.

Especially, if we take p = −1, this formula becomes

ρ∗1 sin θ23 + ρ∗2 sin θ31 + ρ∗3 sin θ12 = 0.

Under the circumstances, the generalized Bobillier formula is reduced to the Bo-
billier formula on the complex plane or Euclidean plane. Figure 3 represents the
illustration of the Bobillier construction in the complex plane, [9, 12].
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Figure 3. Inflection Circle in Complex Plane.

Case 2. If we consider p = 0, the generalized complex number system Cp is
equal to the parabolic complex number system. By considering the equation (6),
we get

ρ∗1θ
23 + ρ∗2θ

31 + ρ∗3θ
12 = 0.

This formula is the Bobillier formula for Shear motion in the Galilean plane. The
inflection cycle is illustrated as for Shear motion in Galilean plane, [13].
Case 3. When p > 0, the generalized complex number system Cp is referred to

as the hyperbolic complex number system. In addition, considering the equation
(6), we obtain that the generalized Bobillier formula is reduced to

ρ∗1 sinh
(
θ23p
√
p
)

+ ρ∗2 sinh
(
θ31p
√
p
)

+ ρ∗3 sinh
(
θ12p
√
p
)

= 0.

Especially, if we take p = 1, we obtain that the Bobillier formula as

ρ∗1 sinh θ23 + ρ∗2 sinh θ31 + ρ∗3 sinh θ12 = 0.

Thus, this formula is equal to the Bobillier formula at the Lorentzian plane, [10].
The figure of the (hyperbolic) inflection circle for p = 1 is as follows

4. An Alternative Way for the Generalized Bobillier Formula

In this section, we will obtain the generalized Bobillier formula in the general-
ized complex plane without the use of the generalized Euler-Savary formula. So,
the generalized Bobillier formula will be obtained considering the velocities and
accelerations of planar motion in Cp .
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Figure 4. Inflection Circle in Galilean Plane.

Figure 5. Inflection Circle in Hyperbolic Plane.

Firstly, we calculate the trajectory velocities and accelerations of the points in
the moving generalized complex plane Kp . Let V ap

(
N1
p

)
and Jap

(
N1
p

)
be absolute
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velocity and acceleration vectors of the point N1
p , respectively. Moreover, if wp is

the angular velocity of motion Kp/K
′
p , wp =

dθ1p
dt where θ

1
p is p−rotation angle.

The sliding velocity vector of the inflection point N1∗
p is perpendicular to the

vector which connects the centre to this point. Moreover, the sliding velocity vector
is perpendicular to the angular velocity vector. So, we can write

Vf
p

(
N1
p

)
= wp ∧pIN1

p (18)

where wp = wpzp is angular velocity vector of motion and zp is the unit vector in
the direction of the angular velocity vector.
In addition, from the equation (1) there is the relation between the velocity

vectors
Va
p

(
N1
p

)
= Vr

p (Ip) +Vf
p

(
N1
p

)
(19)

where V ap , V
f
p and V

r
p are the absolute, sliding and relative velocity vectors, respec-

tively. If we consider the equations (18) and (19) it is obtained that

Va
p

(
N1
p

)
= Vr

p (Ip) +wp ∧pIN1
p . (20)

Differentiating the equation (20) with respect to t, we get

Jap
(
N1
p

)
= Jrp (Ip) + ẇpzp ∧pIN1

p + w2pIN
1
p (21)

where the first term is the path wise tangential acceleration component, the second
term is the centripetal component and the third term can be shown to be a pure
imaginary component, [25]. Considering this analysis, the absolute velocity vector
of the inflection point is linearly dependent with the absolute acceleration vector of
the inflection point since the normal component of acceleration is zero. So we can
write

Va
p

(
N1
p
∗) ∧pJap (N1

p
∗)

= 0. (22)

Here considering V rp = 0 for the inflection point N1∗
p and using the equations (20)

(21) and (22) we can easily find

wp
〈
Jrp (Ip) , IN1

p

〉
p

+ w3pρ
∗
1 = 0

and finally it is said that

ρ∗1 = −

〈
Jrp (Ip) ,X1

p

〉
p

w2p
. (23)

With similar process for the inflection points N2∗
p and N3∗

p the following equations
hold;

ρ∗2 = −

〈
Jrp (Ip) ,X2

p

〉
p

w2p
(24)

and

ρ∗3 = −

〈
Jrp (Ip) ,X3

p

〉
p

w2p
. (25)
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On the other hand the linear connection between X1
p , X

2
p and X

3
p may be written

as follows
λ1X

1
p + λ2X

2
p + λ3X

3
p = 0

where λ1, λ3, λ3 ∈ R. From the last equation by successive p−cross product with
X1
p , X

2
p and X

3
p , we get

λ1 = sinpθ23p , λ2 = sinpθ31p , λ3 = sinpθ12p

where θ23p = θ3p − θ2p , θ31p = θ1p − θ3p and θ12p = θ2p − θ1p . So, we obtain that

sin pθ23p X
1
p + sin pθ31p X

2
p + sin pθ12p X

3
p = 0.

If we make scalar product of the last equation with
Jrp (Ip )

w2p
, the following formula

is hold

ρ∗1 sin pθ23p + ρ∗2 sin pθ31p + ρ∗3 sin pθ12p = 0. (26)

This is the formula given in the equation (17). So, this direct way gives us the
Bobillier formula without using the generalized Euler-Savary formula.

5. Conclusion

The angle between the tangent of pole curve at the instantaneous pole center of
coupler with respect to the base of a four bar linkage and of the cranks is equal to
the angle between the other crank and the collineation axis. This expression is can
be verified by the Bobillier’s construction by graphically. This has been a major
interest to physicists, mathematicians and engineers. At the same time this problem
can be solved by an analytical method called the Bobillier formula which is more
practical to use. Various geometric and analytical methods have been developed for
the Bobillier formula for Euclidean, Lorentzian and Galilean planar motion. Then
the following question can be asked. "Is it possible to give one generalized formula
for the Bobillier’s construction in generalized complex plane including all planes?"
Thus, we find that one formula for all cases of p. Moreover, we check and interpret
this formula for the special cases of p. As a consequence we think that this study
would be useful at the disciplines of mathematics, engineering and astronomy.
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