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COSINE ENTROPY AND SIMILARITY MEASURES FOR FUZZY

SETS

RAJKUMAR VERMA

Abstract. In the present paper, based on the cosine function, a new fuzzy
entropy measure is defined. Some interesting properties of this measure are

analyzed. Furthermore, a new fuzzy similarity measure has been proposed

with its elegant properties. A relation between the proposed fuzzy entropy
and fuzzy similarity measure has also been proved.

1. Introduction

The notion of fuzzy sets was introduced by Zadeh [19] in order to provide a scheme
for handling non-statistical vague concepts. Since then, the theory of fuzzy sets has
become a vigorous area of research in different disciplines that include engineering,
medical science, social science, artificial intelligence, signal processing, multi-agent
systems, robotics, computer networks, and expert systems. Fuzzy entropy and
similarity measures are as two important topics in fuzzy set theory, which have
been investigated widely by many researchers from different points of view.

The first attempt to quantify fuzziness of a fuzzy set was made by Zadeh [20] in
1968, he proposed a probabilistic frame work and defined the entropy of a fuzzy set
as weighted Shannon [10] entropy. In 1972, De Luca and Termini [3] first provided
an axiomatic framework for the entropy of fuzzy sets based on the concept of Shan-
non’s entropy. Kaufmann [5] introduced a fuzzy entropy measure based on a metric
distance between a fuzzy set and its nearest crisp set. Yager [15] defined entropy of
a fuzzy set in terms of a lack of distinction between the fuzzy set and its negation, a
kind of ‘norm’. Pal and Pal [7] proposed fuzzy entropy based on exponential func-
tion to measure the fuzziness called exponential fuzzy entropy. Bhandari and Pal
[1] proposed generalized order-α fuzzy entropy to measure the fuzziness. In 2008,
Parkash et al. [9] defined two new fuzzy entropy measures based on trigonometric
functions and proved entropy maximization principle corresponding to these fuzzy
entropies. Besides these, there exists quite a body of research work on applications
of these theoretical studies [12, 16, 17 and 18].
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Similarity measures between two fuzzy sets, in particular, have found widespread
applications in diverse fields like decision making, pattern recognition, machine
learning, market prediction etc.

Talking of ‘similarity measures’, first, Wang [13] proposed a measure of similarity
between two fuzzy sets. Salton and McGill [11] introduced a cosine similarity
measure between fuzzy sets, which in essence is a kind of ‘coefficient or a quotient’
and applied it to information retrieval of words. Zwick et al. [21] used geometric
distance and Huasdorff metrics for presenting similarity measures among fuzzy sets.
Pappis and Karacapilidis [8] proposed three similarity measures for fuzzy sets based
on union and intersection operations, the maximum difference, and the difference
and sum of membership grades. Chen et al. [2] extended the work of Pappis and
Karacapilidis [8], and defined some similarity measures on fuzzy sets based on the
geometric model, the set theoretic approach, and matching function. Wang [14]
proposed two similarity measures between fuzzy sets and between the elements of
sets. Liu [6] as well as Fan and Xie [4] provided an axiomatic definition of similarity
measure for fuzzy sets.

In the present paper two new measures called ‘cosine fuzzy entropy ’ and ‘cosine
fuzzy similarity ’ are proposed. This paper is organized as follows:

In Section 2, some basic definitions related to probability theory and fuzzy sets
are briefly discussed. In Section 3 cosine fuzzy entropy measure is proposed and
there we verify its axiomatic requirement [3]. Some mathematical properties of the
proposed entropy are also proved there. In Section 4 the cosine fuzzy similarity
measure is introduced along with some of its properties. A relation between cosine
fuzzy entropy and cosine fuzzy similarity is also established here.

2. Preliminaries

We start with probabilistic background. Let us denote the set of n-complete prob-
ability distributions by

(2.1) Γn =

{
P = (p1, p2, ..., pn) : pi ≥ 0,

n∑
i=1

pi = 1

}
, n ≥ 2.

For a probability distribution P = (p1, p2, ..., pn) ∈ Γn, Shannon’s entropy [14], is
defined as

(2.2) H (P ) = −
n∑
i=1

p (xi) log2 p (xi) .

Definition 2.1. Fuzzy Set [19]: A fuzzy set A in a finite universe of discourse
X = {x1, x2, ..., xn} is given by

(2.3) A = { 〈x, µA (x)〉 | x ∈ X} ,
where µA (x) : X → [0, 1] is the membership function of A. The number µA (x)
describes the degree of membership of x ∈ X in A.

Definition 2.2. A fuzzy set A∗ is called a sharpened version of fuzzy set A if the
following conditions are satisfied:

µA∗ (xi) ≤ µA (xi) if µA (x) ≤ 0.5 ∀ i,
µA∗ (xi) ≥ µA (xi) if µA (x) ≥ 0.5 ∀ i.



COSINE ENTROPY AND SIMILARITY MEASURES FOR FUZZY SETS 85

Note: Throughout this paper, we shall denote the set of all fuzzy sets defined in
X byFS (X).

Definition 2.3. Set Operations on FSs [19]: Let A,B ∈ FS (X) be given by

A = {〈x, µA (x)〉 |x ∈ X} ,

B = {〈x, µB (x)〉 |x ∈ X} ,
then usually set operations are defined as follows:

[(i)]
(1) A ⊆ B iff µA (x) ≤ µB (x) ∀ x ∈ X;
(2) A = B iff A ⊆ B and B ⊆ A;
(3) AC = { 〈x, 1− µA (x)〉 | x ∈ X};
(4) A ∩B = {〈x, µA (x) ∧ µB (x)〉 |x ∈ X};
(5) A ∪B = {〈x, µA (x) ∨ µB (x)〉 |x ∈ X};

where ∨ , ∧ stand for max. and min. operators, respectively.

In fuzzy set theory, a measure of fuzziness is the ‘fuzzy entropy’ which expresses
the amount of aggregated ambiguity of a fuzzy set A. The first attempt to quantify
the fuzziness was made in 1968 by Zadeh [20], who defined the entropy of a fuzzy
set A with respect to (X,P ) as

(2.4) H (A,P ) = −
n∑
i=1

µA (xi) p (xi) log2 p (xi) .

De Luca and Termini [3] defined fuzzy entropy for a fuzzy set A corresponding (2.2)
as
(2.5)

HDT (A) = − 1

n

n∑
i=1

[µA (xi) log2 (µA (xi)) + (1− µA (xi)) log2 (1− µA (xi))] .

Based on exponential function, Pal and Pal [7] introduced exponential fuzzy entropy
for fuzzy set A as

(2.6) eH (A) =
1

n (
√
e− 1)

n∑
i=1

[
µA (xi) e

1−µA(xi) + (1− µA (xi)) e
µA(xi) − 1

]
.

Later, Bhandari and Pal [1]made a survey on entropy measures on fuzzy sets and
introduced the following parametric fuzzy entropy for fuzzy set A as

(2.7) Hα (A) =
1

n (1− α)

n∑
i=1

log [µαA (xi) + (1− µA (xi))
α

] .

Parkash et al. [9] defined two fuzzy entropy measures for fuzzy set A based on
trigonometric functions (sine and cosine) given by
(2.8)

HOPR1 (A) =
1

n

n∑
i=1

[{
sin

πµA (xi)

2
+ sin

π (1− µA (xi))

2
− 1

}
× 1(√

2− 1
)] ,

(2.9)

HOPR2 (A) =
1

n

n∑
i=1

[{
cos

πµA (xi)

2
+ cos

π (1− µA (xi))

2
− 1

}
× 1(√

2− 1
)] .
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Definition 2.4. Similarity Measure of FSs [6]: A real function S : FS (X)×
FS (X)→ [0, 1] is called the similarity measure of the fuzzy sets, if S satisfies the
following properties:

[S1.]
(1) 0 ≤ S (A,B) ≤ 1 ∀ A,B ∈ FS (X).
(2) S(A,B) = S (B,A) ∀ A,B ∈ FS (X).
(3) S (A,B) = 1 if and only if A = B, i.e. µA (xi) = µB (xi) for all i =

1, 2, ..., n.
(4) For allA,B,C ∈ FS (X), if A ⊆ B ⊆ C, then S(A,C) ≤ S (A,B),

S(A,C) ≤ S (B,C).

In the next section, we introduce a new entropy measure on fuzzy sets called ‘cosine
fuzzy entropy ’ and verify its axiomatic validity.

3. Cosine Fuzzy Entropy

We submit following formal definition of a new measure of ‘fuzzy entropy’:

Definition 3.1. Cosine Fuzzy Entropy: Let A be a fuzzy set defined on X =
{x1, x2, ..., xn} having the membership values µA (xi) , i = 1, 2, ..., n. We define
the cosine fuzzy entropy for fuzzy set A, Hcos (A) as:

(3.1) Hcos (A) =
1

n

n∑
i=1

[
cos

(
(2µA (xi)− 1)

2
π

)]
.

As a first step, in the next theorem, we establish properties that according to
De Luca and Termini [3] justify the above proposed measure to be a valid ‘fuzzy
entropy’.

Theorem 3.1. The Hcos (A) measure in (3.1) of the cosine fuzzy entropy satisfies
the following propositions:

[P1.](Sharpness): H (A) is minimum if and only if A is a crisp set, i.e.
µA (xi) = 0 or 1 ∀ xi ∈ X. (Maximality): H (A) is maximum if and
only if A is a most fuzzy set, i.e. µA (xi) = 0.5 ∀ xi ∈ X. (Resolution):
H (A∗) ≤ H (A), where A∗ is a sharpened version of the set A. (Symmetry):
H (A) = H

(
AC
)
, where AC is the complement set of the fuzzy set A.

(1)(2)(3)(4) Proof. Let ∆A =
(

(2µA(xi)−1)
2 π

)
and then from 0 ≤ µA (xi) ≤ 1, we note that

−π
2
≤ ∆A ≤

π

2
⇒ 0 ≤ cos

(2µA (xi)− 1)

2
π ≤ 1⇒ 0 ≤ Hcos (A) ≤ 1.

P1. (Sharpness): First, let A be a crisp set with membership values either 0 or
1 for all xi ∈ X. Then from (3.1) we simply obtain

(3.2) Hcos (A) = 0.

This proves ‘if’ part of the statement. Next let us suppose that Hcos (A) = 0, i.e.

(3.3)

n∑
i=1

[
cos

(2µA (xi)− 1)

2
π

]
= 0.
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Then, this being the sum ofn terms and each term in the summation is non negative,
then for all i,

(3.4) cos
(2µA (xi)− 1)

2
π = 0.

From (3.4), it is easy to deduce that µA (xi) = 0 or 1 for all xi ∈ X, that is A is
crisp.

P2. (Maximality): Let µA (xi) = 0.5 for all xi ∈ X. From (3.1) we obtain
Hcos (A) = 1.

Now, let Hcos (A) = 1, and then also from (3.1), we have

cos ∆A = 1⇒ ∆A = 0⇒ µA (xi) = 0.5 ∀xi ∈ X.
P3. (Resolution): Let

(3.5) f (µA (xi)) = cos
(2µA (xi)− 1)

2
π ∀xi ∈ X.

Since f (µA (xi)) is an increasing function of µA (xi) in the range [0, 0.5) and is a
decreasing function of µA (xi) in the range (0.5, 1], therefore

µA∗ (xi) ≤ µA (xi)⇒
(2µA∗ (xi)− 1)

2
π ≤ (2µA (xi)− 1)

2
π

(3.6) ⇒ f (µA∗ (xi)) ≤ f (µA (xi))∀xi ∈ [0 , 0.5)

and

µA∗ (xi) ≥ µA (xi)⇒
(2µA∗ (xi)− 1)

2
π ≥ (2µA (xi)− 1)

2
π

(3.7) ⇒ f (µA∗ (xi)) ≥ f (µA (xi))∀xi ∈ (0.5 , 1] .

From (3.6) and (3.7), we have

(3.8) f (µA∗ (xi)) ≤ f (µA (xi)) .

Since Hcos (A) = 1
n

∑n
i=1 (f (µA (xi))) and Hcos (A∗) = 1

n

∑n
i=1 (f (µA∗ (xi))),

then we obtain

(3.9) Hcos (A∗) ≤ Hcos (A) .

P4. (Symmetry): It is clear from definition of Hcos (A) and with µAC (xi) =
1− µA (xi), we conclude that

(3.10) H (A) = H
(
AC
)
.

Hence Hcos (A) is an axiomatically valid measure of fuzzy entropy.
This proves the theorem. �

We now turn to study of properties of Hcos (A). The proposed cosine fuzzy entropy
Hcos (A), satisfies the following interesting properties.

Theorem 3.2. Let A,B ∈ FS (X) be given by

A = {〈x, µA (x)〉 |x ∈ X} ,

B = {〈x, µB (x)〉 |x ∈ X} ,
such that they satisfy for any xi either A ⊆ B orA ⊃ B, then we have

Hcos (A ∪B) +Hcos (A ∩B) = Hcos (A) +Hcos (B) .
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Proof. Let us separate X into two parts X1 and X2, where

X1 = {xi ∈ X : A ⊆ B} ,
and

X2 = {xi ∈ X : A ⊃ B} .
That is, for all xi ∈ X1

(3.11) µA (xi) ≤ µB (xi) ,

and for all xi ∈ X2

(3.12) µA (xi) > µB (xi) .

From definition in (3.1), we have

Hcos (A ∪B) =
1

n

n∑
i=1

[
cos

(2µA∪B (xi)− 1)

2
π

]

(3.13) =
1

n

[{ ∑
xi∈X1

cos
(2µB (xi)− 1)

2
π

}
+

{ ∑
xi∈X2

cos
(2µA (xi)− 1)

2
π

}]
.

Again from definition in (3.1), we have

Hcos (A ∩B) =
1

n

n∑
i=1

[
cos

(2µA∩B (xi)− 1)

2
π

]

(3.14) =
1

n

[{ ∑
xi∈X1

cos
(2µA (xi)− 1)

2
π

}
+

{ ∑
xi∈X2

cos
(2µB (xi)− 1)

2
π

}]
.

Now adding (3.13) and (3.14), we get

Hcos (A ∪B) +Hcos (A ∩B) = Hcos (A) +Hcos (B) .

This proves the theorem. �

Corollary 3.1. For any A ∈ FS (X), and ACthe complement of fuzzy setA, then

(3.15) Hcos (A) = Hcos

(
AC
)

= Hcos

(
A ∪AC

)
= Hcos

(
A ∩AC

)
.

Proof. This follows from the result H (A) = H
(
AC
)

and the above theorem. �

In the next section, we propose a new similarity measure between fuzzy sets called
‘cosine fuzzy similarity’ and study their properties. We have also given a relation
between cosine fuzzy entropy and cosine fuzzy similarity here.

4. Cosine Fuzzy Similarity Measure

In this section, we propose a new similarity measure for FSs. The formal definition
is as follows:

Definition 4.1. Cosine Fuzzy Similarity Measure: Given two fuzzy sets A
and B defined in X = {x1, x2, ..., xn} having the membership values µA (xi) , i =
1, 2, ..., n and µB (xi) , i = 1, 2, ..., n respectively, we define the measure of cosine
fuzzy similarity, SFS (A,B), between FSs A and B, as

(4.1) SFS (A,B) =
1

n

n∑
i=1

[
cos

(µA (xi)− µB (xi))

2
π

]
.
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In the next theorem, we establish properties that according to Liu [6], justify our
proposed measure to be a valid ‘fuzzy similarity’:

Theorem 4.1. The SFS (A,B) measure in (4.1) of the fuzzy similarity satisfies
the following properties:

[S1.]0 ≤ SFS (A,B) ≤ 1; SFS (A,B) = SFS (B,A); SFS (A,B) =
1 if and only if A = B, i.e. µA (xi) = µB (xi) for all i = 1, 2, ..., n. For
all A,B,C ∈ FS (X), if A ⊆ B ⊆ C, then SFS(A,C) ≤ SFS (A,B),
SFS(A,C) ≤ SFS (B,C).

(1)(2)(3)(4) Proof. S1. Let ∆(A,B) = (µA(xi)−µB(xi))
2 π, then from 0 ≤ µA (xi) , µB (xi) ≤ 1, we

have
(4.2)

−π
2
≤ ∆(A,B) ≤

π

2
⇒ 0 ≤ cos

(µA (xi)− µB (xi))

2
π ≤ 1⇒ 0 ≤ SFS (A,B) ≤ 1.

S2. This simply follows from symmetric expression of SFS (A,B).

S3. Let A = B, i.e. µA (xi) = µB (xi) for all i = 1, 2, ..., n. Then from (4.1) we
obtain that

(4.3) SFS (A,B) = 1.

This proves ‘if’ part of the statement. Next suppose that SFS (A,B) = 1, i.e.

(4.4)

n∑
i=1

[
cos

(µA (xi)− µB (xi))

2
π

]
= n.

Then, this being the sum of n terms, each term in the summation being less than
or equal to 1, then for all i,

(4.5) cos
(µA (xi)− µB (xi))

2
π = 1

or

(4.6) µA (xi)− µB (xi) = 0.

From (4.6), it immediately follows that µA (xi) = µB (xi) for any xi ∈ X, i.e.
A = B.
S4. Since

(4.7) A ⊆ B ⊆ C ⇒ µA (xi) ≤ µB (xi) ≤ µC (xi) ,

then

(4.8)
(µA(xi)−µB(xi))

2 π ≥ (µA(xi)−µC(xi))
2 π

(µB(xi)−µC(xi))
2 π ≥ (µA(xi)−µC(xi))

2 π

}
.

From (4.8) and the nature of cosine function, we get
(4.9)

cos
(µA (xi)− µB (xi))

2
π ≥ cos

(µA (xi)− µC (xi))

2
π ⇒ SFS(A,C) ≤ SFS (A,B) ,

(4.10)

cos
(µB (xi)− µC (xi))

2
π ≥ cos

(µA (xi)− µC (xi))

2
π ⇒ SFS(A,C) ≤ SFS (B,C) .

This proves the theorem. �
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The importance and strength of this measure lies in its properties that we study in
the following theorems.
For proofs of the properties, we will consider separation of X into two parts X1

and X2, such that

X1 = {xi ∈ X : A ⊆ B} ,

and

X2 = {xi ∈ X : A ⊃ B} .

That is, for all xi ∈ X1

(4.11) µA (xi) ≤ µB (xi) ,

and for all xi ∈ X2

(4.12) µA (xi) > µB (xi) .

Theorem 4.2. For A,B ∈ FS (X), and if they satisfy that for any xi ∈ X, either
A ⊆ Bor A ⊃ B, then

SFS (A ∪B,A ∩B) = SFS (A ,B) .

Proof. Using Definition 4.1, we have

SFS (A ∪B,A ∩B)

=
1

n

n∑
i=1

[
cos

(µA∪B (xi)− µA∩B (xi))

2
π

]

=
1

n

[ ∑
xi∈X1

{
cos

(µB (xi)− µA (xi))

2
π

}
+
∑
x2∈X2

{
cos

(µA (xi)− µB (xi))

2
π

}]

=
1

n

n∑
i=1

[
cos

(µA (xi)− µB (xi))

2
π

]
= SFS (A,B) .

This proves the theorem. �

Theorem 4.3. For A,B,C ∈ FS (X),
[(i).]SFS (A ∪B,C) ≤ SFS (A,C) + SFS (B,C), SFS (A ∩B,C) ≤

SFS (A,C) + SFS (B,C).

(1)(2) Proof. We prove (i) only, (ii) can be proved analogously.
(i) Let us consider the expressions for

(4.13) SFS (A,C) + SFS (B,C)− SFS (A ∪B,C)

=
1

n

n∑
i=1

[
cos

(µA (xi)− µC (xi))

2
π

]
+

1

n

n∑
i=1

[
cos

(µB (xi)− µC (xi))

2
π

]

− 1

n

n∑
i=1

[
cos

(µA∪B (xi)− µC (xi))

2
π

]
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=
1

n

n∑
i=1

[
cos

(µA (xi)− µC (xi))

2
π

]
+

1

n

n∑
i=1

[
cos

(µB (xi)− µC (xi))

2
π

]

− 1

n

[ ∑
xi∈X1

{
cos

(µB (xi)− µC (xi))

2
π

}
+
∑
xi∈X2

{
cos

(µA (xi)− µC (xi))

2
π

}]

=
1

n

[ ∑
xi∈X1

{
cos

(µA (xi)− µC (xi))

2
π

}
+
∑
xi∈X2

{
cos

(µB (xi)− µC (xi))

2
π

}]
≥ 0.

This proves the theorem. �

Theorem 4.4. For A,B,C ∈ FS (X),

SFS (A ∪B,C) + SFS (A ∩B,C) = SFS (A,C) + SFS (B,C) .

Proof. From Definition 4.1, we first have:

SFS (A ∪B,C)

=
1

n

n∑
i=1

[
cos

(µA∪B (xi)− µC (xi))

2
π

]

=
1

n

[ ∑
xi∈X1

{
cos

(µB (xi)− µC (xi))

2
π

}
+
∑
xi∈X2

{
cos

(µA (xi)− µC (xi))

2
π

}]
.

(4.14)

Next, again from Definition 4.1, we have

SFS (A ∩B,C)

=
1

n

n∑
i=1

[
cos

(µA∩B (xi)− µC (xi))

2
π

]

=
1

n

[ ∑
xi∈X1

{
cos

(µA (xi)− µC (xi))

2
π

}
+
∑
xi∈X2

{
cos

(µB (xi)− µC (xi))

2
π

}]
.

(4.15)

After adding (4.14) and (4.14), we get the result.
This proves the theorem. �

Theorem 4.5. For A,B ∈ FS (X),
[(i).]SFS (A,B) = SFS

(
AC , BC

)
; SFS

(
A ,BC

)
= SFS

(
AC , B

)
; SFS (A,B)+

SFS
(
AC , B

)
= SFS

(
AC , BC

)
+ SFS

(
A,BC

)
;

where AC and BC represent complements of the fuzzy sets A and B, respectively.

(1)(2)(3) Proof. (i). It simply follows from the relation that membership of an element in a
set has with its complement.
(ii). Let us consider the expressions for

(4.16) SFS
(
A ,BC

)
− SFS

(
AC , B

)
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=
1

n

n∑
i=1

[
cos

(µA (xi)− (1− µB (xi)))

2
π

]
− 1

n

n∑
i=1

[
cos

((1− µA (xi))− µB (xi))

2
π

]

=
1

n

n∑
i=1

[
cos

(1− µA (xi)− µB (xi))

2
π

]
− 1

n

n∑
i=1

[
cos

(1− µA (xi)− µB (xi))

2
π

]
= 0.

(iii). It is obvious from (i) and (ii).

This proves the theorem. �

Interestingly, the cosine fuzzy similarity measure given in (4.1) leads to interesting
situations when it is consider between a set and its complement. The measure (4.1)
reduces to cosine fuzzy entropy (3.1), as shown in the next theorem.

Theorem 4.6. For each A ∈ FS (X),

(4.17) SFS
(
A ,AC

)
= Hcos (A) .

Proof. The proof follows directly from the Definitions 2.3, 3.1 and 4.1. �

5. Conclusions

We have introduced two measures using cosine function. These measures having
elegant properties, present a new vista for applications and further considerations.
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