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EMBEDDING THE COMPLEMENT OF A COMPLETE GRAPH

IN A FINITE PROJECTIVE PLANE

İBRAHIM GÜNALTILI

Abstract. Let S = (P,L) be a non-trivial regular finite linear space with v

points, v + k lines, k ≥ 3. We show that if S contains at least
(k
2

)
lines of size

b(p) − 2 and one line size b(p) for some point p, then S is embeddable in a

unique projective plane π of order b(p) − 1 and π − s is a complete graph of
order k , where b(p) ≥ 4 for some point p.
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1. Introduction

Linear spaces lie at the foundation of incidence geometry, and more in particular,
of finite geometry. A lot of characterizations of projective and affine spaces use
linear spaces. Also, many important diagram geometries related to classes of simple
groups are build with linear spaces. Linear spaces with constant block size are called
Steiner systems and also play a prominent role in finite geometry. But there are
also linear spaces that are not Steiner systems, and yet they appear often naturally.
One such class of linear spaces is the class of A-affine linear spaces Let us first recall
some definitions and results. For more details, (see [1] , [2]).

A finite linear space is a pair S = (P,L), where P is a finite set of points and L
is a family of proper subsets of P, which are called lines, such that

(L1) Any two distinct points lie on exactly one line,
(L2) Any line contains at least two points,
(L3) There exist at least two lines.

It is clear that (L3) could be replaced by an axiom (L3)
′
: There are three lines of

S not incident with a common point. In any case, (L3) and (L3)
′

are ‘non-triviality’
conditions. Systems satisfying (L1) and (L2) but not (L3) are called trivial linear
spaces.

In a finite linear space S = (P,L), v and b denote the total number of points
and lines, respectively. The degree b(p) of a point p is the total number of lines
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through p, and the size v(l) of a line l is the total number of points on l. Thus; if
v(l) = k then l is called a k−line. The total number of k−lines is denoted by bk.

The integer n defined by n + 1 = max{b(p) : p ∈ P } is the order of a linear
space. It is clear that any line of size n+1 meets every other line in a linear space of
order n.The linear spaces with constant point degree is called regular linear spaces.

The numbers v, b, v(l) and b(p) will be called the parameters of S.
A projective plane π is a linear space in which all lines meet and in which all

points are on n+ 1 lines, n ≥ 2. The number n is called the order of π.
An affine plane A is a linear space in which, for any point p not on a line l, there

is a unique line on p missing l, and in which all points are on n+ 1 lines, n ≥ 2.
A k-arc in a projective plane of order n is a set of k points no three of which are

colinear. A k-arc can be thought of as a complete graph embedded in the projective
plane.

An hyperoval is an (n+ 2)−arc in a projective plane of even order n.
For any line l of a linear space S of order n, the difference n+ 1− v(l) is called

a deficiency of l, denoted d(l). Since the size of any line cannot exceed n + 1, the
deficiency of any line is non-negative.

Let µ and λ be the respective minimum and maximum deficiencies among those
lines of S which have size less than n.

Let S = (P,L) be a linear space and let X be a subset of P. Then we can define
the linear space S ′ = (X , {l ∩ X : l ∈ L, |l ∩ X | ≥ 2}). If C = P − X , then S ′ is
called the complement of C in S and we say that S ′ is obtained by removing C from
S. We denote the complement of C in S by S − C.

Let X be a set of points in a projective plane π of order n. Suppose that we
remove X from π. We obtain a linear space π − X having certain parameters
(i.e., the number of points, the number of lines, the point-degrees and line-degrees)
(see [1]).

We call any linear space, which has the same parameters as π − X , a pseudo-
complement of X in π.

We have already encountered the notation of a pseudo-complement, namely the
pseudo-complement of one line. This is a linear space with n2 points, n2 + n lines
in which any point has degree n+ 1 and any line has degree n. We know that this
is an affine plane, which is a structure embeddable in a projective plane of order n.

A linear space with n2 + n − m2 − m points, b = n2 + n + 1 lines, constant
point-degree n + 1 and containing at least m2 + m + 1 lines of size n −m will be
called the pseudo-complement of a projective subplane of order m in a projective
plane of order n. It is clear that m < n.

A linear space with n2 + n + 1 − m2 points, b = n2 + n + 1 lines, constant
point-degree n + 1 and containing at least m2 + m lines of size n + 1 −m will be
called the pseudo-complement of an affine subplane order m in a projective plane
of order n. It is clear that m < n.

A linear space with n2 + n+ 1− k points, b = n2 + n+ 1 lines, constant point-
degree n+1 and lines of size n+1, n and n−1 will be called the pseudo-complement
of a k-arc in a projective plane of order n.

Two lines l and l′ are parallel if l = l′ or l∩ l′ = φ. Two lines l and l′ are disjoint
if l ∩ l′ = φ.

A parallel class in the linear space (P,L) is a subset of L with the property that
each point of P is on a unique element of this subset.
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Let S = (P,L) and S ′ = (P ′,L′) be two finite linear spaces. We say that S
can be embedded in S ′ if P ⊆ P ′ and L = {l′ ∩ P : l′ ∈ L′ and |l′ ∩ P| ≥ 2}. Hall
proved in [10] that every finite linear space can be embedded in an infinite projective
plane.

The complementation problem with respect to a projective plane is the following:
Remove a certain subset of points and lines from the projective plane. Determine
the parameters of the resulting space. Now assume that you are starting with a
space having these parameters. Does this somehow force this subset to reappear,
thus giving an embedding in the original projective plane? A number of people have
considered complementation problems ([1] , [2] , [3] , ..., [13]). In 1970, Dickey solved
the problem for the case where the configuration removed was a unital [7]. Batten
[2] gave characterizations of linear spaces which are the complement of affine or
projective subplanes of finite projective planes.

In this paper, We show that if S contains at least
(
k
2

)
lines of size b(p) − 2 and

one line size b(p) for some point p, then S is embeddable in a projective plane π of
order b(p) − 1 and π − s is a complete graph of order k , where b(p) ≥ 4 for some
point p.

2. Main Results

Theorem 2.1. If S is a (n+ 1)−regular linear space with v = n2 + n + 1 − k
points, b = n2 + n + 1 lines and contains exactly k (n+ 2− k) > 0 lines of size n,
S is uniquely embeddable in a projective plane π of order n

Proof. Fix an n−line l. Then the number induces a parallel class of n + 1 lines.
Let a be the number of n−lines in a fixed parallel class. Then

an+ (n+ 1− a)(n− 1) = n2 + n+ 1− k

It requires that the number of n−lines in a parallel class is n + 2 − k. Since bn =
k(n + 2 − k), the number of distinct parallel classes is k. Consider the structure
S? = (P ?, L?) where P ? is P along with the parallel classes and L? consist the lines
of L extended by those parallel classes to which they belong. We shall prove that
S? is a linear space: It is clear that two old points (points of P ?) or an old and a
new point are one unique line of L?, since S is a linear space. Let p and q be two
new distinct points. We must show that thet determine a unique line of L?. Let
lp and lq be n−lines which determine the parallel classes corresponding to p and
q, respectively. If lp ∩ lq = ∅, p = q which is a contradiction. So lp and lq meet.
Each point of lq is on a unique line of the parallel classes determined by lp. Thus lq
does not meet precisely one line to the parallel class determined by lp. This leaves
precisely one line d to parallel to both lp and lq such that p, q ∈ d. Thus S? is a
projective plane of order n. Therefore, S can be embedded in a projective plane π
of order n

�

Theorem 2.2. Let S = (P,L) be a non-trivial regular finite linear space with v

points and b lines, 3 ≤ b−v = k. If S contains at least
(
k
2

)
lines of size b(p)−2,then

S can be embedded in a projective plane π of order b(p)− 1 and π−S is a complete
graph of order k embedded a finite projective plane π of order b(p) − 1 for some
point p ∈ P.
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Proof. Let b(p) = n+ 1, b− v = k ≥ 3 for some point p of S. By all hypothesis of
theorem, n ≥ 2 and S is a non trivial (n+1)−regular linear space with n2+n+1−k
points and n2 + n+ 1 lines. Let bi be the number of all i−lines of S. Then also, by
simple counting methots,
i)
∑
i

bi = n2 + n+ 1

ii)
∑
i

ibi = (n+ 1)(n2 + n+ 1− k)

iii)
∑
i

i(i− 1)bi = (n2 + n− k)(n2 + n+ 1− k)

iv)
∑

(n− i) (n+ i− 1)bi =
(
k
2

)
Hence However, S has at least

(
k
2

)
lines of size n−1, and each of them contributes 2

to the left hand side of the equality iv). Thus bi = 0, i 6= n+1, n, n−1. Therefore,

by i)-iv), the lines of S consist of
(
k
2

)
lines of size n− 1, k(n+ 2− k) lines of size n

and n2 + n+ 1 + k2 −
(
k
2

)
− (n+ 2)k lines of size n+ 1.

Case 1. Let k < n+ 2. In this case, S is the pseudo-complement of a k − arc in a
finite peojective plane of order n and k ≤ n+ 2 since bn ≥ 0, k ≤ n+ 2. Therefore
by theorem 1, S can be embeded in a projective plane of order n. Then k ≤ n+ 2
Case 2. Let k = n + 2. In this case, every point is contained in n+2

2 lines of size

n+ 1 and in n
2 lines of size n− 1. The number of lines size n− 1 is 1

2 (n+ 2)(n+ 1)

and the number of lines of size n + 1 is 1
2n(n − 1). Further more a short line of

size n− 1 is parallel to 2n other (n− 1)−lines and a(n+ 1)−lines meets ever other
line Fix a(n− 1)−line l and denote by π(l) the set of the 2n lines parallel to l. It
follows from proposition 1.1 that if π(l) were to contain a triangle then n ≤ 6 this
case contradiction to n > 6. Let l1 and l2 be intersecting lines of π(l); denote by
M1 the set of lines of π(l) which meet l2 and by M2 the set of lines of π(l) which
meet li since π(l) contains no triangle, M1 and M2 consists of mutually parallel
lines. We have |Mj | = n − 1 and lj ∈ Mj . Furthermore M1 ∩M2 = (because π(l)
contains no triangle). Let d1 and d2 be two lines of π(l) − (M1 ∪M2). We claim
that each line of M1 is parallel to at n − 1 other lines of π(l). Then every line of
M1 meets at least n− 3 lines of M2. Therefore, π(l) = (M1 ∪M2) ∪ {d1 ∪ d2} and
M1 consist of mutually parallel lines.
a(n− 2) + (n+ 1− a)n = n2 − 2 and a = n+2

2 .
Since a ∈ Z, n is even integer.

The line d1 meets n− 1 other lines of π(l). One of these lines may be d2 but at
least n−2 of them are in M1∪M2. Therefore without ........of generality, d1 meets at
least 1

2 (n− 2) > 2, lines of M2. Hence, İf h is an arbitrary line of M1, then h meets
a line of M2, which also meets d1. Since π(l) has no trianles, two implies that d1 is
parallel to h. So d1 is parallel to every line of M1. Consequently, πi M1∪{l, d1} is a
set of mutually parallel lines with |πi| = n+1. In wiew of v = n2−1 = |πi| . (n− 1) ,
πi is a parallel class. Therefore, π1 ∩ π2 = {l} . If α is the totall number of parallel

classes, α = 2bn−1

n+1 = n + 2. Thus extension of S is a projective planes of order n
and S can be embedded into a projective plane of order n as the complement of a
hyperoval.

�

In fact, this case was originally proved by R. C Bose and S. S. Shrikhandle (1973)
and then generalized greatly, allowing n ≥ 2 by P.de Witte (1977)
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Corollary 2.1. If S is a non-trivial regular linear space with b lines, v points,

b − v ≥ 3 and at least
(
b−v
2

)
lines of size

√
4b−3−3

2 and at least one point of degree
√
4b−3+1

2 , S can be embedded in a projective plane π of order
√
4b−3−1

2 and is the

pseudo-complement of a (b− v)− arc in a projective plane of order
√
4b−3−1

2

Corollary 2.2. If S is a non -trivial regular linear space with v points, b lines,
b − v ≥ 3, at least

(
b−v
2

)
lines of size b(p) − 2 , S can be embedded in a projective

plane π of order b(p) − 1 and is the pseudo-complement of a (b − v) − arc in a
projective plane of order b(p)− 1

Theorem 2.3. Let S = (P,L) be a non-trivial n + 1−regular linear space having
properties follows:

i) |P | = n2 + n+ 1− k, |L| = n2 + n+ 1, k ≥ 3, n ≥ 2
ii) v(l) ∈ {n+ 1, n, n− 1} for each line l.
Then S can be embeded in a finite projective plane π of order n and π − S is

the k − arc

Proof. The proof of this theorem is completely similar to theorem 2.2. �

The author is grateful to the referees for useful advice.
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