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ON APPROXIMATION PROPERTIES OF TWO VARIABLES OF
MODIFIED KANTOROVICH-TYPE OPERATORS

MÜZEYYEN ÖZHAVZALI AND ALI OLGUN

Abstract. In the present paper, we introduce certain modification of Szász-
Mirakyan-Kantorovich-type operators in polynomial weighted spaces of con-
tinuous functions of two variables. Then we research some approximation prop-
erties of these operators. We give some inequalities for the operators by means
of the weighted modulus of continuity and also obtain a Voronovskaya-type
theorem. Furthermore, in the paper we show that our operators give bet-
ter degree of approximation of functions belonging to weighted spaces than
classical Szász-Mirakyan operators.

1. Introduction

In 1930, Kantorovich [7] introduced the following operators for f ∈ L1 [0, 1] and
x ∈ [0, 1]:

Kn (f ;x) := (n+ 1)

∞∑
k=0

(
n

k

)
xk (1− x)

n−k

k+1
n+1∫
k
n+1

f (s) ds, n ∈ N. (1.1)

In many papers various modifications of operators Kn (f) were introduced and
many authors studied their approximation properties in different function spaces
(see [4, 5, 9, 12, 13, 14, 15, 18]).
In papers [1, 2, 8, 11, 14, 15, 16, 17, 21] Szász-Mirakyan operators

Sn (f ;x) := e−nx
∞∑
k=0

(nx)k

k!
f

(
k

n

)
, x ∈ R0 = [0,∞) , (1.2)
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were studied for f ∈ Cp where Cp with fixed p ∈ N0 := {0, 1, 2, ...} denotes the
polynomial weighted space generated by the weight function

ω0 (x) := 1, ωp (x) := (1 + xp)
−1 , p ≥ 1, (1.3)

i.e. the space Cp is the set of all real-valued functions f continuous on R0 for ωpf
is uniformly continuous and bounded on R0. The norm in Cp is also defined by

||f ||p := ||f (.)||p := sup
x∈R0

ωp (x) |f (x)| . (1.4)

The degree of approximation of f ∈ Cp by the operators (1.2) were studied and it
was proved that

lim
n→∞

Sn (f ;x) = f (x) (1.5)

for every f ∈ Cp, p ∈ N0 and x ∈ R0. Moreover, the convergence in (1.5) is uniform
on every interval [x1, x2], x2 > x1 ≥ 0.
In [19] Szász-Mirakyan-Kantorovich operators were defined as

Tn (f ;x) := ne−nx
∞∑
k=0

(
n

k

)
(nx)k

k!

k+1
n∫
k
n

f (t) dt (1.6)

for x ∈ R0, p ∈ N0 and f ∈ L1 [0,∞)(see also some modified analogues of these
operators [3, 6, 10, 15, 21]).
In 2003, Walczak [20] introduced modification of the operators (1.2) with two

variables. In the paper he considered the space Cp,q, associated with the weight
function

ωp,q(x, y) := ωp(x)ωq(y), p, q ≥ 1, (x, y) ∈ R20 = R0 ×R0, (1.7)

and composed of all real-valued functions f continuous on R0, for wp,qf is uniformly
continuous and bounded on R20. The norm on Cp,q is defined as

||f ||p,q := ||f (., .)||p,q := sup
(x,y)∈R2

0

ωp,q (x, y) |f (x, y)| . (1.8)

Similarly, the modulus of continuity of f ∈ Cp,q is defined as usual by the formula

ω (f ;Cp,q; t, s) = ωp,q(x, y) := sup
0≤h≤t, 0≤δ≤s

||∆h,δf (., .)||p,q , ∀t, s ≥ 0, (1.9)

where ∆h,δf (x, y) := f (x+ h, y + δ)− f (x, y) for (x+ h, y + δ) ∈ R20. In addition
C1p,q is the set of all functions f ∈ Cp,q, which whose first partial derivatives belong
also to Cp,q. From (1.9) it follows that

lim
t,s→0+

ω (f ;Cp,q; t, s) = 0
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for every f ∈ Cp,q and p, q ∈ N0. In [20] Walczak introduced a modified Szász-
Mirakyan operators on Cp,q for m, n, r, s ∈ N , α > 0 and (x, y) ∈ R20

A∗m,n (f ; r, s;α;x, y) = 1
g((mαx+1)2;r)g((nαy+1)2;s)

×
∞∑
j=0

∞∑
k=0

(mαx+1)2j

(j+r)!
(nαy+1)2k

(k+s)! f
(

j+r
mαx+1 ,

k+s
nαy+1

)
,

(1.10)

where

g (t; r) :=

∞∑
k=0

tk

(k + r)!
, t ∈ R0 (1.11)

i.e.

g (0; r) =
1

r!
, g (t; r) =

1

tr

et − r−1∑
j=0

tj

j!

 , t > 0.

If f ∈ Cp,q and f (x, y) = f1 (x) f2 (y), then

A∗m,n (f ; r, s;α;x, y) = A∗m (f1; r;α;x)A∗n (f2; s;α; y) (1.12)

for all (x, y) ∈ R20 and m, n, r, s ∈ N .
Also he gave the theorems on the degree of approximation of functions from

polynomial and exponential weighted spaces by the operators (1.10). In his work
degree of these operators for approximation is similar but in some cases it is better
than for aproximation in [19].
The purpose of this paper is to introduce a modified Kantorovich-type of (1.10)

with two variables and also study convergence properties of the operators for func-
tions on Cp,q and C2p,q by using the methods in [6, 20, 21].

2. Auxiliary Results

In the sequel we shall need several lemmas, which are necessary to prove the main
theorems. Firstly we will give the moments of the operators. For this purpose we
introduce the following class of operators on Cp,q.

Definition 1. Let m,n, r, s ∈ N and p, q ∈ N0 and (mα) , (nα) be positive se-
quences such that lim

m→∞
mα = lim

n→∞
nα =∞ for α > 0. Then for f ∈ Cp,q we define

the modified Szász-Mirakyan-Kantorovich operators as

Am,n (f ; r, s, α;x, y) = Am,n (f ;x, y) := mn
g((mαx+1)2;r)g((nαy+1)2;s)

×
∞∑
j=0

∞∑
k=0

(mαx+1)2j

(j+r)!
(nαy+1)2k

(k+s)!

j+r+1
m∫

j+r
m

k+s+1
n∫

k+s
n

f
(

t
mαx+1 ,

u
nαy+1

)
dtdu,

(2.1)

where (1.11) holds.
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In this paper we use short notation

g
(
(mαx+ 1)2; r

)
g
(
(nαy + 1)2; s

)
= gm,r (x) gn,s(y).

Also, we will denote by Mk, k = 1, 2, ..., the suitable positive constants depending
only on the parameters p, q and r, s.
It is known that Am,n are positive linear operators acting from Cp,q to Cp,q a nd

we have
Am,n (1;x, y) = 1 (2.2)

for p, q ∈ R0, m,n, r, s ∈ N , α > 0 and (x, y) ∈ R20.
Other moments of Am,n(tk; r; s;x, y) can be obtained easily for k = 1, 2. From

(2.2) and (1.12) we get the following lemmas:

Lemma 1. Let m,n, r, s ∈ N be fixed numbers. Then for all (x, y) ∈ R20, f ∈ Cp,q
and α > 0 we have

Am,n ((t− x) ; r, s; ., .) = 1
mα + 1

2mα(mαx+1) + 1
mα(mαx+1)(r−1)!gm,r(x) , (2.3)

Am,n

(
(t− x)

2
; r, s; ., .

)
= 2

m2α +
(r−1)!gm,r(x)+3(r+1)+3(mαx+1)2

6m2α(mαx+1)2(r−1)!gm,r(x)

− 1
2m2α(mαx+1) −

(mαx+1)3(r−1)!−m2α(mαx+1)2

m2α(mαx+1)4(r−1)! + (mαx+1)2(r−1)!
m2α(mαx+1)4 .

(2.4)

Lemma 2. Let m,n, r, s ∈ N be fixed numbers. Then there exist βs,j (r) = rj−1

and βν,j (s) = sj−1 depending only j, r, s such that

Am,n
(
tu+1 + zν+1;x, y

)
=
(
x+ 1

mα

)u+1
u+1∑
j=1

1
(mαx+1)2(j−1)

(
ϕu,j +

γj
(mαx+1)2 +

βu,j(r)

(mαx+1)2(r−1)!gm,r(x)

)
+
(
y+ 1

nα

)ν+1
ν+1∑
j=1

1
(nαy+1)2(j−1)

(
ϕν,j +

γj
(nαy+1)2 +

βν,j(s)

(nαy+1)2(s−1)!gn,s(y)

)
(2.5)

for all f ∈ Cp,q, α > 0, 1 ≤ j ≤ r, 1 ≤ j ≤ s and (x, y) ∈ R20. Also βu,1 (.) , βν,1 (.)
and ϕu,j , ϕν,j , γj are positive constants and the others are equal to one.

Lemma 3. Let p, q ∈ N0 and m,n, r, s ∈ N be fixed numbers. Then for given
positive constants M2,M3 we have∣∣∣∣∣∣∣∣Am,n( 1

ωp,q (t, z)
; r, s; ., .

)∣∣∣∣∣∣∣∣
p,q

≤M2, m, n ∈ N (2.6)

and for all f ∈ Cp,q we obtain
||Am,n (f ; r, s; ., .)||p,q ≤M3 ||f ||p,q , m, n ∈ N . (2.7)
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Lemma 4. Let p, q ∈ N0 and m,n, r, s ∈ N be fixed numbers. Then for given
positive constants M4,M5 we have∣∣∣∣∣

∣∣∣∣∣Am,n
(

(t− .)2

ωp,q (t, z)
; r, s; ., .

)∣∣∣∣∣
∣∣∣∣∣
p,q

≤ M4

m2α
+
M5

n2α
, m, n ∈ N (2.8)

for all f ∈ Cp,q.

The methods used to prove the above Lemmas are similar to modified Szász-
Mirakyan operators for f in [14, 15, 20]. Thus their proofs are very obvious.

3. Approximation Behaviour of Operators

Our first main result is the following theorem for approximation behaviour of
Am,n.

Theorem 1. Let f ∈ C1p,q, α > 0 be with p, q ∈ N0 and r, s ∈ N . Then for a given
positive constant M6 we have

||Am,n (f ; ., .)− f (., .)||p,q ≤M6

{
1

mα
||f ′x||p,q +

1

nα
∣∣∣∣f ′y∣∣∣∣p,q} , m, n ∈ N . (3.1)

Proof. Let (x, y) ∈ R20 be a fixed point. Then for f ∈ C1p,q and (t, z) ∈ R20, t ≥ x,
α > 0 we get

f (t, z)− f (x, y) =

t∫
x

f ′u (u, z) du+

z∫
y

f ′v (x, v) dv. (3.2)

By linearity of Am,n, (3.2) we obtain

Am,n (f (t, z);x, y)− f (x, y)) = Am,n

(
t∫
x

f ′u (u, z) du;x, y

)
+Am,n

(
z∫
y

f ′v (x, v) dv;x, y

)
From (1.4) and (1.5) we have∣∣∣∣∣∣

t∫
x

f ′u (u, z) du

∣∣∣∣∣∣ ≤ ||f ′x||p,q
[

1

ωp,q (t, z)
+

1

ωp,q (x, z)

]
|t− x| , (x, y) ∈ R20. (3.3)

By (3.3) it follows that

ωp,q (x, y) |Am,nf (t, z);x, y)− f (x, y)|

≤ ||f ′x||p,q ωp,q (x, y)
{
Am,n

(
|t−x|

ωp,q(x,z)
;x, y

)
+Am,n

(
|t−x|

ωp,q(t,z)
;x, y

)} (3.4)
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for m,n ∈ N . Using the Hölder inequality, by Lemmas 1, 3, 4 and (2.2) we obtain

Am,n (|t− x| ;x, y) ≤
{
Am,n

(
(t− x)

2
;x, y

)} 1
2

{Am,n (1;x, y)}
1
2

≤ M7

mα .

Applying for the last inequality by (1.9), we get

ωp,q (x, y)Am,n

(
|t−x|

ωp,q(t,z)
;x, y

)
≤
{
ωp,q (x, y)Am,n

(
(t−x)2
ωp,q(t,z)

;x, y
)} 1

2

×
{
ωp,q (x, y)Am,n

(
1

ωp,q(t,z)
;x, y

)} 1
2

≤ M8

mα

(3.5)

for every (x, y) ∈ R20 implying

ωp,q (x, y)

∣∣∣∣Am,n( t∫
x

f ′u (u, z) du;x, y

)∣∣∣∣ ≤ M9

mα ||f
′
x||p,q , m,n ∈ N . (3.6)

Analogously we have

wp,q (x, y)

∣∣∣∣∣Am,n
(
z∫
y

f ′v (x, v) dv;x, y

)∣∣∣∣∣ ≤ M10

nα

∣∣∣∣f ′y∣∣∣∣p,q , m,n ∈ N . (3.7)

We combine (3.6) and (3.7) and derive from (3.3) that (3.1) is satisfied.
Now, we compute the rate of convergence of Am,n by means of the weighted

modulus of continuity given by (1.9). �

Theorem 2. Let f ∈ C1p,q and p, q ∈ N0, r, s ∈ N and α > 0. Then there exists a
positive constant M11 such that

||Am,n (f ; r, s; ., .)− f (., .)||
p,q
≤M11ω1

(
f ;Cp,q ;

1

mα
,

1

nα

)
, m, n ∈ N . (3.8)

Proof. Let fh,δ be the Steklov means of function f ∈ C1p,q defined by the formula

f
h,δ

(x, y) :=
1

hδ

h∫
0

du

δ∫
0

f (x+ u, y + v) dv, (x, y) ∈ R20, h, δ > 0. (3.9)
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From (3.9) we get

∂

∂x
f
h,δ

(x, y) = (fh,δ)
′
x (x, y) =

1

hδ

h∫
0

∆
h,0
f (x+ u, y) du,

∂

∂y
f
h,δ

(x, y) = (fh,δ)
′
y (x, y) =

1

hδ

δ∫
0

∆
o,δ
f (x, y + v) dv,

which imply f
h,δ

(x, y) ∈ C1p,q for every fixed h, δ > 0. Also we have∥∥f
h,δ
− f

∥∥
p,q
≤ ω (f ;Cp,q;h, δ) , (3.10)∣∣∣∣(fh,δ)′x∣∣∣∣p,q ≤ 2h−1ω (f ;Cp,q;h, δ) , (3.11)∣∣∣∣∣∣(fh,δ)′y∣∣∣∣∣∣

p,q
≤ 2δ−1ω (f ;Cp,q;h, δ) . (3.12)

Hence by the last inequalities we can write

ωp,q (x, y) |(Am,n(f ; r;x, y)− f(x, y))|

≤ ωp,q (x, y) {|Am,n (f(t, z))− fh,δ(t, z);x, y)| + |Am,n (fh,δ(t, z);x, y)− fh,δ (x, y)|

+ |fh,δ (x, y)− f (x, y)|} := L1 + L2 + L3
(3.13)

for every m,n ∈ N, h, δ > 0 and (x, y) ∈ R20. For L1 and L3, by using Lemma 3
and (3.10), we get

‖L1‖p,q ≤ M12 ‖f − fh,δ‖p,q ≤M12ω (f ;Cp,q;h, δ) ,

‖L3‖p,q ≤ ω (f ;Cp,q;h, δ) .

Similarly, by Theorem 1 and (3.11),(3.12) we have

‖L2‖p,q ≤M13

{
1
mα

∥∥(fh,δ)
′
x

∥∥
p,q

+ 1
nα

∥∥∥(fh,δ)
′
y

∥∥∥
p,q

}
≤ 2M14ω (f ;Cp,q;h, δ)

(
1

mαh + 1
nαδ

)
, h, δ > 0, m, n ∈ N.

(3.14)

Hence, from (3.14) for (3.13) it follows that

‖Am,n (f ; r, s, α; ., .)− f (., .)‖p,q ≤M15

(
1 +

1

mαh
+

1

nαδ

)
ω (f ;Cp,q;h, δ) .

Now, for fixed m,n ∈ N , substitution of h = 1
mα and δ = 1

nα in the last in-
equality, we obtain the desired result of (3.8). This completes the proof of Theorem
2. �

The following corollories are immediate consequences of Theorem 1 and 2.
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Corollary 1. For every fixed numbers r, s ∈ N, p, q ∈ N0 and f ∈ Cp,q, we have

lim
m,n→∞

||Am,n (f ; r, s; ., .)− f (., .)||p,q = 0. (3.15)

Corollary 2. For every fixed numbers r, s ∈ N, p, q ∈ N0 and f ∈ C1p,q, we have

||Am,n (f ; r, s; ., .)− f (., .)||p,q = o

(
1

mα
,

1

nα

)
(3.16)

as m,n→∞.
Now we will prove the following Voronovskaya-type theorem.

Theorem 3. Let f ∈ C2p,q be with given p, q ∈ N0 and r, s ∈ N . Then for every
(x, y) ∈ R20

lim
n→∞

nα {An,n (f ; r, s;x, y)− f (x, y)} =
x

2
f ′′xx (x, y) +

y

2
f ′′yy (x, y) . (3.17)

Proof. Let (x, y) be a fixed point in R20. Then, by the Taylor formula we can write

f (t, z) = f ( x, y) + f ′x (x, y) (t− x) + f ′y (x, y) (z − y) + 1
2

{
f ′′xx (x, y) (t− x)

2

+2f ′′xy (x, y) (t− x) (z − y) + f ′′yy (x, y) (z − y)
2
}

+ε (t, z;x, y)
{

(t− x)
4

+ (z − y)
4
} 1

2

for f ∈ C2p,q, (t, z) ∈ R20 where ε (., .;x, y) ≡ ε (.; .) ∈ C1p,q is function such that

lim
(t,z)→(x0,y0)

ε (t, z;x, y) = 0.

Applying (2.1) to the last equality, we get

An,n (f ;x, y)− f (x, y) = f ′x (x, y)An,n ((t− x) ;x, y) +f ′y (x, y)An,n ((z − y) ;x, y)

+ 1
2

{
f(x, y)′′xx (x, y)An,n

(
(t− x)

2
, x, y

)
+2f ′′xy (x, y)An,n((t− x) (z − y) ;x, y)

+f ′′yy (x, y)An,n((z − y)
2

;x, y)
}

+An,n

(
ε (t, z)

√
(t− x)

4
+ (z − y)

4
;x, y)

)
:= L1 + L2 + L3 + L4 + L5 + L6.

From (3.2),(3.3) and Lemma 1, the limit of the L1, L2 and L4 are equal to zero as
n→∞ and

lim
n→∞

nαL3 = x, lim
n→∞

nαL5 = y.
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For the right term in the last equation by the Hölder inequality we obtain

|L6| ≤ 2
{
An,n(ε2 (t, z);x, y)

} 1
2

{
An,n

(
(t− x)

4
+ (z − y)

4
;x, y

)} 1
2

By Corollary 1 and properties of ε (., .) we deduce that

lim
n→∞

An,n
(
ε2 (t, z) ;x, y

)
= ε2 (x, y) = 0.

From this, the linearity of An,n and Lemma 1 we have

lim
n→∞

nαAn,n

(√
(t− x)

4
+ (z − y)

4
;x, y)

)
= 0.

Collecting these results, we immediately obtain the desired result (3.17).
In this paper, Theorem 1, 2 and Corollary 2 show that our operator Am,n,m, n ∈

N , give better degree of approximation of functions f ∈ Cp,q and f ∈ C1p,q than
classical Szász-Kantorovich operators. �
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[5] Erençin, A. , Tunca, G.B. and Taşdelen, F., Kantorovich type q-Bernstein-Stancu operators,
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