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Abstract: Time series data is observed in many different areas such as communication systems, signal 

processing, climate data and earthquake data. Statistical modeling and analysis of time series data includes 

transformation of the data into stationary times series and fit the time series model to the transformed data. 

Autoregressive Moving Average (ARMA) model is one of the most often used to fit the time series data. The 

proper estimation of the coefficients in the time series model is one of the important steps of modeling. In this 

study, a novel technique for estimating the coefficients of non-Gaussian ARMA model using higher order 

moments of the observed data. The proposed ARMA coefficients estimator is based on building a special matrix 

with entries of higher order moments of the observed output only. The observed output data may be corrupted 

with additive white Gaussian noise. Simulation results promise that the proposed method achieves performance 

comparable to existing well-known methods even when the available output signal is heavily corrupted with 

additive white Gaussian noise. 
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Introduction 

 

Time series data is observed in many different areas such as communication systems, signal processing, climate 

data and earthquake data. Statistical modeling and analysis of time series data includes transformation the data 

into stationary times series and fit the times series model to the transformed data. Autoregressive Moving 

Average (ARMA) model is one of the most often used to fit the time series data (Al-Smadi & Wilkes, 2002; 

Wang et al. 2017). ARMA model is important and extremely useful in modeling predicting future values of a 

time series. The proper estimation of the coefficients in time series model is one of the important steps of 

modeling. The literature has a lot of papers that deals with the estimating of the coefficients of a general ARMA 

model using second order and third order moments (or cumulants) (Giannakis & Mendel, 1989; Swami & 

Mendel,1990; Wang et al. 2017).  

 

The second order statistics work fine if the analyzed signal has Gaussian probability density function since all of 

its properties determined by the first and second order moments (Al-Smadi & Smadi, 2003). However, there are 

many real-life situations where the signal is non-Gaussian. Even though Gaussian random process still plays a 

significant role when processing data, non-Gaussian random processes and higher order moments are of 

increasing interest. Giannakis and Mendel (1989) proposed a Residual Time Series (RTS) procedure for the 

identification of linear time invariant (LTI) nonminimum phase systems using second and third order moments 

when only output data are available. They assumed that the order is given in modeling an autoregressive 

moving-average process. The basic idea of the algorithms in literature is to estimate the AR coefficient. Then, a 

residual MA time series is formed. Finally, the MA coefficients are estimated.  

 

In system identification, the use of the Cholesky decomposition in the prediction and estimation of ARMA time 

series was used by Ansley (1976). He applied the Cholesky decomposition to the problem of estimating the 
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likelihood function of the MA and the ARMA models. Parzen and Pagano (1979) used Cholesky decomposition 

for obtaining predictors. Lee et. al. (2017) proposed linear models with a covariance matrix that is modeled 

using the coefficients of an ARMA Cholesky decomposition (ARMACD). These models allow for non-

stationary processes.  

 

In this paper, a novel technique for estimating the coefficients of non-Gaussian ARMA model using higher 

order moments of the observed data. The proposed ARMA coefficients estimator is based on building a special 

matrix with entries of higher order moments of the observed output time series data only. The observed output 

time series data may be corrupted with additive white Gaussian noise (Vinothkumar & Manoj, 2024). 

Simulation results promise that the proposed method is based on the Cholesky decomposition and achieves good 

performance comparable to existing well-known methods even when the available output signal is heavily 

corrupted with additive white Gaussian noise. Section 2 presents the problem formulation.  

 

 

Problem Formulation 

 

A general model for Autoregressive Moving Average (ARMA) model can be represented as follows: 

 

A(
1−z )x(n) = C(

1−z )w(n)                                                                                             (1) 

 

where x(n) is the observed noiseless output data. The input signal w(n) is zero-mean, white noise, and non-

Gaussian random process. The 
1−z  is the backward shift operator, that is,  

 
1−z x(n)= x(n-1)                                                                                                              (2) 

 

A(
1−z )=  1+a1

1−z + a2
2−z +… ap

pz−                                                                          (3) 

 

C(
1−z )= b0 + b1

1−z + b2
2−z +…bq

qz−                                                                          (4) 

 

In this system, the ai and bi are the coefficients of the ARMA model, while p and q are the orders of the 

denominator and numerator polynomials, respectively. In this study, it is assumed that the orders p and q are 

known. The output signal x(n) is observed in additive white Gaussian noise e(n) as follows: 

 

y(n)= x(n) + e(n)                                                                                                              (5) 

 

The relationship of (1) can be rewritten in matrix form as follows, assuming the length of the sequence is N. 

 

[ qpWY ] pq = e                                                                                                              (6) 

Or 

 

eR pqpq =                                                                                                                     (7) 

 

where pqR is a composite data matrix such that  

 

pqR = [ qpWY ]                                                                                                                 (8) 
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 = [1 a1 … ap   – b0… -bq]T                                                                                          (11) 

 

  is the coefficients vector, and e is an 1N  observation and/or modeling error vector. 

 

 

Proposed Algorithm 
 

Let y(k) be a zero-mean kth-order stationary random process, then the kth-order cumulant of this process is 

defined as the joint kth-order cumulant of the random variables y(k), y(k+t1), y(k+t2),    ,y(k+tN-1). That is 

(Mendel, 1991) 

=− ),,,( 121 N

y

k tttc  )(,),(),(( 11 −++ NtkytkykyCum                                 (12) 

 

which depends only on the time difference t1, t2, tN-1, because of the stationarity assumption. Now, if y(k) is 

stationary random process and its moments up to order N exist, then the following relationships between 

moment and cumulant sequences of y(k) exist (Nikias & Mendel, 1993). The first order cumulant (mean value): 

 

)}({11 kyEmc yy ==                                                                                                  (13) 

 

The second order cumulant (covariance sequence): 

 
2

11212 )()()( yyy mtmtc −=                                                                                            (14) 

where )( 12 tm y
is the autocorrelation. 

 

The third order cumulant: 

 

=),( 213 ttc y  −),( 213 ttm y
++ )()([ 22121 tmtmm yyy

 
3

1212 )(2)]( yy mttm +−          (15) 

If the process y(k) is zero-mean, 01 =
ym , then the second order and third order cumulants are identical to the 

second and third order moments. Hence, from Equation (12), 

 

Cum{y(n)} = Cy =E[y(n)y(n+m)y(n+k)]                                                                       (16) 

 

where the operator E[.] represents the average value. The third order cross-cumulant between the signal y(k) and 

the signal w(k) is given by  

 

Cyww(m,k) = E[y(n)w(n+m)w(n+k)]                                                                              (17) 

 

Multiplying both sides of (5) by y(n+m)y(n+k), we obtain 

 

y(n) y(n+m)y(n+k) = x(n) y(n+m)y(n+k) +  e(n)y(n+m)y(n+k)                                   (18) 

 

Substituting Equation (5) into the first part of the right side of Equation (18), 

 

y(n) y(n+m)y(n+k)  = x(n)[x(n+m) + e(n+m)][ x(n+k) + e(n+k)]  +e(n)y(n+m)y(n+k) (19) 

 

Simplifying (19) and taking the expected value will result in   
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E[y(n) y(n+m)y(n+k)] =   E[x(n) x(n+m)x(n+k)] + E[x(n) x(n+m)e(n+k)] + E[x(n) e(n+m)x(n+k)] + E[x(n) 

e(n+m)e(n+k)] + E[e(n) y(n+m)y(n+k)]                                                                                                             (20) 

 

Since the additive Gaussian noise, e(n), is independent of both signals x(n) and y(n), then the second, third, 

fourth, and fifth terms on the right-hand side of Equation (20) go to zeros. Hence, the cumulants of the corrupted 

sequence y(n) and the noiseless sequence x(n) are theoretically are equal; i.e., 

 

Ry(m,k) = Rx(m,k)                                                                                                          (21) 

 

Now, multiplying both sides of Equation (1) by x(n+m)x(n+k) and taking expected value gives 

 

Rx(m,k) = -a1 Rx(m+1,k+1) -…- ap Rx(m+p,k+p) + b0 Rwxx(m,k) +… + bq Rwxx(m+q,k+q) (22) 

 

By arranging Equation (22) for several values of m and k, the system in (22) can be as follows. 

 

r = -(RX) a +(RWXX) b                                                                                                   (23) 

 

where r  is a vector containing third order cumulants at m = k = 0, RX is a matrix containing the third order 

cumulants of the output data and RWXX is a matrix containing the third order cross cumulants of the input and 

output signals. Equation (23) can be written as 

 

r = pqR                                                                                                                     (24) 

 

where Rpq is a composite data matrix  

 

Rpq = [RX  RWXX]                                                                                                             (25) 

 

The vector    contains the ARMA coefficients  

 

  = [-a     b]T                                                                                                                (26) 

 

Multiplying both sides of (24) by (Rpq)T 

 

rRRR T

pqpq

T

pq )()( =                                                                                           (27) 

 

Let 

G = pq

T

pq RR )(                                                                                                            (28) 

 

Then 

rRG T

pq )(=                                                                                                            (29) 

 

Now, let  the right hand side of Equation (29) be 

 

 rR T

pq )(=                                                                                                              (30) 

 

Hence, Equation (29) becomes 

 

 =G                                                                                                                       (31) 

 

The matrix G can be decomposed Cholesky decomposition (Higham, 2009). 

 

G= LLT                                                                                                                          (32) 

 



International Conference on Basic Sciences, Engineering and Technology (ICBASET), May 01-04, 2025, Trabzon/Türkiye 

5 

 

Now, substitute (32) into (31) yields 

 

 =TLL                                                                                                                     (33) 

Now, let 

 

TLd =                                                                                                                       (34) 

 

We first solve the following using forward substitution,                    

 

=dL                                                                                                                         (35) 

 

The, we solve the second part for  using back substitution 

 

dLT =                                                                                                                        (36) 

 

The vector contains the desired parameters. 

 

 

Results and Discussion 
 

The proposed technique for estimating the coefficients of non-Gaussian ARMA model using higher order 

moments of the observed data has been examined for several cases. A comparison of the performance of the 

Cholesky decomposition-based (CHDB) algorithm with the Residual Time Series (RTS) algorithm has been 

made for different SNRs on the output signal. The command armarts commands were used from was used from 

the Higher-Order Spectral Analysis Toolbox User’s Guide (Swami et al. 1998) to estimate the ARMA 

coefficients using the RTS method. All the results were taken as the mathematical average of 100 Monte Carlo 

runs. The computations were performed in MATLAB. 
 

Example 1. The data was generated according to the model  

 

x(n) + 0.3x(n − 1) + 0.25x(n − 2) = w(n) +0.95 w(n-1) +0.65w(n-2)                          (37) 

 

This is an ARMA (2,2) which has two poles and two zero. The poles are located at  0.5
107je . The zeros are 

located at 0.81
126je . The input time series data was drawn from a zero-mean non-Gaussian distribution. The 

exponential distribution was used. The next step was to the input time series through the system in (37). Then, 

the output of the system was corrupted with additive white Gaussian noise at signal to noise ratio of 20 dB on 

the output sequence. To estimate the ARMA coefficients, the composite higher order statistics (or cumulants) 

matrix Rpq in Equation (25) must be built. The matrix RX consists of third order cumulants of the observed 

output time series data.  

 

The matrix RWXX consists of third order cross-cumulants of the unseen input time series and the observed output 

time series data.  To estimate the input time series data, the method in Al-Smadi (2003) was used. Simulation 

with noise realizations based on different seed values was performed 100 times. The ARMA coefficients were 

estimated using the RTS and the proposed Cholesky decomposition-based (CHDB) algorithms at SNR of 20 dB 

on the output time series sequence. The average results of 100 Monte Carlo simulations for the RTS and the 

proposed CHDB algorithms at SNR of 20 dB on the output sequence are displayed in Table 1. 

 

Table 1. True and estimated ARMA (2,2) model coefficients in Example 1 

 True CHDB Method RTS Method 

a(1) 0.3 0.2646 0.1865 

a(2) 0.25 0.2511 0.2377 

b(1) 0.95 0.9152 0.8517 

b(2) 0.65 0.6288 0.5677 
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Conclusion  
 

This paper presented a technique to estimate the coefficients of a general ARMA process. The proposed method 

uses the Cholesky decomposition of a special matrix with entries of higher order cumulants (HOC) of the 

available output data. The available output data may be contaminated by additive white Gaussian noise of 

unknown power spectral density. The simulation results prove the effectiveness of the proposed technique 

compared to the RTS, a well-known method in higher order spectral analysis. 
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