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ABSTRACT OZET

FOXM1, a transcription factor from the Forkhead box family, serves FOXM1, Forkhead box ailesinden bir transkripsiyon faktorii olup,
as a crucial proto-oncogene that plays a role in cancer advancement, cesitli insan malignitelerde kanserin ilerlemesi, uzak bolgelere
spread to distant sites, and resistance to chemotherapy across various yayilmas1 ve kemoterapiye kars1 direng gelismesinde rol oynayan
human malignancies. The development of selective and kritik bir proto-onkogendir. Segici ve terapdtik olarak etkili FOXM1
therapeutically efficient FOXMI1 inhibitors remains a significant inhibitdrlerinin gelistirilmesi bu alanda 6nemli bir zorluk olmaya
challenge in the field. This study employed a multi-step devam etmektedir. Bu ¢aligma, FOXM1’in DNA-baglama alanini
computational approach to identify novel small-molecule (DBD) hedefleyen yeni kiigiik molekiil bilesiklerini belirlemek igin
compounds that target the DNA-binding domain (DBD) of FOXM1. ¢ok asamali bir hesaplamali yaklasgim kullanmigtir. FOXMI1’in
A structure-guided virtual screening process was conducted using an DNA-baglama alaninin kristalografik yapisina (PDB ID: 3G73)
extensive chemical compound database, evaluated against the kars1 genis bir kimyasal bilesik veritabani kullanilarak yapi-glidiimlii
crystallographic structure of FOXM1’s DNA-binding domain (PDB sanal tarama islemi ger¢eklestirilmistir. En yiiksek siralamaya sahip
ID: 3G73). The top-ranking compounds underwent preliminary 10- bilesikler,  Oncelikle  10-nanosaniye  degerlendirmelerinden
nanosecond evaluations, subsequently followed by comprehensive gecirilmis, ardindan kapsamli 100-nanosaniye molekiiler dinamik
100-nanosecond molecular dynamics (MD) simulations. The (MD) simiilasyonlari ile takip edilmistir. Termodinamik olarak en
binding affinities of the most thermodynamically stable protein- kararli1 protein-ligand komplekslerinin  baglanma afiniteleri
ligand complexes were determined through MM/GBSA MM/GBSA hesaplamalari ile belirlemistir. On hesaplamali tarama,
calculations. The preliminary computational screening revealed 21 -9.1 kcal/mol'den daha iyi docking skorlar1 gosteren 21 bilesik
compounds that exhibited docking scores superior to -9.1 kcal/mol. ortaya ¢ikarmistir. 10 ns MD simiilasyonlar1 sonrasinda bes bilesik
Following 10 ns MD simulations, five compounds were selected, secilmis ve 100 ns MD simiilasyonlar1 bu iki bilesigin
and 100 ns MD simulations confirmed the stable binding of these (comp 105546, comp 112458) kararli baglanmasini dogrulamistir.
two compounds (comp 105546, comp 112458). MM/GBSA MM/GBSA hesaplamalart comp 112458’i en giiclii baglayict (-
calculations identified comp 112458 as the most potent binder (- 36.2543.5 kcal/mol) olarak belirlemistir. Bu ¢alisma, FOXM1’e
36.25+3.5 kcal/mol). This study successfully identified novel kars1 ytiksek ongoriilen afinite ve kararli baglanma modlari olan yeni
chemical scaffolds with high predicted affinity and stable binding kimyasal iskeletleri basariyla tanimlamis ve hedefli antikanser
modes against FOXMI, providing a strong foundation for the ajanlarinin gelistirilmesi i¢in giiglii bir temel saglamistir. Bu umut
development of targeted anticancer agents. These promising verici hesaplamali sonuglarin in vitro ve in vivo caligmalarla
computational results require validation through in vitro and in vivo dogrulanmasi gerekmektedir.
studies.
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INTRODUCTION

The Forkhead box (FOX) family of transcription

factors represents a large family of evolutionarily
conserved proteins which control various cellular
functions such as cell division cycles, cellular
specialization, programmed cell death, and metabolic
processes. Among the FOX family members, Forkhead
box M1 (FOXM1) is currently acknowledged as an
essential cancer-promoting gene. FOXM1 represents a
vital growth-related protein that is abnormally elevated
in most human cancers and controls various cancer cell
behaviors, such as proliferation, spreading, relapse, and
stem cell characteristics.

Under normal physiological conditions, FOXMI
expression is tightly regulated and restricted to
proliferating cells, with maximum levels occur during
the S and G2/M stages of cell division. Nevertheless,
FOXMI1 shows abnormal elevation across numerous
types of human cancers and, functioning as a gene
regulator, it controls various target genes whose
disruption contributes to virtually all cancer
characteristics." A strong link exists between this
dysregulated expression and aggressive tumor
characteristics, such as increased proliferation,
invasion, metastasis, angiogenesis, and resistance to
both chemotherapy and radiotherapy.

Recent studies have further elucidated FOXM1’s role in
cancer  biology and  therapeutic  resistance.
Chemoresistance to various anti-cancer drugs is linked
to FOXM1 expression; additionally, multiple studies
have verified that inhibiting FOXM1 improves the drug
sensitivity of different cancer cell types.! Additionally,
FOXM1 is frequently found at elevated levels in human
malignancies and is closely linked to treatment
resistance and reduced patient survival rates,
particularly affecting chemotherapy effectiveness for
patients with the most aggressive forms.

The development of FOXM1 inhibitors has been an
active area of research, with several approaches being
pursued. Recent evidence indicates that combining
small molecular compounds that block FOXM1 with
existing cancer treatments could offer a new treatment
approach for chemotherapy-resistant cancers.! Recent
advances have led to the identification of several
promising compounds, including STLOO1, an initial-
generation modified compound that enhances human
cancer susceptibility to various cancer treatments, along
with NB compounds?, which demonstrate strong and
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effective FOXM1 blocking activity in aggressive serous
ovarian cancer cells.'

Even with these advancements, developing effective
FOXMI1 inhibitors still faces considerable hurdles.
FOXMI-targeting small molecular compounds
encounter numerous obstacles, and existing research
shows these inhibitors at various developmental phases,
requiring examination of present difficulties and future
clinical implementation strategies for FOXMI
inhibition." Importantly, while several small-molecule
FOXMI1 inhibitors have been tested in laboratory
settings, none have reached clinical trials, underscoring
the pressing need for innovative chemical structures that
possess better drug-like qualities and greater therapeutic
promise.” Computational drug discovery approaches
have emerged as powerful tools for identifying novel
inhibitors and overcoming traditional drug development
challenges. During the initial phases of pharmaceutical
development, structure-guided virtual screening
functions as an essential methodology.! Recent
technological advances have significantly enhanced
these capabilities, with recently available open-source
Al-enhanced  virtual screening  systems  for
pharmaceutical research are now accessible.'

The incorporation of Al and machine learning has
dramatically  transformed computer-based drug
discovery processes. Virtual screening represents a
fundamental and continuously developing component
of drug discovery methodology, where artificial
intelligence plays a broad role in pharmaceutical
research to minimize time and resource usage, and when
combined with machine learning techniques, VS has
evolved into an innovative technology that operates
through sophisticated decision-making processes for
data organization and compound identification from
extensive virtual libraries within minutes or hours.’
These advances are particularly important considering
the major transformation toward  adopting
computational in both
pharmaceutical sectors, characterized primarily by the
overwhelming amount of information regarding
and their
and their
configurations, extensive computational resources, and

methods academic and

interactions with
three-dimensional

molecular properties
therapeutic  targets

the emergence of accessible virtual collections
containing billions of drug-like small compounds.®

Recent computational studies have demonstrated the
feasibility of identifying novel FOXMI inhibitors



through in silico approaches. Studies have successfully
focused on discovering possible FOXM1 blocking
compounds through computer-based analysis of drug
databases, utilizing pharmacophore modeling with the
FOXM1 inhibitor FDI-6, and subsequently conducting
virtual screening of DrugBank and Selleckchem
repositories.” These studies validate the potential of
computational approaches for FOXMI inhibitor
discovery and demonstrate the successful application of
integrated computational methodologies.

This research utilizes a thorough computational
that
screening, all-atom molecular dynamic molecular
modeling and Molecular Mechanics/Generalized Born
Surface Area (MM/GBSA)-based binding energy
computations. Our objective is to discover potent lead

workflow integrates  structure-based virtual

compounds with stable binding modes and favorable
drug-like properties that could serve as starting points
for the development of next-generation FOXMI-
targeted cancer therapeutics.

METHODS

Ethical approval

This study does not require ethical approval as it is a
computational study.

Protein structure preparation

Coordinates for the 3D configuration of the human
FOXM1 DNA-binding region were procured from the
RCSB Protein Data Bank (PDB ID: 3G73).® This crystal
structure, resolved at 2.21 A, features the FOXM1 DBD
in complex with a DNA duplex. For ligand docking
purposes, the protein structure was prepared using
standard protocols. All non-protein entities including
DNA chains, water molecules, and co-solvents were
removed. Hydrogenation was performed and
protonation states of ionizable amino acids were
assigned assuming physiological pH 7.4.°

Ligand library and virtual screening

A diverse library of 104,525 small molecules was
prepared for virtual screening, with all compound
structures sourced from the Human Metabolome
Database (HMDB)."” The ligands were extensively
refined using Open Babel'' before the docking process.
This refinement workflow involved generating 3D
coordinates from the initial 2D structures, adding
hydrogen atoms assuming a physiological pH of 7.4,
and then performing energy minimization with the
MMFF94 force field to obtain a stable, low-energy
initial conformation for each ligand.

65

Following this preparation, the Amber ff94 force field"
was employed to assign atomic partial charges to both
the protein receptor and the refined ligands, a critical
step for an accurate representation of electrostatic
interactions. Structure-based virtual screening on the
prepared library was then conducted using the Qvina
software."® The search space was defined by a grid box
of 20x20x20 A, centered on the known inhibitor
binding site within the FOXM1 DBD. The docking
algorithm in Qvina evaluated multiple binding poses for
each of the 104,525 ligands, and these poses were
subsequently ranked based on the software’s empirical
scoring function to identify potential inhibitors.
Molecular dynamics simulations

A multi-stage simulation protocol was used to screen
and analyze promising compounds. Initially, the top 21
compounds selected from docking (with binding scores
of -8.0 kcal/mol or better) were subjected to a short 10
nanosecond molecular dynamics simulation. The
binding free energy of each of these 21 complexes was
then calculated from its trajectory using MM/GBSA
method. Based on these energy values, compounds
exhibiting the most favorable binding were selected for
extended analysis. Top five compounds (comp 105546,
comp 11184, comp 11309, comp_ 18920,
comp_112458), along with the reference inhibitor FDI-
6, were submitted to 100-ns production MD simulations
for a thorough assessment of their dynamic behavior and
stability.

The GROMACS 2020 software was utilized for
conducting all simulations.'* The protein complexes
were modeled using the Amber99SB-ILDN force
field."> Each system was positioned in an orthorhombic
box, hydrated with TIP3P water molecules'® and
neutralized with counterions, then sodium and chloride
ions were added to reach 150 mM concentration. The
hydrated system was energy-minimized using steepest
descent, followed by NVT equilibration (100 ps) and
NPT equilibration (1000 ps) before the final molecular
dynamics simulation.

Post-MD trajectory analysis

Complex stability was assessed through analysis of 100
ns molecular dynamics trajectories. RMSD values for
protein backbone and ligand heavy atoms were
determined relative to starting positions. Radius of
gyration was calculated to evaluate protein compactness
and structural integrity. RMSF values for individual
residues were computed to identify flexible areas.



MM/GBSA binding energy computation

Binding free energies for stable protein-ligand
complexes were computed using the MM/GBSA
approach implemented in gmx _mmpbsa tool."”
MM/GBSA models provide rapid and cost-effective
ligand binding energy prediction methods, with
calculations being about 5 times faster than MM-PBSA.
Computations were conducted on snapshots from the

final 10 ns of molecular dynamics trajectories.

RESULTS and DISCUSSION

Virtual screening identifies high-affinity candidate
inhibitors

Structure-guided virtual screening was performed to
discover potential FOXM1 blocking compounds from

an extensive chemical database. The docking results
yielded compounds with favorable predicted binding
energies. The top 21 compounds exhibited docking
scores ranging from -9.1 to -8.0 kcal/mol, indicating
strong theoretical affinity for the target binding site
(Figure 1A). The overall distribution of docking scores
was skewed, with a large peak of compounds scoring
around -2 kcal/mol, and a long tail extending towards
higher affinity scores (Figure 1B). The selected hits
represent the high-affinity tail of this distribution,
suggesting statistical significance.

A No Ligand Name Score B H lstogram
1 comp_19627 -9.1 14000
2 comp_13039 -9
3 comp_20481 -8.8
4 comp_112458 -8.6 12000 -
5 comp_2821 -8.4
6 comp_11671 -8.4
7 comp_11744 -8.4 10000
8 comp_15258 -8.3
9 comp_18303 -8.2
10 comp_9773 8.1 = 8000 -
11 comp_11964 -8.1 8
12 comp_21159 -8.1 O
13 comp_22007 -8.1 6000 +
14 comp_105546 -8.1
15 comp_1779 -8
16  comp_2857 -8 4000 +
17 comp_11184 -8
18 comp_11309 -8
19 comp_18920 -8 2000+
20 comp_112423 -8
21 comp_112430 -8 0

-10

Figure 1. Virtual screening results

-6 -4 -2 0
Docking Score (kcal/mol)

(A) Table showing the top 21 compounds identified from virtual screening, ranked by their docking score (kcal/mol), (B) Histogram illustrating
the distribution of docking scores across the entire screened compound library, The x-axis represents the docking score, and the y-axis represents

the count of compounds within each score bin

The histogram analysis in Figure 1B demonstrates that
the vast majority of screened compounds exhibited
moderate to poor binding scores, with only a small
fraction achieving the high-affinity scores observed in
our selected candidates. This distribution pattern
validates the screening methodology and confirms that
our top-ranked compounds represent genuine high-
affinity outliers rather than computational artifacts.
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screening,  five

comp 11184,

Following initial compounds
(comp_105546, comp_11309,
comp 18920 and comp 112458) were selected for
molecular dynamics simulations based on docking
scores, structural diversity, and visual inspection of
binding poses. The chemical structures and identifiers
for these compounds are provided in Table 1.



Table 1. HMDB and SMILE codes of compounds with the best scores and stability

Compound HMDB code Smile code 2D Conformation

comp_11184 HMDB0030068 ccl=cc2c(c(oc3=cc(=cc(0)=
€23)c2=cc3=c(02)c=c(0)c=c
3)c2=c(0)c=c(c=c20)c2=cc3
=c(02)c=c(o)c=c3)c(c)(c)cl

comp_11309 HMDB0030196 ccl=cc(o)=c2c(=0)c3=c(o)c(
c4dcceccend)=c(o0)c4=c3c3=c2c
1=c1c(c)=cc(0)=c2c(=0)c5=c
(o)c(c6ceeen6)=c(o)c4=c5¢c3

=c12

comp_18920 HMDB0038220 ccn(ccl=cc(=cc=c1)s(o)(=0) 0:1):0
=0)cl=cc=c(c=cl)c(cl=cc(=
c(o)c=c1)s(o)(=0)=0)=clc=c Q

c(c=c1)=[n+](cc)ccl=cc(=cc o/s\\o

=c1)s([o-])(=0)=0 ﬁ(l O NW

comp_105546 HMDB0126209 [c]1=c([c]=c(c(=c1o)[c]1[c]=cC
([eDcllc@]([c]1c(=o)[o])(c1= N
c([c]=c([c]=[c]1)o)o)o)o)cl=] o
c]c2=[c][c]=c(c(=c201)[c][c]= 0
c([eDlcholc]1[cl([c]([c]([c](o1
)c(=o)[o])o)o)o

comp_112458 HMDB0135052 [c]ic2c¢(c(c(c(c20[c]([c]1o)c
1=[c]c(=[c][c]=[c]1)o)[c]1c2=
c([c]=c([c]=[c]2)o)o[c]([c]10)
c1=[c][c]=[c]c(=[c]1)o[c]1[c](
[c]([c]([c](o1)c(=0)[0])0)o)o)o
)[c]1c2=[c][c]=c([c]=c2o0[c]([c
[1o)c1=[c][c]=[c]c(=[c]1)o)o)

0 o
o \7
o o
o
This approach is consistent with recent successful our screening methodology is supported by the skewed
virtual screening studies for other cancer targets.'® The distribution of docking scores, which also indicates that
virtual screening campaign successfully identified high- our chosen compounds are authentic high-potential
scoring compounds, representing the statistical high- candidates and not merely computational artifacts.

affinity tail of the screening library. The validation of
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Molecular dynamics simulations validate complex
stability

To evaluate the dynamic stability of ligand-protein
interactions predicted by docking, 100 ns all-atom MD
simulations were performed for the five selected
compounds and the reference inhibitor FDI-6 in
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complex with the FOXM1 DBD. The stability of each
system was assessed by monitoring RMSD of protein
backbone and ligand heavy atoms over the simulation
period.
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Figure 2. Molecular dynamics simulation analysis of FOXM1-ligand complexes over 100 ns

(A) Protein backbone RMSD trajectories showing equilibration within 20 ns for all complexes, with comp 18920 (blue) displaying the largest
deviation (~0.55 nm) and comp_112458 (pink) showing fluctuations exceeding 0.4 nm while maintaining overall protein fold, (B) Ligand heavy
atom RMSD demonstrating stable binding for comp 105546 (green) and comp 112458 (pink), contrasting with unstable profiles of FDI-6 (black)
and comp 11309 (yellow) indicating dissociation tendency, (C) Per-residue RMSF analysis revealing higher terminal flexibility and critically, low
fluctuation values in the binding pocket region (residues 280-310) for stable ligands, indicating effective binding site stabilization, (D) Radius of
gyration (Rg) maintaining values around 1.35-1.37 nm throughout simulations, confirming absence of major structural unfolding in all complexes

For the protein backbone RMSD (Figure 2A), all six
complexes equilibrated within the first 20 ns.
Comp_ 18920 (blue line) displayed the largest deviation,
reaching = 0.55 nm after 80 ns. Comp_ 112458 (pink
line), showed more significant fluctuations that
exceeded 0.4 nm towards the end of the simulation,
although the overall folded structure of the protein was
maintained. Ligand RMSD analysis (Figure 2B)
revealed different stability patterns. Comp_ 105546
(green line) and comp 112458 (pink line) showed stable
binding within the active site. In contrast, the reference
inhibitor FDI-6 (black line) and comp 11309 (yellow
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line) displayed an unstable profile, showing a tendency
to dissociate from the binding pocket.

The RMSF analysis per residue (Figure 2C) showed that
terminal regions exhibited higher flexibility as
expected. Importantly, residues constituting the binding
pocket (approximately residues 280-310) showed
relatively low fluctuation values when bound to stable
ligands, suggesting effective binding site stabilization.
Radius of Gyration analysis (Figure 2D) confirmed
overall protein structural integrity, with all complexes
maintaining Rg values around 1.35-1.37 nm throughout
the simulations, indicating no major structural
unfolding.



Molecular dynamics simulations provided crucial
validation of the static docking predictions. The RMSD
analyses revealed that comp 105546 and comp 112458
maintained stable binding throughout the 100 ns
simulations. This variation in stability highlights the
necessity of dynamic validation within computational
drug discovery, since static docking scores by
themselves can often be deceptive.'” The 100 ns
simulation length employed in this study is considered
sufficient for evaluating protein-ligand complex

A) 10 ns MD Simulation Results
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stability and has been validated in numerous recent
studies.?
MM/GBSA calculations provide refined binding

affinity estimates

While MD simulations confirmed binding stability,
MM/GBSA calculations were performed to obtain
quantitative binding affinity estimates. The calculations
were performed on two different time scales: 10 ns and
100 ns trajectories to assess convergence.

B) 100 ns MD Simulation Results
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Figure 3. MM/GBSA binding free energy calculations

112458 105546 11184 FDI-6

Compounds

18920 11309

(A) Binding free energies calculated from 10 ns MD trajectories for multiple compounds, showing the range of binding affinities across the
compound library, (B) Refined 100 ns MM/GBSA calculations for the five selected compounds and FDI-6 with error bars representing standard

deviations,

The 10 ns MM/GBSA results (Figure 3A) showed
varying binding free
compounds, with several showing favorable binding
energies below -20 kcal/mol. The 100 ns calculations
(Figure 3B) were performed for the five selected
compounds and the reference inhibitor FDI-6.
Comp 112458 emerged as the most potent binder with
a binding free energy of -36.25+3.5 kcal/mol, followed
by comp 105546 (-25.31 = 5.04 kcal/mol) and
comp 11184 (-19.5943.14 kcal/mol). The large
negative values indicate strong binding affinity, with

energies across multiple

comp_ 112458 showing exceptional binding strength.
The MM/GBSA calculations provided refined binding
affinity estimates, identifying comp_112458 as the most
promising candidate with a binding free energy of -
36.25 kcal/mol. This exceptionally favorable binding
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energy, combined with stable MD behavior, suggests
that comp 112458 represents a high-quality lead
compound for further development. Recent
benchmarking studies have demonstrated that
MM/GBSA calculations provide reliable binding
affinity estimates that correlate well with experimental
data.?" %

Implications for FOXMI1 inhibitor development

The RMSF analysis revealed that ligand binding
effectively stabilizes the functionally important binding
pocket region (residues 280-310), a characteristic of
effective inhibitors. This localized stabilization suggests
that our lead compounds may indeed interfere with
FOXM1’s normal biological function by preventing
DNA binding, which is consistent with the mechanism
of action of known FOXMI1 inhibitors.’



Our findings are particularly significant in the context
of recent FOXM1 research. The compounds identified
in this study (Table 1) represent novel chemical
scaffolds that have not been previously explored for
FOXMI1 inhibition. Given the challenges associated
with existing FOXMI1 inhibitors, including limited
potency and selectivity issues,' these novel scaffolds
could provide important alternatives for drug
development.

The computational approach employed in this study
addresses several limitations of previous FOXMI
inhibitor discovery efforts. Unlike high-throughput
screening approaches that are limited by available
compound libraries, virtual screening allows
exploration of wvast chemical space, potentially
identifying novel chemotypes not represented in
physical libraries.” Additionally, the integration of
molecular dynamics simulations and free energy
calculations provides a more comprehensive evaluation
of compound quality compared to docking-based
screening alone.

The chemical diversity of our identified compounds is

another important consideration. The two lead
compounds (comp 105546 and comp 112458)
represent distinct chemical scaffolds, providing

multiple starting points for medicinal chemistry
optimization. This diversity reduces the risk associated
with scaffold-specific limitations and increases the

likelihood of successful lead optimization.?

CONCLUSION

This in silico investigation successfully discovered
small molecule inhibitors targeting the FOXM1 DNA
binding region using an integrated strategy that
combines structure-based virtual screening, molecular
dynamics simulations, and MM/GBSA binding free
energy calculations. The comprehensive screening of a
large chemical library yielded 21 high-affinity
candidates, which compounds
(comp 105546, comp 11184, comp 11309,
comp 18920 and comp 112458) were selected for

from five

detailed validation through 100 ns MD simulations.

The molecular dynamics analysis revealed distinct
stability profiles among the two lead compounds, with
comp_105546, and comp_ 112458 all maintaining stable
binding interactions throughout the 100 ns trajectory.
The MM/GBSA calculations provided refined binding
affinity estimates, identifying comp_112458 as the most
promising candidate with an exceptionally favorable
binding free energy of -36.25 £ 3.5 kcal/mol,
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Study limitations and future directions

While these computational predictions are highly
promising, several limitations should be acknowledged.
First, the predictions are based on a single crystal
structure of FOXM1, which may not capture all relevant
conformational states of the protein. Future studies
could benefit from ensemble docking approaches using
multiple conformations.*

Second, while MM/GBSA provides improved binding
affinity estimates compared to docking
experimental validation remains essential to confirm the

scores,

predicted activities. The next critical step involves
synthesizing or procuring these compounds for in vitro
biochemical assays to measure actual binding affinities
and functional inhibition of FOXMI transcriptional
activity.

Third, our study focused on the DNA-binding domain
of FOXM1, but recent research has identified other
potentially druggable sites, including allosteric binding
sites and protein-protein interaction interfaces.”® Future
computational studies could explore these alternative
targeting strategies.

Finally, the drug-like properties and potential off-target
effects of our lead compounds require careful
evaluation. While the compounds were selected from a
drug-like library, detailed ADMET (Absorption,
Distribution, Metabolism, Excretion, and Toxicity)
profiling will be necessary to assess their therapeutic
potential.?’

significantly outperforming existing FOXM!1 inhibitors
in computational predictions.

The identified compounds represent novel chemical
scaffolds that have not been previously explored for
FOXM1 inhibition, offering important alternatives to
existing inhibitors that face significant challenges in
clinical translation. The computational approach
employed in this study addresses key limitations of
traditional screening methods by enabling exploration
of vast chemical space while providing comprehensive
evaluation of compound quality through dynamic
simulations and free energy calculations.

The binding mode analysis demonstrated that the lead
compounds effectively stabilize the functionally critical
binding pocket region (residues 280-310), suggesting
potential interference with FOXM1's DNA-binding
activity. This mechanism of action is consistent with the
therapeutic ~ strategy of  disrupting FOXM1's
transcriptional functions, which are essential for cancer
cell proliferation and survival.



The findings are particularly significant given the urgent
need for effective FOXMIl-targeted therapeutics.
Despite FOXM1's recognition as a high-priority cancer
target and its designation as "Molecule of the Year" in
2010, no FOXM1 inhibitor has successfully progressed
to clinical trials. The novel compounds identified in this
study, particularly comp 112458, represent promising
starting points for drug development efforts aimed at
addressing this critical gap in cancer therapeutics.
However, experimental validation remains essential to
confirm the computational predictions. Future studies
should focus on synthesizing or procuring these
compounds for in vitro biochemical assays to measure
actual binding affinities and functional inhibition of
FOXM1  transcriptional activity.  Additionally,
comprehensive ADMET profiling will be necessary to
assess their therapeutic potential and identify any
potential off-target effects.

In conclusion, this computational study provides a
robust foundation for FOXM1 inhibitor development by
identifying high-quality lead compounds with favorable
binding properties and novel chemical scaffolds. The
integration of multiple computational approaches
enhances confidence in the predictions and establishes a
validated pipeline for future FOXMI1 inhibitor
discovery efforts. With appropriate experimental
validation and medicinal chemistry optimization, these
compounds could contribute to the development of
much-needed FOXMI-targeted cancer therapeutics.
Acknowledgement

All numerical calculations in this research were
performed at TUBITAK ULAKBIM, High
Performance and Grid Computing Center (TRUBA
resources).

Authorship contribution statement

Consept and desing: ZD, FDK.

Acquisition of data: EA.

Analysis and interpretation of data: ZD.

Drafting of the manuscript: ZD.

Critical revision of the manuscript for important
intellectual content: ZD, FDK.

Statistical analysis: ZD, EA.

Declaration of competing interest: None of the
authors have potential conflicts of interest to be
disclosed.

Ethical approval: This study does not require ethical
approval as it is a computational study.

Availability of data and materials: All data generated
or analyzed during this study are included in this
published article.

Funding: This research was supported by Giresun

71

University Scientific Research Projects Commission
(Project No: SAG-BAP-A-250221-45).

REFERENCES

1. Raghuwanshi S, Gartel AL. Small-molecule inhibitors
targeting FOXMI: Current challenges and future
perspectives in cancer treatments. Biochim Biophys Acta
Rev Cancer. 2023;1878(6):189015.

2. Raghuwanshi S, Zhang X, Arbieva Z, et al. Novel
FOXMI inhibitor STLOO!I sensitizes human cancers to a
broad-spectrum of cancer therapies. Cell Death Discov.
2024;10(1):211.

3. Merjaneh N, Hajjar M, Lan YW, Kalinichenko VV, Kalin
TV. The promise of combination therapies with FOXM1
inhibitors for cancer treatment. Cancers (Basel).
2024;16(4):756.

4. Noor F, Junaid M, Almalki AH, Almaghrabi M,
Ghazanfar S, Tahir ul Qamar M. Deep learning pipeline
for accelerating virtual screening in drug discovery. Sci
Rep. 2024;14(1):28321.

5. Zhou G, Rusnac DV, Park H, et al. An artificial
intelligence accelerated virtual screening platform for
drug discovery. Nat Commun. 2024;15(1):7761.

6. Naithani U, Guleria V. Integrative computational
approaches for discovery and evaluation of lead
compound for drug design. Front Drug Discov.
2024;4:1362456.

7. busharkh KAN, Comert Onder F, Cinar V, Hamurcu Z,
Ozpolat B, Ay M. A drug repurposing study identifies
novel FOXM1 inhibitors with in vitro activity against
breast cancer cells. Med Oncol. 2024;41(8):188.

8. Littler DR, Alvarez-Fernandez M, Stein A, et al. Structure
of the FoxM1 DNA-recognition domain bound to a
promoter sequence. Nucleic Acids Res.
2010;38(13):4527-4538.

9. Lasham J, Djurabekova A, Zickermann V, Vonck J,
Sharma V. Role of protonation states in the stability of
molecular dynamics simulations of high-resolution
membrane protein structures. J Phys Chem B.
2024;128(10):2304-2316.

10. Wishart DS, Guo AC, Oler E, et al. HMDB 5.0: The
human metabolome database for 2022. Nucleic Acids
Res. 2022;50(D1):D622-D631.

11. O'Boyle NM, Banck M, James CA, Morley C,
Vandermeersch T, Hutchison GR. Open babel: An open
chemical toolbox. J] Cheminform. 2011;3:33.

12. Bayly CI, Merz KM, Ferguson DM, et al. A second
generation force field for the simulation of proteins,
nucleic acids, and organic molecules. ] Am Chem Soc.
1995;117(19):5179-5197.

13. Alhossary A, Handoko SD, Mu Y, Kwoh CK. Fast,
accurate, and reliable molecular docking with QuickVina
2. Bioinformatics. 2015;31(13):2214-2216.

14. Abraham MJ, Murtola T, Schulz R, et al. GROMACS:
High performance molecular simulations through multi-
level parallelism from laptops to supercomputers.
SoftwareX. 2015;1-2:19-25.

15. Lindorff-Larsen K, Piana S, Palmo K, et al. Improved
side-chain torsion potentials for the Amber ff99SB protein
force field. Proteins Struct Funct Bioinforma.
2010;78(8):1950-1958.

16. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW,



17.

18.

19.

20.

21.

22.

Klein ML. Comparison of simple potential functions for
simulating liquid water. J Chem Phys. 1983;79(2):926-
93s.

Valdés-Tresanco MS, Valdés-Tresanco ME, Valiente PA,
Moreno E. Gmx MMPBSA: A new tool to perform end-
state free energy calculations with GROMACS. J Chem
Theory Comput. 2021;17(10):6281-6291.

Pinzi L, Rastelli G. Molecular docking: Shifting
paradigms in drug discovery. Int J Mol Sci.
2019;20(18):4331.

Gomes AMM, Costa PJ, Machuqueiro M. Recent
advances on molecular dynamics-based techniques to
address drug membrane permeability with atomistic
detail. BBA Adv. 2023;4:100099.

Pavan M, Menin S, Bassani D, Sturlese M, Moro S.
Qualitative estimation of protein-ligand complex stability
through thermal titration molecular dynamics simulations.
J Chem Inf Model. 2022;62(22):5715-5728.

Genheden S, Ryde U. The MM/PBSA and MM/GBSA
methods to estimate ligand-binding affinities. Expert Opin
Drug Discov. 2015;10(5):449.

Wang E, Sun H, Wang J, et al. End-point binding free
energy calculation with MM/PBSA and MM/GBSA:
Strategies and applications in drug design. Chem Rev.

72

23.

24.

25.

26.

27.

To Cite:

2019;119(16):9478-9508.

Ferreira LG, Dos Santos RN, Oliva G, Andricopulo AD.
Molecular docking and structure-based drug design
strategies. Molecules. 2015;20(7):13384-13421.

Baell JB, Holloway GA. New substructure filters for
removal of pan assay interference compounds (PAINS)
from screening libraries and for their exclusion in
bioassays. J Med Chem. 2010;53(7):2719-2740.

Amaro RE, Baudry J, Chodera J, et al. Ensemble docking
in drug discovery. Biophys J. 2018;114(10):2271-2278.
Zhang H, Dai S, Liang X, Li J, Chen Y. Mechanistic
insights into the preference for tandem binding sites in
DNA recognition by FOXMI1. J Mol Biol
2022;434(5):167426.

Swanson K, Walther P, Leitz J, et al. ADMET-AIL a
machine learning ADMET platform for evaluation of
large-scale chemical libraries. Bioinformatics.
2024;40(7):btac416.

Duzgun Z, Demirtas-Korkmaz F, Alp E.

Computational Investigation of the Interaction of Large-scale

Plant and Animal-Derived Natural Secondary Metabolites
with FOXM1. Farabi Med J. 2025;4(3):63-72.



