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On the locally countable subalgebra of C(X) whose
local domain is cocountable
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Abstract
In this paper, we present a new subring of C(X) that contains the
subring Cc(X), the set of all continuous functions with countable image.
Let Lcc(X) = {f ∈ C(X) : |X \Cf | ≤ ℵ0}, where Cf is the union of all
open subsets U ⊆ X such that |f(U)| ≤ ℵ0. We observe that Lcc(X)
enjoys most of the important properties which are shared by C(X)
and Cc(X). It is shown that any hereditary lindelöf scattered space
is functionally countable. Spaces X such that Lcc(X) is regular (von
Neumann) are characterized and it is shown that ℵ0-selfinjectivity and
regularity of Lcc(X) coincide.
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1. Introduction
Throughout this paper, the space X stands for an uncountable completely regular

Hausdorff space unless otherwise mentioned. We refer the reader to [9], [16], [32] and [1],
[19] for undefined concepts and notations in this article relating to topology and algebra,
respectively. The notation C(X) and Cc(X) are used for the ring of all real-valued
continuous functions on X and that of all continuous functions on X with countable
image, respectively. By Lc(X) we mean the ring of all continuous functions that its local
domains (note, if f ∈ C(X), then its local domain, which is denoted by Cf , is defined by
Cf =

⋃
{U |U is open in X and |f(U)| 6 ℵ0}) are dense in X, see [23]. The subalgebra

Cc(X) of C(X) is introduced and studied in [12] and [13]. Motivated by the fact that
Cc(X) is the largest subring of C(X) whose elements have countable image, the subring
Lc(X) of C(X) which lies between Cc(X) and C(X) is introduced in [23]. This subring
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naturally leads us to consider a new subring of C(X), namely Lcc(X), which lies between
Cc(X) and Lc(X). Analogous to the main objective of research in context of C(X), we
will try to record some useful facts about Lcc(X) and indicate the relations between
topological properties of X and the algebraic properties of Lcc(X). In this paper we are
interested in detecting topological spaces X for which Lcc(X) = Lc(X) and find spaces
X such that Lcc(X) = C(X) and Lcc(X) = Cc(X). In Section 3, we give some facts
regarding the equality of Lcc(X) with the rings C(X), Cc(X) and Lc(X). Also similar
to a classical result due to Rudin in [30] and Pelczynski and Semadeni in [28], which says
that a compact space X is scattered (i.e., every nonempty subspace of X contains an
isolated point) if and only if C(X) = Cc(X) (note, it is called RPS-Theorem, see [12]),
it is shown that if X is an uncountable-open locally compact space then X is locally c-
scattered space if and only if Lcc(X) = C(X), see Definitions 3.8 and 3.14. We introduce
zlc-ideals in Section 4 and observe that the sum of a collection of zlc-ideals that is not
the entire ring Lcc(X) is zlc-ideal. Also it is observed that the sum of a collection of
minimal prime ideals in Lcc(X) is a prime ideal in Lcc(X) or the entire ring Lcc(X). The
topological spaces in which closed sets and points not belonging to them are separated by
elements of Lcc(X), are called co-locally countable completely regular space (briefly, lcc-
completely regular) and are introduced in Section 5. In this section, spaces X for which
Lcc(X) is regular are characterized both topologically and algebraically. Also similarly
to the rings C(X), Cc(X) and Lc(X), we show that Lcc(X) is a regular ring if and only
if it is ℵ0-selfinjective. The socle of C(X) (i.e., CF (X)) which is in fact a direct sum of
minimal ideals of C(X) is topologically characterized in [24]. The socle of Cc(X), denoted
by Soc(Cc(X)), is studied and also topologically characterized in [13, Proposition 5.3],
and spaces X for which Soc(Cc(X)) = CF (X) are determined in [13, Theorem 5.6], too.
In Section 6, similarly to the ring Lc(X) in [23], we characterize the socle of Lcc(X) both
topologically and algebraically. Also, spaces X for which Soc(Lcc(X)) = Soc(Cc(X))
and Soc(Lcc(X)) = CF (X) are characterized.

2. Notation and preliminaries
In this section for the sake of the reader in details, we recall the definitions and the

notations used in this article. We also mention some background results from [12] and
[23]. It is well-known that the semiprime ideals of a commutative ring are precisely the
intersections of prime ideals, see [16, 2B(3)]. An ideal I of a commutative ring R is called
pseudoprime if a, b ∈ R and ab = 0 implies a ∈ I or b ∈ I. Recall that for f ∈ C(X), Z(f)
denotes its zero-set, i.e., Z(f) = {x ∈ X : f(x) = 0} and the set-theoretic complement
of this zero-set is known as a cozero-set and we denote it by cozf . The Stone-Čech
compactification of X is denoted by βX, and by |X| we mean the cardinality of X.
In this paper, ω1 and c stand for the smallest uncountable ordinal and the power of
continuum, respectively. Let X and Y be disjoint topological spaces, the free union of
X and Y is denoted by X∪̇Y , see [32]. A space X is called functionally countable if
each member of C(X) has countable image (i.e., C(X) = Cc(X)). An ideal I of C(X)
(resp., Cc(X)) is said to be z-ideal (resp., zc-ideal) of C(X) (resp., Cc(X)) if Z(f) ⊆ Z(g)
where f ∈ I and g ∈ C(X) (resp., g ∈ Cc(X)) implies that g ∈ I. We recall that minimal
prime ideals in C(X) (resp., Cc(X)) are z-ideals (resp., zc-ideals), see [16, Theorem
14.7] and [12, Corollary 3.4]. The socle of C(X), denoted by CF (X), is the sum of all
minimal ideals of C(X), which is the intersection of all essential ideals in C(X) (note,
an ideal is essential if it intersects every nonzero ideal nontrivially). The socles of Cc(X)
and Lc(X) are also characterized topologically, see [13], [23]. The following proposition
which characterizes the socle of C(X) topologically, is proved in [24].
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2.1. Proposition. The socle CF (X) of C(X) is a z-ideal consisting of all functions that
vanish everywhere except on a finite subset of X.

2.2. Definition. Let f ∈ C(X) and Cf be the union of all open sets U ⊆ X such that
f(U) is countable, i.e.,

Cf =
⋃
{U |U is open in X and |f(U)| 6 ℵ0}.

We call Cf the local domain of f and denote by Lc(X) the set of all f ∈ C(X) such that
Cf is dense in X.

We cite the following fact which is in [23].

2.3. Lemma. For the space X the following statements hold.
(1) If f, g ∈ C(X), then Cf+g ⊇ Cf ∩ Cg.
(2) If f, g ∈ C(X), then Cfg ⊇ Cf ∩ Cg.
(3) If f ∈ C(X), then C|f | = Cf .
(4) If f ∈ C(X), then C 1

f
= Cf .

3. The subalgebra Lcc(X) of C(X)

3.1. Definition. We define Lcc(X) to be the set of all f ∈ C(X) whose local domain is
cocountable, i.e.,

Lcc(X) = {f ∈ C(X) : |X\Cf | 6 ℵ0}.

It is obvious that Lcc(X) is a subring of C(X) containing Cc(X). In fact Lcc(X) is
a subalgebra as well as a sublattice of C(X) and we call it the co-locally functionally
countable subalgebra of C(X).

3.2. Remark. Let X be an arbitrary space, then the relation Lcc(X) ⊆ Lc(X) holds,
for if f ∈ Lcc(X) and U is an open subset in X, then U ⊆ Cf in case U is countable,
and if U is uncountable, U meets Cf (note, Cf is cocountable), hence Cf is dense in X.

For any space X the relation CF (X) ⊆ CF (X) ⊆ Cc(X) ⊆ Lcc(X) ⊆ Lc(X) ⊆ C(X)
holds, where CF (X) = {f ∈ C(X) : |f(X)| <∞} and CF (X) is the socle of C(X). The
following example shows that the equality between any two of these objects may not
necessarily hold.

3.3. Example. Let A = (−∞, 0). Suppose that the basic neighborhood of x ∈ A
when x ∈ [−1, 0) ∪ {x ∈ Q : x < −1} is {x} and for the other points of A, the basic
neighborhood be the usual open intervals containing x. Moreover, let B = [0,∞) and
the basic neighborhood of x when x ∈ {x ∈ Q : 0 6 x 6 1} is {x} and for the rest of
the members, y say, of B the basic neighborhood be the usual open intervals containing
y. Let X = A∪̇B, be the free union of A and B. The function f : X → R, where
f(x) = x is a continuous function and f /∈ Lc(X). The function gB : B → R, such that
gB(x) = 0 for x > 1 and gB(x) = x otherwise, is a continuous function on B. Now we
define g : X → R, where g(x) = gB(x) if x ∈ B and g(x) = 0 for x ∈ A. The function
g is continuous with Cg = R \ ((0, 1) ∩ Qc), hence g ∈ Lc(X) \ Lcc(X). The function
hA : A → R, where hA(x) = x for x ∈ [−1, 0) and hA(x) = 0 otherwise, is a continuous
function on A. The function h : X → R, such that h(x) = hA(x) for x ∈ A and h(x) = 0
for x ∈ B is continuous function on X with Ch = R and we have h ∈ Lcc(X) \ Cc(X).

Also one can easily see that the set D = { 1
n

: n ∈ N} ∪ {0} is a clopen subset of B and
hence it is clopen in X. The function t : X → R, where t(x) = x for x ∈ D and t(x) = 0
otherwise, is continuous and t ∈ Cc(X) \CF (X). Finally the function s : X → R, which
equals to 1 on A and vanishes on B is a continuous function and s ∈ CF (X) \ CF (X).
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The proof of the following lemma is elementary and we state it without proof.

3.4. Lemma. For the space X the following statements hold.
(1) If f, g ∈ Lcc(X), then f + g ∈ Lcc(X) and fg ∈ Lcc(X).
(2) If f ∈ Lcc(X), then |f | ∈ Lcc(X).

(3) Let f be a unit element in C(X), then f ∈ Lcc(X) if and only if
1

f
∈ Lcc(X).

3.5. Corollary. Lcc(X) is a sublattice of C(X).

3.6. Definition. Let f ∈ C(X) and CFf be the union of all open sets U ⊆ X such that
f(U) is finite, i.e.,

CFf =
⋃
{U |U is open in X and |f(U)| <∞}.

Denote by LcF (X) the set of all f ∈ C(X) such that CFf is cocountable, and call it
co-locally functionally finite subalgebra of C(X), i.e.,

LcF (X) = {f ∈ C(X) : |X\CFf | 6 ℵ0}.
In a special case, for f ∈ C(X) let Ccf be the union of all open sets U ⊆ X such that
f(U) is constant, i.e.,

Ccf =
⋃
{U | U is open in X and |f(U)| = 1}.

We define Lc1(X) to be the set of all f ∈ C(X) such that Ccf be cocountable in X, and
call it co-locally functionally constant subalgebra of C(X), i.e.,

Lc1(X) = {f ∈ C(X) : |X\Ccf | 6 ℵ0}.

Clearly, LcF (X) and Lc1(X) are subalgebra of Lcc(X).

3.7. Remark. We note that the previous lemma and corollary are also valid for LcF (X)
and Lc1(X).

We are interested in characterizing topological spaces X for which Lcc(X) = C(X)
and also the spaces X such that Lcc(X) = Lc(X). Recall that a point x ∈ X is called
countably isolated if there exists a countable open set in X containing x, also a space
X is called countably discrete if all of its points are countably isolated, see [15]. If X
is a countably discrete space, then Lcc(X) = C(X), for if f ∈ C(X) and x ∈ X then
there exists an open set Ux in X that contains x and |Ux| 6 ℵ0. Therefore Cf = X and
f ∈ Lcc(X). In fact we have Lc1(X) = LcF (X) = Lcc(X) = C(X).

3.8. Definition. A space X is called uncountable-open if any uncountable subset of X
has nonempty interior.

Clearly, discrete spaces are uncountable-open spaces. Additionally there are many
non-discrete spaces that are uncountable-open, for instance, one point compactification
of an uncountable discrete space is one of them. Also if X is an uncountable discrete
space and Y is an arbitrary countable space then X∪̇Y , the free union of them, is
uncountable-open space. The next proposition is a fact in this class of spaces.

3.9. Proposition. For a space X the following statements are equivalent.
(1) X is an uncountable-open space.
(2) The complement of any dense subset of X is at most countable.
(3) For any subset A of X, A \ intA is countable.
(4) For any subset A of X, clA \A is countable.

Proof. (1⇒ 2) If A is a dense subset of X then X \ A has empty interior and hence by
our assumption, X \A must be countable.
(2 ⇒ 3) For any subset A of X, the set A \ intA has empty interior and hence its
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complement is dense in X.
(3⇒ 4) For any subset A of X the relation clA\A = (X \A)\ int(X \A) holds, therefore
clA \A is countable.
(4⇒ 1) Let A be an uncountable subset of X. If intA = ∅ then X \A is a dense subset
of X and hence A = cl(X \A) \ (X \A) is countable, a contradiction. �

In view of the previous proposition, the proof of the next lemma is evident.

3.10. Lemma. If X is an uncountable-open space, then Lcc(X) = Lc(X).

3.11. Remark. The converse of the above lemma is not true in general. The space
of all ordinals less than the smallest uncountable ordinal ω1 (i.e., W = W (ω1)), is not
uncountable-open space. In fact, the set of all limit ordinals in W is an uncountable set
with empty interior. Since any function f ∈ C(W ) is constant on a tail of W , we infer
that Lcc(W ) = Lc(W ), see [16, 5.12].

Let us recall some facts about scattered spaces. A space X is called scattered if any
nonempty subset of X has an isolated point with respect to its induced topology. In fact
the space X is scattered if and only if any nonempty closed subset of X has an isolated
point. For a cardinal number α, a space X is called α-scattered, if any subset A of X
with |A| ≥ α has an isolated point. The next lemma present a class of spaces X that
Lcc(X) and C(X) coincide.

3.12. Lemma. If X is an uncountable-open and c-scattered space, then Lcc(X) = C(X).

Proof. Let f ∈ C(X) and X \Cf be an uncountable subset of X. Since X is uncountable-
open space, we infer that there exists an uncountable open set U in X such that U ⊆
X \ Cf (note, otherwise U ⊆ Cf ). Since X is c-scattered space, we infer that U has
an isolated point with respect to the induced topology on U , x say, and hence x is an
isolated point in X, too. Consequently, x ∈ Cf , which is the desired contradiction. �

3.13. Corollary. For an uncountable-open scattered space X we have Lcc(X) = C(X).

3.14. Definition. A space X is called locally c-scattered if given any f ∈ C(X) and
an uncountable open set U , there exists a compact subset Vf , with ∅ 6= V ◦f ⊆ U and
|f(V ◦f )| ≤ ℵ0.

Similarly, a space X is called locally scattered space if given any f ∈ C(X) and
a nonempty open set U , there exists a compact subset Vf , with ∅ 6= V ◦f ⊆ U and
|f(V ◦f )| ≤ ℵ0, see [23, Definition 2.14]. Clearly, every locally scattered space is a locally
c-scattered space and the space βX (i.e., the Stone-Čech compactification of X) is locally
scattered, where X is a discrete space. Also every c-scattered space is locally c-scattered,
for if X is a c-scattered space, f ∈ C(X) and U be an open set in X with |U | ≥ c, then
U has an isolated point, {x} say, therefore {x} is the desired compact subset of X. The
converse of this fact is not true, for example, βN is a locally c-scattered space which is
not c-scattered, for βN \ N has no isolated point. The following example shows that a
locally c-scattered space need not be locally scattered space.

3.15. Example. Assume that Qc, the set of irrational numbers, equipped with discrete
topology and Q, the set of rational numbers, be the subspace of R with the usual topology.
The space X = Q∪̇Qc, the free union of Q and Qc, is locally c-scattered space. The
function f : X → R, where f(x) = x is a continuous function on X and Q is an open
subset in X, but there is no compact neighborhood subset in Q. Thus X is not locally
scattered space.

3.16. Lemma. Any open C-embedded subset of a locally c-scattered space is locally c-
scattered.
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Proof. Let Y be an open C-embedded subset of a locally c-scattered space X. Let U
be an uncountable open set in Y and f ∈ C(Y ). Since Y is C-embedded, we infer that
there exists g ∈ C(X) such that g|Y = f . Clearly, U is an open subset of X and by
our assumption, there exists a compact subset Vg in U with ∅ 6= V ◦g ⊆ U ⊆ Y and
|g(V ◦g )| ≤ ℵ0. Therefore Vg is a compact subset of Y with |f(V ◦g )| = |g(V ◦g )| ≤ ℵ0, i.e.,
Y is locally c-scattered. �

We recall that a Hausdorff space X is locally compact if and only if each point in X
has a compact neighborhood. Clearly, every compact Hausdorff space is locally compact.
The following result is in order.

3.17. Theorem. Let X be a locally compact space. If Lcc(X) = C(X) then X is locally
c-scattered space. Moreover, if X is uncountable-open space then the converse holds.

Proof. First, we assume that X is a locally compact space and Lcc(X) = C(X). Let
f ∈ C(X) and U be an open set of X with |U | > c. Since |X \Cf | 6 ℵ0, we infer that U
meets Cf and hence there exists an open set V ⊆ X such that |f(V )| ≤ ℵ0 and V ∩U 6= ∅.
As X is locally compact space, V ∩ U is locally compact, too. Thus any neighborhood
of a point x ∈ V ∩ U contains a compact neighborhood, Vf say, of x. Clearly, V ◦f ⊆ U
and |f(V ◦f )| ≤ ℵ0. Finally, suppose that Lcc(X) 6= C(X) and get a contradiction. If
f ∈ C(X)\Lcc(X), then since X is an uncountable-open space, we infer that there exists
an open set U with U ⊆ X \Cf and a compact neighborhood Vf such that V ◦f ⊆ U and
|f(V ◦f )| ≤ ℵ0. Therefore U ⊆ X \ Cf ⊆ X \ V ◦f , which is the desired contradiction. �

Let us recall that a topological space X is said to be Lindelöf space if every open cover
of X has a countable subcover. A Lindelöf space X is called hereditary if every subspace
of X is Lindelöf. Clearly, every second-countable space is hereditary Lindelöf [32, 16E1].
A subset Y of a space X is called preopen, if Y ⊆ int (clY ), also a space X is called
strongly Lindelöf if every preopen cover of X admits a countable subcover, see [11].

3.18. Proposition. The following statements hold.
(1) If X is hereditary Lindelöf space, then Lcc(X) = Cc(X).
(2) If X is strongly Lindelöf space, then Lcc(X) = Lc(X).
(3) If X is hereditary Lindelöf, c-scattered space then Lcc(X) = C(X).

Proof. (1) Let f ∈ Lcc(X) and A = {Ui : i ∈ I} be the set of all open sets in X,
where each f(Ui), i ∈ I has countable image. Since X is hereditary Lindelöf space,
we infer that A has a countable subfamily, {Uin : n ∈ N}, that covers Cf . Therefore
|f(Cf )| = |f(

⋃
n∈N Uin)| = |

⋃
n∈N f(Uin)| 6 ℵ0, so f ∈ Cc(X).

(2) If f ∈ Lc(X), then the collection A = {Cf ∪ {x} : x ∈ X \ Cf} is a preopen cover
of X. By our assumption, A has a countable subcover, i.e., X =

⋃
n∈N(Cf ∪ {xn}).

Therefore Cf is cocountable and f ∈ Lcc(X).
(3) Suppose that f ∈ C(X) with |X \ Cf | > c and seek a contradiction. Since X is
c-scattered space, we infer that X \ Cf has an isolated point, {x0} say, therefore there
exists an open set U ⊆ X such that U ∩ (X \Cf ) = {x0}. The set U \{x0} is an open set
in X and U \ {x0} ⊆ Cf . Since X is hereditary Lindelöf, we infer that Cf =

⋃
n∈N Un,

where |f(Un)| ≤ ℵ0, for all n ∈ N. Therefore |f(Cf )| ≤ ℵ0 and we have |f(U \{x0})| ≤ ℵ0
which implies f(U) is countable, a contradiction. �

3.19. Corollary. Every hereditary Lindelöf and scattered space is functionally countable.

We recall that if the set of open neighborhoods of a point p in X is closed under
countable intersection, then p is called a P -point. The set of all P -points of X is denoted
by PX and X is called a P -space if PX = X. The next immediate result implies that for
a P -space X, the rings Lcc(X) and C(X) coincide.
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3.20. Proposition. If X is a P -space, then Lcc(X) = C(X).

Proof. Let f ∈ C(X) and x be an arbitrary point of X. Since X is a P -space, there exists
an open neighborhood Ux of x such that f is constant on Ux, see[16, 4L(3)]. Therefore
Cf = X and hence f ∈ Lcc(X). �

3.21. Remark. It is worth mentioning that the converse of the previous proposition is
not true in general, for example, the space of all ordinals less than the smallest uncount-
able ordinal ω1 (i.e., W = W (ω1)) is not a P -space, but Lcc(W ) = C(W ). Also by [16,
13P] there exists a P -space X without isolated points with Lcc(X) = C(X).

Let us recall that a topological space X is called locally functionally countable if every
point x ∈ X is countably P -point, in the sense that there exists an open neighborhood
Ux of x such that C(Ux) = Cc(Ux), see [18] and [23]. The following result shows that for
every locally functionally countable space X, the spaces C(X) and Lcc(X) coincide.

3.22. Proposition. If X is a locally functionally countable space, then Lcc(X) = C(X).

Proof. Let f ∈ C(X) and x ∈ X. Since X is locally functionally countable space, we infer
that there exists an open neighborhood Ux of x such that C(Ux) = Cc(Ux). Obviously,
|f(Ux)| = |(f |Ux)(Ux)| ≤ ℵ0. Hence Ux ⊆ Cf and Cf = X, i.e., Lcc(X) = C(X). �

We note that the converse of the previous result is not true in general, in Example
4.7 for the space X, C(X) = Lcc(X), but it is not locally functionally countable (note,
no rational number in X is a countably P -point).

4. zlc-ideals
In this section we state some facts about Lcc(X). We remind the reader that similarly

to Cc(X) and Lc(X), many results in the context of C(X) can be proved for Lcc(X)
in natural way, see [12] and [23]. Similarly to the positive element of the rings C(X)
and Lc(X), if f ∈ Lcc(X) and f > 0, then there exists g ∈ Lcc(X) with f = g2. We
also remark that if f ∈ Lcc(X), then fr ∈ Lcc(X) for any r ∈ R that fr is defined.
It is obvious that similar to the ring C(X), all positive units in Lcc(X) have the same
number of square roots, see [16, 1B(1)]. The following proposition is the counterpart of
[16, 1D(1)] and [12, Lemma 2.4] for Lcc(X).

4.1. Proposition. If f, g ∈ Lcc(X) and Z(g) ⊆ intZ(f), then f is a multiple of g.

Proof. Put

h(x) =

{
0 , x ∈ Z(f)

f(x)
g(x)

, x ∈ X \ intZ(f)

clearly, h ∈ C(X) and Ch ⊇ Cg∩Cf , so |X\Ch| 6 ℵ0. Hence h ∈ Lcc(X) and f = hg. �

4.2. Corollary. If f, g ∈ Lcc(X) and |f | 6 |g|r, r > 1 , then f = hg for some h ∈
Lcc(X). In particular, if |f | 6 |g| then whenever fr is defined for r > 1, fr is a multiple
of g.

Proof. Put

h(x) =

{
0 , x ∈ Z(g)

f(x)
g(x)

, x /∈ Z(g)

thus h ∈ C(X) and Ch ⊇ Cg ∩ Cf . Hence h ∈ Lcc(X) and f = hg. �
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4.3. Corollary. If f ∈ Lcc(X), then there exists a positive unit u ∈ Lcc(X) with (−1 ∨
f)∧ 1 = uf . Therefore the functions f and (−1∨ f)∧ 1 belong to exactly the same ideals
in Lcc(X).

Proof. Let

u(x) =

{
1 , |f(x)| 6 1

1
|f(x)| , |f(x)| > 1

obviously, u ∈ C(X) and Cf = Cu (i.e., u ∈ Lcc(X)) with (−1 ∨ f) ∧ 1 = uf . �

Convention. For a topological space X, we denote by Zlc(X) the set of all zero-sets
of Lcc(X).

4.4. Definition. Two subsets A and B of a topological space X are said to be co-locally
countably separated (briefly, lcc-separated) in X if there exists an element f ∈ Lcc(X)
such that f(A) = 1, f(B) = 0.

The proof of the following theorem which is similar to [12, Theorem 2.8] and [23,
Theorem 3.10], is omitted.

4.5. Theorem. Two sets are lcc-separated if and only if they are contained in disjoint
members of Zlc(X). Moreover, lcc-separated sets have disjoint zero-set neighborhoods in
Zlc(X).

4.6. Definition. A nonempty subfamily F of Zlc(X) is called a zlc-filter on X if F

satisfies the following conditions.
(1) ∅ /∈ F.
(2) If Z1, Z2 ∈ F, then Z1 ∩ Z2 ∈ F.
(3) If Z1 ∈ F and Z2 ∈ Zlc(X) such that Z1 ⊆ Z2 then Z2 ∈ F.

By a zlc-ultrafilter on X, it is meant a maximal zlc-filter, i.e., one that is not contained
in any other zlc-filter. A zlc-filter F is called prime zlc-filter if Z1 ∪ Z2 ∈ F, where
Z1, Z2 ∈ Zlc(X), then Z1 ∈ F or Z2 ∈ F. Clearly every zlc-ultrafilter is prime zlc-filter.
If I is an ideal of Lcc(X), then Zlc[I] = {Z(f) : f ∈ I} is a zlc-filter on X. Conversely,
if F is a zlc-filter on X, then Z−1[F] = {f ∈ Lcc(X) : Z(f) ∈ F} is an ideal of Lcc(X).
Moreover, every zlc-filter F is of the form F = Zlc[I] for some ideal I of Lcc(X) and for an
ideal J of Lcc(X), Z−1Zlc[J ] is an ideal of Lcc(X) containing J . The following example
shows that the latter inclusion may be proper.

4.7. Example. Let for any irrational number, say x, the basic neighborhood be {x}
and for the rest of the real numbers, i.e. x ∈ Q, the basic neighborhood be the usual
open intervals containing x. For this topology on X = R we have Lcc(X) = C(X) and
therefore i belongs to Lcc(X), where i is the identity function. For the ideal I = (i) of
Lcc(X) the relation Zlc[I] = {0} holds. Now, it is clear that the function f(x) = x

1
3

belongs to Lcc(X) but f ∈ Z−1Zlc[I] \ I.

4.8. Definition. An ideal I of Lcc(X) is called zlc- ideal if whenever Z(f) ∈ Zlc[I] and
f ∈ Lcc(X), then f ∈ I.

Obviously, every zlc- ideal is an intersection of prime ideals of Lcc(X). Again we recall
that the proofs of the following facts are the same as the proofs of their counterparts in
C(X), Cc(X) and Lc(X), see [12], [16] and [23]. The next theorem is the counterpart of
[16, Theorem 2.9], [12, Theorem 2.13] and [23, Theorem 3.14].

4.9. Theorem. Let P be any zlc- ideal in Lcc(X). Then the following statements are
equivalent.
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(1) P is a prime ideal in Lcc(X).
(2) P contains a prime ideal in Lcc(X).
(3) For all f, g ∈ Lcc(X), if fg = 0, then f ∈ P or g ∈ P .
(4) For every f ∈ Lcc(X), there is a zero-set in Zlc[P ] on which f does not change

sign.

4.10. Corollary. Every prime ideal in Lcc(X) is contained in a unique maximal ideal
in Lcc(X).

The following lemma is the counterpart of [12, Lemma 3.1] and if the proof of this
lemma is applied verbatim we have a simple proof for the following lemma.

4.11. Lemma. Let f, g, l ∈ Lcc(X), Z(f) ⊇ Z(g) ∩ Z(l) and define

h(x) =

{
0 x ∈ Z(g) ∩ Z(l)

fg2

g2+l2
x /∈ Z(g) ∩ Z(l)

and

k(x) =

{
0 x ∈ Z(g) ∩ Z(l)

fl2

g2+l2
x /∈ Z(g) ∩ Z(l)

Then the following conditions hold.
(1) |h| ∨ |k| = |f |.
(2) f = h+ k.
(3) fl2 = k(g2 + l2) and fg2 = h(g2 + l2).
(4) h, k ∈ Lcc(X).
(5) Ch ⊇ Cf ∩ Cg ∩ Cl and Ck ⊇ Cf ∩ Cg ∩ Cl.

In view of the previous lemma, we may record some interesting facts, which follow.
If I and J are two zlc-ideals in Lcc(X), then either I + J = Lcc(X) or I + J is a zlc-
ideal. More generally, if A = {Ai}i∈I is a collection of zlc-ideals in Lcc(X), then either∑
i∈I Ai = Lcc(X) or

∑
i∈I Ai is a zlc-ideal. It is well-known that each minimal prime

ideal in a subring of the ring R is the contraction of some minimal prime ideal of the ring
R, see [19, p. 41], also minimal prime ideals of C(X) (resp., Cc(X)) are z-ideals (resp.,
zc-ideal), see [16] (resp., [12]). The next result is the counterpart of the latter facts for
Lcc(X).

4.12. Corollary. Every minimal prime ideal in Lcc(X) is a zlc-ideal.

The following result is a consequence of the two previous corollaries and Theorem 4.9.

4.13. Corollary. Let {Pi}i∈I be a collection of minimal prime ideals in Lcc(X), then
either

∑
i∈I Pi = Lcc(X) or P =

∑
i∈I Pi is a prime ideal in Lcc(X).

Let us recall that an ideal I of C(X) is called absolutely convex if f ∈ C(X), g ∈ I
and |f | 6 |g| implies that f ∈ I. The proofs of the following results can be obtained
mutatis mutandis from the proofs of the corresponding results in [12] and [23].

4.14. Proposition. A prime ideal P in Lcc(X) is absolutely convex.

4.15. Proposition. The sum of a collection of semiprime ideals in Lcc(X) is a semiprime
ideal or is the entire ring Lcc(X).

4.16. Proposition. Let P be a prime ideal in Lcc(X), then the ring Lcc(X)/P is totally
ordered and its prime ideals are comparable.

4.17. Proposition. Let {Pi}i∈I be a collection of semiprime ideals in Lcc(X) such that
at least one of Pi’s is prime, then

∑
i∈I Pi is a prime ideal or all of Lcc(X).

4.18. Theorem. Let I be an ideal in Lcc(X), then I and
√
I have the same largest

zlc-ideal.
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5. Co-locally countable completely regular spaces
5.1. Definition. A Hausdorff space X is called co-locally countable completely regular
(briefly, lcc-completely regular) if whenever F ⊆ X is a closed set and x ∈ X \ F , then
there exists f ∈ Lcc(X) with f(F ) = 0 and f(x) = 1.

Clearly, a Hausdorff space X is lcc-completely regular if and only if whenever F ⊆ X
is closed set and x ∈ X \ F , then x and F have two disjoint zero-set neighborhoods in
Zlc(X). Consequently, there exist g, h ∈ Lcc(X) with x ∈ X \ Z(g) ⊆ Z(h) ⊆ X \ F . In
addition, X is lcc-completely regular if and only if F = {Z(f) : f ∈ Lcc(X)} is a base
for the closed sets in X or equivalently if and only if B = {intZ(f) : f ∈ Lcc(X)} is a
base for the open sets in X. The next proposition is the counterpart of [12, Proposition
4.3], [16, 3.11(a)] and [23, Proposition 4.3].

5.2. Proposition. Let X be a lcc-completely regular space and A,B be two disjoint
closed sets in X such that A is compact, then there is f ∈ Lcc(X) with f(A) = 0 and
f(B) = 1.

5.3. Proposition. Let X be a compact space. Then X is lcc-completely regular if and
only if Lcc(X) separates points in X.

Recall that a space X is said to be zero-dimensional if X is a T1 space with a base
consisting of clopen sets. A Hausdorff space X is called countably completely regular
(briefly, c-completely regular) if whenever F ⊆ X is a closed set and x /∈ F , then there
exists f ∈ Cc(X) with f(F ) = 0 and f(x) = 1, see [12, Definition 4.1]. In Proposition 4.4
of [12], it is shown that a topological space X is zero-dimensional if and only if X is c-
completely regular space. Since Cc(X) is a subring of Lcc(X), if X is a zero-dimensional
space then X is a lcc-completely regular space. Similar to [16, Theorem 3.6], the next
theorem can now be proved.

5.4. Theorem. Let X be a Hausdorff space. Then X is a lcc-completely regular space
if and only if its topology coincides with the weak topology induced by Lcc(X).

Let us recall that a space X is a P -space if and only if C(X) is a regular ring, see [16,
4J]. Also a space X is CP -space (resp., LCP - space) if and only if Cc(X) (resp., Lc(X))
is a regular ring. In view of the [23, Proposition 4.9], if Lcc(X) is regular, then Cc(X) is
regular too. The next definition is now in order.

5.5. Definition. A space X is called a co-locally countably P -space (briefly, LCCP -
space) if Lcc(X) is regular.

Clearly, any P -space is LCCP -space. If X is a LCP -space and f ∈ Lcc(X), by
regularity of Lc(X), there exists h ∈ Lc(X) such that f = f2h. Put g = h2f , therefore
f = f2g and it is evident that Z(f) ⊆ Z(g) and g(x) = (f(x))−1, where x /∈ Z(f).
Clearly, Cf = Cg and so g ∈ Lcc(X). Thus we have the following proposition.

5.6. Proposition. Every LCP -space is LCCP -space.

We should emphasize that if the proofs of [12, Theorem 5.5] and [23, Theorem 4.12]
are applied verbatim we have a simple proof for the next theorem.

5.7. Theorem. A space X is a LCCP -space if and only if every zero-set in Zlc(X)
is open. Moreover, in this case whenever {fi}i∈N is a countable set in Lcc(X), then⋂
i∈N Z(fi) is an open zero-set in Zlc(X).

We recall that X is a P -space if and only if every Gδ-set is open, see [16, 4J(3)]. The
following theorem is the counterpart of this fact for the LCCP -spaces.
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5.8. Theorem. Let X be a lcc-completely regular LCCP -space. Then every Gδ-set A
containing a compact set S, contains a zero-set in Zlc(X), which contain S. In particular,
every lcc-completely regular LCCP -space is a P -space.

LetM lc
p =Mp∩Lcc(X) and Olcp = Op∩Lcc(X), where p ∈ X, Op is the ideal of C(X)

consisting of f in C(X) for which Z(f) is a neighborhood of p and Mp is the maximal
ideal of C(X) consisting of all functions in C(X) that vanish on p. Clearly, M lc

p is the
kernel of the homomorphism f → f(p) of Lcc(X) onto R, in fact Lcc(X)

Mlc
p

∼= R and hence

M lc
p is a maximal ideal of Lcc(X). Consequently, the Jacobson radical of Lcc(X) is zero.

The following theorem is similar to [16, 4J] and [12, Theorem 5.8].

5.9. Theorem. Let X be a topological space. Then the following statements are equiva-
lent.

(1) X is a LCCP -space.
(2) Lcc(X) is a regular ring.
(3) Each ideal in Lcc(X) is a zlc-ideal.
(4) Each prime ideal in Lcc(X) is a maximal ideal.
(5) For each p ∈ X, M lc

p = Olcp .
(6) Every zero-set in Zlc(X) is open.
(7) Each ideal in Lcc(X) is an intersection of maximal ideals.
(8) For all f, g ∈ Lcc(X), (f, g) = (f2 + g2).
(9) For every f ∈ Lcc(X), X \ Z(f) is C-embedded.
(10) If {fn : n ∈ N} ⊆ Lcc(X), then

⋂
n∈N Z(fn) is an open zero-set in Zlc(X).

The next theorem is the counterpart of [13, Theorem 3.8] and [16, Theorem 4.11].

5.10. Theorem. Let X be a lcc-completely regular space, then the following statements
are equivalent.

(1) X is compact.
(2) Every ideal of Lcc(X) is fixed.
(3) Every maximal ideal of Lcc(X) is fixed.
(4) Every prime ideal of Lcc(X) is fixed.

5.11. Definition. A maximal idealM in Lcc(X) is called a real maximal ideal of Lcc(X)

if Lcc(X)
M

∼= R. A topological space X is called co-locally countably realcompact space
(briefly, lcc-realcompact) if every real maximal idealM of Lcc(X) is of the formM =M lc

p

for some p ∈ X.

Let us we note that if X is a compact zero-dimensional space, the corresponding
p → M lc

p is one-to-one from X onto the set of maximal ideals of Lcc(X), Max(Lcc(X))
say, and therefore the spaceX is homeomorphic toMax(Lcc(X)) with the Stone topology.
The proof of the following fact which is similar to the its counterpart in [16, Theorem
8.3], is omitted.

5.12. Proposition. Two zero-dimensional lcc-realcompact spaces X and Y are homeo-
morphic if and only if Lcc(X) ∼= Lcc(Y ).

The counterparts of the next theorem are already proved for the rings C(X), Cc(X),
and Lc(X), in [16], [13], and [23], respectively. We present its proof for the sake of
completeness.

5.13. Theorem. Let X and Y be two lcc-completely regular compact spaces. Then X
and Y are homeomorphic if and only if Lcc(X) ∼= Lcc(Y ). In particular, if X and Y are
compact zero-dimensional spaces, then Lcc(X) ∼= Lcc(Y ) if and only if Cc(X) ∼= Cc(Y ).



1064

Proof. Obviously if Lcc(X) ∼= Lcc(Y ), then Max(Lcc(X)) ∼= Max(Lcc(Y )) with the
Stone topology and hence X and Y are homeomorphic. Conversely, if ϕ : X → Y is
a homeomorphism from X onto Y and f ∈ Lcc(Y ), then we claim that foϕ ∈ Lcc(X).
Since f ∈ Lcc(Y ), we infer that Cf =

⋃
i∈I Vi is cocountable, where for each i ∈ I, Vi

is open in Y with |f(Vi)| 6 ℵ0. Put Ui = ϕ−1(Vi), where i ∈ I, clearly Ui is an open
set in X and |foϕ(Ui)| = |foϕ(ϕ−1(Vi))| = |f(Vi)| 6 ℵ0, thus

⋃
i∈I Ui ⊆ Cfoϕ. Now

we have
⋃
i∈I Ui =

⋃
i∈I ϕ

−1(Vi) = ϕ−1(
⋃
i∈I Vi). As

⋃
i∈I Vi is cocountable,

⋃
i∈I Ui is

cocountable, too. This completes the proof. �

We recall that a commutative ring R is said to be selfinjective (resp., ℵ0-selfinjective)
if every homomorphism f : I → R, where I is an ideal (resp., a countably generated
ideal) in R, can be extended to an homomorphism f̂ : R → R. Let us also recall that
a subset S of a commutative ring R is said to be orthogonal, provided xy = 0 for all
x, y ∈ S with x 6= y. If R is a commutative ring and S, T are two disjoint subsets in R
with S ∪ T an orthogonal set in R, then r ∈ R is said to separate S from T , if rs2 = s
for all s ∈ S and r ∈ Ann(T ). We also recall that if R is a reduced ring, then R is
selfinjective (resp., ℵ0-selfinjective) if and only if R is regular and whenever S ∪ T is an
orthogonal (countable orthogonal) set in R with S∩T = ∅, then there is an element in R
which separates S from T . If the proof of [12, Lemma 6.7] is applied verbatim, we have
a simple proof for the following lemma.

5.14. Lemma. The following statements are equivalent in Lcc(X).

(1) If S ∪ T is an orthogonal set in Lcc(X) with S ∩ T = ∅, then there exists
f ∈ Lcc(X) which separates S from T .

(2) For any orthogonal set L in Lcc(X) there exists f ∈ Lcc(X) with g2f = g for all
g ∈ L.

It is also worth mentioning that commutative regular rings are rarely ℵ0-selfinjective,
see [17, 14.7]. But fortunately, similarly to the rings C(X), Cc(X) and Lc(X), regularity
and ℵ0-selfinjectivity of Lcc(X) coincide, see [12], [23]. In [12] and [23] for showing the
latter fact, they invoke [21, Lemma 1.9], but we prove its counterpart for Lcc(X), without
appealing to this lemma.

5.15. Theorem. Let X be a topological space X. Then Lcc(X) is regular if and only if
Lcc(X) is ℵ0-selfinjective.

Proof. If Lcc(X) is ℵ0-selfinjective, then Lcc(X) is regular by [12, Lemmas 6.7, 6.8,
Remark 6.9]. Conversely, by the aforementioned facts we must show that if S = {fn}n∈N
is an orthogonal subset in Lcc(X), then there exists f ∈ Lcc(X) such that ff2

n = fn for
each fn ∈ S. Since Lcc(X) is a regular ring, we infer that

⋂
n∈N Z(fn) = Z(h) is an

open zero-set in Lcc(X), by Theorem 5.9. Suppose that Gn = X \Z(fn) for each n ∈ N.
For each i 6= j since fifj = 0, we have Gi ∩ Gj = ∅. If we define G =

⋃
i∈NGn, then

X = (
⋃
n∈NGn) ∪X \ G. Therefore, we may define f : X → R by f(x) = (fn(x))

−1 if
x ∈ Gn and f(x) = 0, otherwise. The function f is continuous by [16, 1A(2)] and clearly
f2
nf = fn, for all n ∈ N. It remains to be shown that f ∈ Lcc(X), to do this we claim
that

⋂
n∈N Cfn ⊆ Cf . Assume that x ∈

⋂
n∈N Cfn , if x ∈ X \G, then f(X \G) = 0 and

since X \ G is an open set in X, we conclude that x ∈ Cf . If x ∈ Gn, for some n ∈ N,
then there exists an open set Ux containing x with |fn(Ux)| 6 ℵ0. Hence, Ux ∩Gn is an
open set in X contains x and |f(Ux∩Gn)| = |fn(Ux∩Gn)| 6 |fn(Ux)| 6 ℵ0, i.e., x ∈ Cf .
Consequently, we have

⋂
n∈N Cfn ⊆ Cf and since fn ∈ Lcc(X) for all n ∈ N, we infer

that f ∈ Lcc(X). �
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6. The socle of Lcc(X)

Let us recall that for a commutative ring R the socle of R, denoted by Soc(R), is the
intersection of all essential ideals of R which is also equal to the sum of all minimal ideals
of R, see [25]. Karamzadeh and Rostami in [24] have shown that the socle of C(X) is
equal to all functions which vanish everywhere except on a finite number of points of X,
that is Soc(C(X)) = CF (X). We also recall that if I is a minimal ideal of C(X), then
I = eC(X), where e is an idempotent such that e(x) = 1 and Z(e) = X \ {x}, where x
is an isolated point of X, see [24, Proposition 3.1], in this case one can easily see that
I = eLcc(X) (note, although this is a consequence of Brauer’s Lemma in noncommutative
ring theory, but it can also be obtained from the fact, that in any commutative ring R, a
finitely generated idempotent ideal is generated by an idempotent). Similarly to the rings
C(X), Cc(X) and Lc(X) the Peirce decomposition Lcc(X) = eLcc(X) ⊕ (1 − e)Lcc(X)
holds. Since (1 − e)Lcc(X) = (1 − e)C(X) ∩ Lcc(X) is a maximal ideal in Lcc(X), we
infer that I = eLcc(X) is a minimal ideal in Lcc(X). Hence, every minimal ideal of
C(X) is a minimal ideal in Lcc(X), too. Consequently, CF (X) is an ideal in Lcc(X)
and CF (X) ⊆ Soc(Lcc(X)). It is also worth mentioning that since Soc(Lcc(X)) is a
semisimple Lcc(X)-module, we infer that CF (X) is a direct summand of Soc(Lcc(X)) as
a Lcc(X)-module. Furthermore, recall that in any commutative ring R, if I is a finitely
generated ideal and I = I2, then I is generated by an idempotent, see [10]. In view of this
fact, if I is a minimal ideal in a reduced ring R, then I = eR, where e is an idempotent
element. We recall that if Y is a subset of a space X, then the set of all f ∈ C(X) such
that f |Y is constant is a subalgebra of C(X), denoted by C1(Y ). Also, we say that Y
is constant with respect to a subring A of C(X) if A ⊆ C1(Y ), see [23, Definition 2.23].
Since the proofs of most of the results in this section are very similar to the proofs of
their corresponding results in [23], we state them without proofs. The following lemma
characterizes the minimal ideals of Lcc(X).

6.1. Lemma. Let I be a nonzero minimal ideal in Lcc(X), then I = eLcc(X) where e
is an idempotent in Lcc(X) such that Z(1− e) is connected. Conversely, if I = eLcc(X)
where e 6= 0 is an idempotent in Lcc(X) such that Z(1− e) is a constant subset of X with
respect to Lcc(X), then I is a minimal ideal in Lcc(X).

Proof. Let I be a nonzero minimal ideal in Lcc(X), since Lcc(X) is a reduced ring,
we infer that I = eLcc(X), where e is an idempotent element in Lcc(X). If Z(1 −
e) is not connected, then there exists a nonempty clopen subset A ( Z(1 − e). The
idempotent function e1 which A = Z(1−e1) lies in Lcc(X) and A = Z(1−e1) ( Z(1−e).
Consequently, e1 = e1e but e 6= e1e, hence e1Lcc(X) ( eLcc(X) = I and this contradicts
the minimality of I. Conversely, let I = eLcc(X), where e ∈ Lcc(X) such that Z(1− e)
is a constant subset of X with respect to Lcc(X). Now, we define ϕ : Lcc(X) −→ R
by ϕ(f) = f(Z(1 − e)). Clearly kerϕ = (1 − e)Lcc(X) and Lcc(X)

(1−e)Lcc(X)
∼= R, therefore

(1− e)Lcc(X) is maximal ideal in Lcc(X) and I is minimal in Lcc(X). �

Similarly to [13, Proposition 5.3] and [23, Proposition 5.3], the next proposition char-
acterizes the socle of Lcc(X) topologically. We note that the following proposition is
evident by [23, Remark 5.3].

6.2. Proposition. Let f ∈ Lcc(X) be a nonunit element. If f ∈ Soc(Lcc(X)), then
X \ Z(f) ⊆

⋃k
n=1An where k ∈ N and {A1, A2, ..., Ak} is a set of mutually disjoint

clopen connected subsets of X. Conversely, if X \ Z(f) ⊆
⋃k
n=1An, where k ∈ N and

{A1, A2, ..., Ak} is a set of mutually disjoint clopen of constant subsets of X with respect
to Lcc(X), then f ∈ Lcc(X). In particular, Soc(Lcc(X)) is a zlc-ideal in Lcc(X).
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We note that the clopen subsets of a space X which are constant with respect to
Lcc(X) may not be constant with respect to Lc(X). Let X = [0, 1] with the usual
topology, then the Cantor function f is a nonconstant function that lies in Lc(X), see
[23, Remark 2.9]. As X is a second countable space, Lcc(X) = Cc(X) by Proposition
3.18 and hence the Cantor function is not in Lcc(X). Hence, X is a clopen set which is
constant with respect to Lcc(X) but it is not constant with respect to Lc(X). The next
fact characterizes spaces X such that the socles of Lcc(X) and Cc(X) coincide.

6.3. Theorem. Soc(Lcc(X)) = Soc(Cc(X)) if and only if the clopen connected subsets
of X coincide with the clopen constant subsets of X with respect to Lcc(X).

Proof. Let Soc(Lcc(X)) = Soc(Cc(X)) and A be a nonempty clopen constant subspace
of X with respect to Lcc(X). We are to show that A is connected. Clearly, there
exists an idempotent function e in Lcc(X) with A = Z(1 − e) and by Lemma 6.1, e ∈
Soc(Lcc(X)) = Soc(Cc(X)). Hence, A = Z(1 − e) must be connected, by [13, Lemma
5.3]. Conversely, if I is a minimal ideal in Lcc(X), then I = eLcc(X) where e is an
idempotent such that Z(1− e) is connected, by Lemma 6.1. Hence I is a minimal ideal
in Cc(X), by [13, Lemma 5.1]. Now, let I be a nonzero minimal ideal in Cc(X), so
I = eCc(X), where e is an idempotent and Z(1 − e) is a clopen connected subset in
X, by [13, Lemma 5.1]. Since clopen connected subsets of X coincide with the clopen
constant subsets of X with respect to Lcc(X), we infer that I = eLcc(X) is a minimal
ideal of Lcc(X) by Lemma 6.1. �

It is clear that the socle of C(X) and the socle of Cc(X) coincide if and only if
every proper nonempty clopen connected subspace of X is singleton (i.e., consisting
of an isolated point), see [12, Theorem 5.6]. Also in [23] the spaces X for which
Soc(Lc(X)) = CF (X) is studied and in the following theorem we determines spaces
X that Soc(Lcc(X)) = CF (X). The proof of this theorem is similar to Theorem 5.5 in
[23] and we omit it.

6.4. Theorem. If every proper nonempty clopen connected subset of X is singleton, (e.g.,
any totally disconnected space), then Soc(Lcc(X)) = CF (X). Conversely, if Soc(Lcc(X))
= CF (X), then every proper nonempty clopen constant subspace of X with respect to
Lcc(X) is singleton.

The next corollary is a consequence of Theorem 6.3 and Theorem 6.4.

6.5. Corollary. Soc(Lcc(X)) = CF (X) = Soc(Cc(X)) if and only if each clopen con-
nected subset of X consists of a single isolated point. Thus, if X is zero-dimensional or
totally disconnected, then Soc(Lcc(X)) = CF (X) = Soc(Cc(X)).

We recall that an ideal in a commutative ring R is essential if it intersects every
nonzero ideal of R nontrivially. The following corollary is similar to [13, Corollary 5.4]
and [23, Corollary 5.7]. We should emphasize that if these proofs are applied verbatim
we have a simple proof for the next corollary, too.

6.6. Corollary. Let X be a lcc-completely regular space, and Soc(Lcc(X)) =
∑
i∈I
⊕

eiLcc(X), where eiLcc(X) is a nonzero minimal ideal of Lcc(X), and ei is an idempotent
for each i ∈ I. Put Y =

⋃
i∈I Z(1− ei), then Soc(Lcc(X)) is essential in Lcc(X) if and

only if Y is dense in X.

It is well-known that CF (X) is never a prime ideal of C(X), see [10, Proposition 1.2],
also CF (X) 6= (0) if and only if X has an isolated point. Similarly to [23, Proposition
5.8], the next proposition characterizes spaces X such that CF (X) is a prime ideal in
Lcc(X).
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6.7. Proposition. Let |I(X)| < ∞, where I(X) is the set of isolated points in X. If
CF (X) 6= (0) is a prime ideal in Lcc(X), then X \ I(X) is connected in X. Conversely,
if X \ I(X) is constant with respect to Lcc(X), then CF (X) 6= (0) is prime in Lcc(X).

In the following corollary, we consider spaces X such that CF (X) is not a prime ideal
in Lcc(X). If the proof of Corollary 5.9 of [23] is applied verbatim, we have a simple
proof of the next fact, too.

6.8. Corollary. If I(X) is an infinite set or Y = X \ I(X) is disconnected, then CF (X)
is never a prime ideal in Lcc(X).

The following theorem shows that for the spaces X in which there exist certain con-
stant subsets with respect to Lcc(X), Lcc(X) can not be isomorphic to any C(Y ).

6.9. Theorem. Let |I(X)| < ∞ and Y = X \ I(X) be constant with respect to Lcc(X)
(note, in this case Lcc(X) = CF (X)). Then there is no space Y with Lcc(X) ∼= C(Y ).

Proof. Let I(X) be finite and X \ I(X) is constant with respect to Lcc(X), then by
Proposition 6.7, CF (X) is a prime ideal in Lcc(X). If there exists a space Y such that
Lcc(X) ∼= C(Y ), then Soc(Lcc(X)) ∼= CF (Y ). Since Soc(Lcc(X)) is a zlc-ideal containing
a prime ideal CF (X), by Theorem 4.9, Soc(Lcc(X)) is a prime ideal in Lcc(X). Therefore
CF (Y ) is a prime ideal in C(Y ), which is a contradiction. �

It is worth mentioning that if we replace Lcc(X) by LcF (X) or Lc1(X) in this section,
then all results of this section remain valid for these two rings, too.
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