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On partial metric spaces and partial cone metric
spaces
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Abstract

It this article we shall show that partial metric spaces and partial cone
metric spaces are quasi-uniformizable and hence quasi-metrizable. Fi-
nally, an application to the Banach’s fixed point theorem will be pre-
sented in this context.
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1 Introduction

In applications, for instance in the study of denotational semantics of programming
languages some topological models are constructed. It so happen that such a model need
not be a Hausdorff space but a T0-space [9]. An ideal candidate for such a tool is partial
metric spaces. In the article we study topological properties of partial metric spaces,
partial cone metric spaces and quasi metric spaces.

The notion of a partial metric space was introduced by S G Matthews [9], since
then many interesting results were presented in the literature, see references in [9] and
also those at the end of this article. The focus ranges from topological properties of
these spaces to applications to theoretical computer science including generalizations of
Banach’ fixed point principle from metric spaces to partial metric spaces. In this paper
we further study topological properties of partial cone metric spaces via quasi-uniform
spaces. In this way we establish a relationship between partial cone metric spaces and
quasi-metric spaces. Furthermore we show that both partial cone metric spaces and
partial metric spaces are quasi-uniformizable.
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2 Preliminaries

We refer the reader to ([9], [11]) for more details and the connection of partial metric
spaces to theoretical computer science.

Let X be a nonempty set. A function d : X×X → [0,∞) satisfying for all x, y, z ∈ X :
(i) d(x, x) = 0;
(ii) d(x, y) ≤ d(x, z)+d(z, y) is called quasi-pseudo metric on X and the pair (X, d) is

called a quasi-pseudo metric space. If the function d satisfies (i), (ii), and (iii)d(x, y) =
d(y, x) then, d is called a pseudo metric and the pair (X, d) is referred to as a pseudo
metric space. It is well-known that a pseudo metric on X is a metric if d(x, y) = 0 is
equivalent to x = y. Now a quasi-pseudo metric that satisfies (i)′d(x, y) = 0 = d(y, x) if
and only if x = y is referred to as a quasi metric on X. Clearly every metric on X is a
pseudo metric but not conversely. When d is a pseudo metric on X, we shall refer to the
pair (X, d) as a pseudo metric space. Recall:

2.1. Definition. ([8],[9]) A partial metric is a function σ : X ×X → [0,∞) such that
for all x, y, z ∈ X :

(i) x = y ⇔ σ(x, x) = σ(x, y) = σ(y, y);
(ii) σ(x, x) ≤ σ(x, y);
(iii) σ(x, y) = σ(y, x);
(iv) σ(x, z) ≤ σ(x, y) + σ(y, z)− σ(y, y).

For partial metric σ on X, the pair (X,σ) will be called a partial metric space. Note
that for all x and y in a partial metric space (X,σ), σ(x, y) = 0, imply that x = y. The
converse does not necessarily hold, also, the value σ(x, x) usually referred to as the size
or weight of x, is a feature used in applications, for instance to describe the amount of
information contained in x.

A metric space is a partial metric space but not conversely.

2.1. Example.

Let X = { 1
n

: n ≥ 1}. Define σ : X ×X → [0,∞) by

σ(x, y) = max{x, y}.
Then (X,σ) is a partial metric space. The reader can easily verify that (X,σ) is neither
a pseudo metric space, nor a metric space.

The reader should note that not every pseudo metric space is a partial metric space.

2.2. Example.

Let X be a nonempty set, such that , the cardinality of X, |X| ≥ 2. Define σ :
X ×X → [0,∞) by σ(x, y) = 0, for all x, y ∈ X. Then (X,σ) is a pseudo metric space
but not a partial metric space.

However, the following holds:

2.1. Proposition. Let X be nonempty set. A function σ : X ×X → [0,∞) is a metric
if and only if σ is both a pseudo metric and a partial metric on X.

Let X be a nonempty set and U be a filter on X ×X. We denote by ∆ = {(x, x) : x ∈
X}. Suppose that the following hold for X and U on X :
(a)∆ ⊂ U, for every U ∈ U;
(b) For every U ∈ U there exists V ∈ U such that V ◦ V ⊆ U. Then the filter U is called
a quasi-uniformity [5] on X, and the pair (X,U) is referred to as a quasi-uniform space.
Note that a quasi-uniformity U is a uniformity on X if and only if for every U ∈ U, the
inverse of U, denoted by U−1 contains a member of U. So, every uniformity on X is a
quasi-uniformity, but the converse is not necessarily true.
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2.1. Theorem. Let (X,σ) be a partial metric space. The family {Un : n = 1, 2, ...} with

Un = {(x, y) ∈ X ×X : σ(x, y) < σ(x, x) +
1

n
}

is a base for the quasi-uniformity Uσ induced by σ.
Proof. Let (X,σ) be a partial metric space and Un = {(x, y) ∈ X × X : σ(x, y) <

1
n

+ σ(x, x)} for each n ∈ N. We show that {Un, n ∈ N} is a base for the uniformity Uσ.
Note that {(x, x) : x ∈ X} ⊂ Un for each n ∈ N. Since n + 1 > n, we have Un+1 ⊂ Un.
Finally, for each n ∈ N there is m ∈ N such that Um ◦ Um ⊂ Un. In particular, for each
n ∈ N choose, m > 2n then 1

m
+ 1

m
< 1

n
. Let (x, z) ∈ Um ◦Um. The find y ∈ X such that

(x, y) ∈ Um and (y, z) ∈ Um. So, from σ(x, z) ≤ σ(x, y) + σ(y, z)− σ(y, y) we get

σ(x, z) ≤ 1

m
+ σ(x, x) +

1

m
+ σ(y, y)− σ(y, y) =

2

m
+ σ(x, x).

Thus σ(x, z) ≤ 1
n

+ σ(x, x). Therefore (x, z) ∈ Un, this shows that Um ◦Um ⊂ Un. Hence
the set {Un : n ∈ N} is a base for the quasi-uniformity Uσ on X. �

2.1. Remark. Although in a partial metric space (X,σ), we have σ(x, y) = σ(y, x) for
all x, y ∈ X, we note that σ(x, y) < σ(x, x) + ε, for ε > 0, does not necessarily mean
that σ(x, y) < σ(y, y) + ε, or conversely. This means that the sets Un in Theorem 2.1 are
not necessarily symmetric, hence the quasi uniformity generated by the partial metric σ
is not necessarily a uniformity.

We recall that a topological space (X, τ) is quasi-metrizable if there is a quasi metric
d on X such that τ = τd. In this case we say that d is compatible with τ, and that
τ is a quasi-metrizable topology. Furthermore, given a partial metric space (X,σ), the
set {B(x, 1

n
)} form a base for the topology τσ, where B(x, 1

n
) = {y ∈ X : σ(x, y) <

σ(x, x) + 1
n
}.

2.1. Corollary. For every partial metric space (X,σ), the topological space (X, τσ), is
quasi-metrizable.

Proof. Let (X,σ) be a partial metric space and Un = {(x, y) ∈ X × X : σ(x, y) <
1
n

+ σ(x, x), n ≥ 1}. Then the set {Un : n ∈ N form a countable base for the quasi
uniformity Uσ. Now for each x ∈ X, and each n = 1, 2, ..., Un(x) = {y ∈ X : σ(x, y) <
σ(x, x)+ 1

n
} = B(x, 1

n
). So that the topology induced by the quasi uniformity Uσ coincides

with τσ. Hence by Theorem 2.1 the quasi uniform space (X,Uσ) is quasi-metrizable. This
completes the proof. �

3 Main Results

The following definition is given in [4]

3.1. Definition. Let E be an ordered vector space. An element e ∈ E is called an order
unit if for each x ∈ E there exists λ ∈ R such that x < λe.

Let E be an ordered Banach space and K be subset of E. Note that K is a cone if
K is closed with respect to the norm-topology, and for nonnegative scalars α, β, we have
αx+βy ∈ K, for x, y ∈ K, also, for a zero vector θ in E, x ∈ K, and −x ∈ K, imply that
x = θ. A cone K is normal, if x ≤ y in K implies that there exists a constantM > 0 such
that ||x|| ≤ M ||y||, with M being a minimal such constant, and ≤ is a partial ordering
on E induced by the cone K. That is for x, y ∈ E we write x ≤ y, if y − x ∈ K.

3.2. Definition. [13] Let X be a nonempty set and E an ordered Banach space with a
cone K in E such that int(K) 6= ∅ and K closed. A function σc : X × X → E is a
partial cone metric if for x, y, z ∈ X :

(i)θ ≤ σc(y, y) = σc(x, y) = σc(x, x) if and only if x = y;
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(ii)σc(x, y) = σc(y, x) for all x, y;
(iii)σc(x, z) ≤ σc(x, y) + σc(y, z)− σc(y, y) for all x, y, z. In this case (X,E,K, σc) is

called a partial cone metric space.

3.1. Example.

Let E = R2,K = {(x, y) ∈ E : x, y ≥ 0}, and X = N. Define σc : X ×X → E by

σc(x, y) = (max{ 1

x
,

1

y
}, α.max{x, y}),

with α > 0. Then (X,E,K, σc) is not a partial metric space but a partial cone metric
space. Also, (X,E,K, σc) is not a cone metric space.

3.3. Definition. [12] Let X be a nonempty set, E be an ordered vector space with a
cone K. The function d : X ×X → E is called a quasi-cone metric if for x, y, z ∈ X :

(i) θ ≤ d(x, y) for all x, y;
(ii) d(x, y) = θ = d(y, x) if and only if x = y;
(iii) d(x, y) ≤ d(x, z) +d(z, y) for all x, y, z. In this case (X,E,K, d) is called a quasi-

cone metric space.

Note that (X,E,K, d−1) is also a quasi-cone metric space, where d−1 : X ×X → E
is defined by d−1(x, y) = d(y, x), for all x, y ∈ X. The function d−1 is usually called a
conjugate of d it is also a quasi-cone metric on X. Now for all x, y ∈ X, let ds(x, y) =
d(x, y) + d−1(x, y). Then the function ds : X ×X → E is a cone metric on X.

3.2. Example.

Let E = R2 and X = R. Put

K = {(x, y) ∈ E : x, y ≥ 0},

For α ≥ 0, we define
d : X ×X → E

by d(x, y) = ((x − y), α(x − y)) when x ≥ y and d(x, y) = (0, 0) = θ, otherwise. Then
(X,E,K, d) is a quasi-cone metric space.

3.1. Proposition. [13] Let (X,E,K, σc) be a partial cone metric space. The function
d : X ×X → E defined by

d(x, y) = σc(x, y)− σc(x, x)

for all x, y ∈ X is a quasi-cone metric on X.

In the sequel, given a partial cone metric space (X,E,K, σc) we denote the associated
quasi-cone metric space by (X,E,K, d).

For a partial cone metric space (X,E,K, σc), define

B<<(x, e) = {y ∈ X : θ << e+ σc(x, x)− σc(x, y)}

and let A ⊂ X. We shall say A is an open subset in X if for every a ∈ A, there exists u
where θ << u such that say B<<(a, u) ⊆ A.

3.1. Theorem. Let (X,E,K, σc), be a partial cone metric space. For each x ∈ X, and
e ∈ int(K) the subset B<<(x, e) is open in X.

Proof. Let b ∈ B<<(x, e). Then θ < e+ σc(x, x)− σc(x, b), we put u = e+ σc(x, x)−
σc(x, b). So, θ << u. Now let c ∈ B<<(b, u). Then θ < u + σc(b, b) − σc(b, c). So θ �
u+ σc(b, b)− σc(b, c). Actually, σc(x, c) ≤ σc(x, b) + σc(b, c)− σc(b, b). Hence,

σc(x, c) ≤ σc(x, b) + u+ σc(b, b)− σc(b, b).
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From u = e+ σc(x, x)− σc(x, b) we get

σc(x, c) < e+ σc(x, x).

Thus,
θ � e+ σc(x, x)− σc(x, c).

It follows that c ∈ B<<(x, e), so B<<(b, u) ⊆ B<<(x, e). This shows that B<<(x, e) is
open. �

3.2. Proposition. Let (X,E,K, σc), be a partial cone metric space and e ∈ int(K) be
fixed. Then the family {B<<(x, re) : x ∈ X, θ << r} forms a basis for the topology.

Proof. Let u ∈ int(K), be an order unit. For some r ∈ (0,∞), we have re ≤ u, hence
re+ σc(x, x) ≤ u+ σc(x, x). Thus θ � u+ σc(x, x) implies θ � re+ σc(x, x). It follows
that B<<(x, re) ⊂ B<<(x, u). �

Given a partial cone metric space (X,E,K, σc), let us denote the topology induced
by σc with τσc , and the topology induced by the associated quasi cone metric d by τd. .

3.2. Theorem. Let (X,E,K, σc), be a partial cone metric space. Then there exists a
quasi uniformity U of X such that τU = τσc .

Actually, we have:

3.1. Lemma. Let (X,E,K, σc), be a partial cone metric space and e ∈ int(K) be fixed.
Then {Uσc, 1n e} is a countable base for a quasi-uniformity U on X.

Proof. Let x ∈ X and define Uσc, en [x] = {y ∈ X : θ << e
n

+ σc(x, x)− σc(x, y)}. We
will show that the collection {Uσc, en } is a base for a quasi uniformity on X. The proof
is similar to that of Theorem 2.1. We first note that for each e

n
, n = 1, 2, ... M⊂ Uσc, en .

We have Ud, e
n+1

⊂ Uσc, en . Let n and m be positive integers such that 2n < m. We
will show that Uσc, e

m
◦ Uσc, e

m
⊂ Uσc, en . Let (x, y) ∈ Uσc, e

m
◦ Uσc, e

m
. Find z ∈ X such

that (x, y) ∈ Uσc, e
m

and (y, z) ∈ Uσc, e
m
. Clearly, θ � 2e

m
+ σc(x, x) − σc(x, z) hence

θ � e
n

+ σc(x, x) − σc(x, z). Since (x, z) ∈ Uσc, e
m
◦ Uσc, e

m
, this shows that (x, z) ∈

Uσc, en . It follows that {Uσc, en } is a countable base for the quasi uniformity U on X.
�

We conclude this section by strengthening our earlier result, namely, Proposition 3.1

3.3. Theorem. Let (X,E,K, σc), be a partial cone metric space and e ∈ int(K) be fixed.
Then the topological space (X, τσc) is quasi-metrizable.

Proof. Let (X,E,K, σc), be a partial cone metric space, e ∈ int(K) be fixed and U be
the quasi uniformity induced on X as obtained by Lemma 3.1. The quasi uniformity U

has a countable base, and the topology induced by the quasi uniformity U coincides with
the topology induced by σc. Let d be as in Proposition 3.1 then we have τσc = τd = τU.
Hence (X, τσc) is quasi-metrizable. �

Actually, let (X,E,K, σc) be a partial cone metric space and (X,E,K, d) be a quasi
cone metric space. The function ρd : X ×X → [0,∞) defined by

ρc(x, y) = inf{||u|| : d(x, y)� u}
is a quasi-metric on X, where u ∈ K, and θ � u.

4 Contractions and fixed point theory

Let (X,E,K, σc), be a partial cone metric space and {xn} be a sequence in X. The
sequence {xn} converges to a point x ∈ X if limn σc(xn, x) = σc(x, x) = limn σc(xn, xn).

Let (X,E,K, σc) be a partial cone metric space. A sequence {xn} is referred to as a
� −u−Cauchy, where θ � u, if for every ε > 0 there exists k such that σc(xm, xn)� εu
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for all m,n ≥ k. The sequence {xn} is� − Cauchy if it is� −u− Cauchy for all u ∈ E
with θ � u. We shall say that the sequence {xn} is � −u− convergent to x is for each
ε > 0 there exists k such that σc(xn, x) � εu for all n ≥ k, where θ � u. The sequence
{xn} is � − converging to x if it � −u− converges to x for all u ∈ E, with θ � u.
We say that (X,E,K, σc) is � − Cauchy complete if every � −u− Cauchy sequence
converges to a point x ∈ X and σc(x, x) = θ.

Following the work of R. H. Haghi et al in [6], we note that for every partial cone
metric space (X,E,K, σc) there is an associated cone metric space (X,E,K, dc), where
the cone metric dc : X×X → E is defined by dc(x, y) = σc(x, y), if x 6= y and dc(x, y) = θ,
otherwise. We note the following:
a) The sequence in a partial cone metric space (X,E,K, σc) that � − converges to a

point x also converges to x but the converse is not necessarily true, see Example 4.1.
b) In partial metric spaces the notions of � − completeness and 0− completeness

coincide.
c) In cone metric spaces the notions of � − completeness and completeness coincide.

4.1. Proposition. Let (X,E,K, σc) be a partial cone metric space. Suppose that a
sequence {xn} � − converges to x and y. Then x = y.

Proof. Suppose that {xn} converges to both x and y. Since σc(x, x) ≤ σc(x, y) for all
x, y ∈ X, we will show that σc(x, y) ≤ σc(x, x) and σc(x, y) ≤ σc(y, y). To do this we
observe that if a sequence in a cone partial metric space (X,E,K, σc) � − converges to
a point then it converges to the point, also, σc(x, y) ≤ σc(x, xn) +σc(xn, y)−σc(xn, xn).
Taking n → ∞ and since limnσc(xn, xn) = σc(x, x), we get σc(x, y) ≤ σc(x, x). Now
σc(x, x) ≤ σc(x, y) for all x, y ∈ X. So σc(x, x) = σc(x, y), hence, σc(x, y) = σc(x, x) =
σc(y, y). It follows that x = y. �

Let (X,E,K, σc) be a partial cone metric space. The following is easy and therefore
we omit the proof.

4.2. Proposition. Let (X,E,K, σc) be a partial cone metric space. Then the following
hold:
a) If {xn} is a � − Cauchy sequence in (X,E,K, σc) then it is a Cauchy sequence in

the cone metric space (X,E,K, dc).
b) If (X,E,K, σc) is � − complete then the cone metric space (X, dc) is complete.

Let (X,E,K, σc), be a partial cone metric space and (X,E,K, dc) be the associated
cone metric space. A map T : (X,E,K, σc)→ (X,E,K, σc) is a contraction whenever

σc(Tx, Ty) ≤ ασc(x, y)

for all x, y ∈ X and α ∈ [0, 1). Note that if T : (X,E,K, σc) → (X,E,K, σc) is a
contraction, then

dc(Tx, Ty) ≤ αdca(x, y)

holds for all x, y ∈ X and α ∈ [0, 1). We also note that given a cone metric space there
is an equivalent metric space [3]. So as an application, recall:

4.1. Theorem. For each complete metric σ : X × X → [0,∞), and every ( self map)
function T : X → X such that for all x, y ∈ X,

σ(Tx, Ty) ≤ cσ(x, y),

with c ∈ [0, 1) there exists a unique a ∈ X, such that a = Ta.
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4.2. Theorem. Let (X,E,K, σc), be a � − Cauchy complete partial cone metric space
and K be a normal cone. Suppose that a mapping T : X → X satisfies the contractive
condition

σc(Tx, Ty) ≤ cσc(x, y),

for all x, y ∈ X where c ∈ [0, 1) is a constant. Then there exists a point a ∈ X such that
a = Ta and for any x ∈ X the iterative sequence {Tnx} converges to a.

Proof. Let (X,E,K, σc), be a � − Cauchy complete partial cone metric space. Then
the associated cone metric space (X,E,K, dc) is complete. Now let (X, ρ) be the the equiv-
alent metric space [[3], [4],[6]], so that (X, ρ) is complete. The function T : (X, ρ) →
(X, ρ) is a contraction whenever T : (X,E,K, σc) → (X,E,K, σc) is a contraction.
Hence by Theorem 4.1, for T : (X, ρ)→ (X, ρ) there exists a ∈ X such that a = Ta and
the sequence {Tn} converges to a. �

It is worth mentioning the given a partial cone metric space (X,E,K, σc), the space
(X,E,K, σc) may be� − Cauchy complete , without the cone metric space (X,E,K, ds)
being complete, with ds(x, y) = 2σc(x, y)− σc(x, x)− σc(y, y). Actually an example of a
� − Cauchy complete partial cone metric space with the cone metric space (X,E,K, ds)
which is not complete is found in [10]. So generally in the proof of Theorem 4.2 we cannot
replace the cone metric space (X,E,K, dc) with (X,E,K, ds).
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