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Abstract
We prove the existence and uniqueness of the solutions of a second
order mixed type impulsive differential equation with piecewise con-
stant arguments. Moreover, we study oscillation, non-oscillation and
periodicity of the solutions.
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1. Introduction
In the recent years impulsive differential equations with piecewise constant arguments

attract attention of many mathematicians and numerous papers have been published on
this class of equations. Most of the publications are devoted to first order differential
equations. Among them note the papers [1]-[4] are on oscillation and periodicity prob-
lems. However, qualitative behaviours of second order impulsive differential equations
and second order differential equations with piecewise constant arguments are the subject
of many investigations while second order impulsive differential equations with piecewise
constant arguments are not. Our paper is probably one of the first publications con-
cerned with qualitative behaviour problems of second order impulsive delay differential
equations with piecewise constant arguments. Now let us give an quick overview on the
existing literature of the subject. Firstly, start with second order impulsive differential
equations:

In [5], Huang study the oscillation and non-oscillation for the second order linear
impulsive differential equation u′′ = −p (t)u where p (t) is an impulsive function de-
fined by p (t) =

∑∞
n=1 anδ (t− tn) and establish a necessary and sufficient condition

for oscillation (or non-oscillation) of the equation u′′ = −p (t)u. In 1999, Berezansky
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and Braverman establish the following properties of a second order impulsive differential
equation: non-oscillation of the differential equation and the corresponding differential
inequality, positiveness of the fundamental function and the existence of a solution of
a generalized Riccati inequality. Explicit conditions for non-oscillation and oscillation
and comparison theorems are presented [6]. The paper [7] is devoted to the study of
the oscillatory behaviour of a type of extensively studied second-order nonlinear delay
differential equations with impulses. They show in some examples that, even though
some delay differential equations without impulses are non-oscillatory, they may become
oscillatory if some impulses are added to them. That is, in some cases, impulses play a
dominating part in causing the oscillations of equations. In 2004, Yan obtain an explicit
necessary and sufficient condition for all bounded solutions to be oscillatory by using the
comparison theorem on bounded oscillation of the impulsive differential equation with
the corresponding non impulsive differential equation[8]. Luo and Shen use the associated
Riccati techniques and the equivalence transformation to discuss the oscillation and the
non-oscillation of the second order linear ordinary differential equation with impulses in
[9]. In [10], the authors give a non-oscillation criterion for second-order half-linear equa-
tion with periodic coefficients under fixed moments of impulse actions. The method is
based on the existence of positive solutions of the related Riccati equation and a recently
obtained comparison principle. In the special case when the equation becomes impulsive
Hill equation new oscillation criteria are also obtained. Ozbekler and Zafer [11] consider
the nonlinear impulsive equation of the form

(
r (t)x′

)′
+

n∑
k=1

qk (t)φk (x) = f (t) , t 6= θi;

∆r (t)x′ +

n∑
k=1

qi,kφk (x) = fi, t = θi,

where ∆g (t) = g
(
t+
)
− g

(
t−
)
with g

(
t±
)

= limτ→t± g (τ) . The authors give new oscil-
lation criteria for this equation. The method is based on the existence of a nonprincipal
solution of a related second order impulsive differential equation(

r (t) z′
)′

+Q (t) z = 0, t 6= θi;

∆r (t) z′ +Qiz = 0, t = θi,

where Q (t) =
n∑
k=1

qk (t) and Qi =
n∑
k=1

qi,k.

Now let us continue with papers on second order differential equations with piecewise
constant arguments:

A few investigations are available in the current literature on the modelling and anal-
ysis of the behaviour of physical systems in dynamics with governing equations of second
order piecewise constant differential equations. In 1988, Leung [12] study the steady
state response of a linear mechanical system in which the forcing function is represented
by a linear combination of known functions that can be continuous or piecewise constant.
The solution of the system is assumed in the form of a linear combination of the given
functions with unknown coefficients. For a piecewise constant forcing function, the re-
sponse at the discrete points of time is obtained. In 1994, Dai and Singh [13] present the
solutions of several second order differential equations representing motions of a spring-
mass system disturbed by a piecewise constant force in the form of f ([t]) or f (x ([t])) .
Then, in 1997, they replace the variable t of the continuous function f (t) in equation

(1.1) mx′′ + cx′ + kx = f (t) , t > 0
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with the piecewise constant variable [Nt]
N

such that a piecewise constant system is ob-
tained with the governing equation

mx′′ + cx′ + kx = g

(
[Nt]

N

)
, [Nt] /N ≤ t ≤ ([Nt] + 1) /N,

and they show that this replacing is a good approximation to the given function f (t)
with argument t, if the parameter N is sufficiently large [14]. Here, Eq.(1.1) is the form
of an equation which describes vibratory motion associated with simple and complicated
dynamic systems in engineering applications can often be simplified to the motion of
spring-mass system with one degree of freedom where the time dependent function f (t)
is known and express the continuous external force acting on the spring mass system.
Later, in 1998, again Dai and Singh [15] use the piecewise constant technique which they
have investigated in their earlier works [13], [14] to obtain approximate and numerical
solutions of the driven Froude pendulum. By the application of the piecewise constant
technique they prove that approximate solutions for the non-linear system can be derived
and a numerical simulation for the oscillations of the driven Froude pendulum may be
conveniently performed on a computer. They also examine the oscillatory behaviour
of the pendulum on the basis of numerical solutions obtained. In 1999, Wiener and
Lakshmikantham [16] consider the equation of the type

(1.2) x′′ (t)− a2x (t) = bx ([t− 1]) , b 6= 0.

In addition to forming the explicit solutions of Eq.(1.2) they find some sufficient condi-
tions on oscillatory, non-oscillatory as well as periodic solutions with period 3. In [17],
Seifert consider functional differential equations with piecewise constant arguments and
give conditions under which such equations with almost periodic time dependence have
unique almost periodic solutions, and for certain autonomous cases, they obtain certain
stability results and also conditions for chaotic behaviour of solutions. The aim of the
paper [18] is to show that a bounded solution of a second-order differential equation
with piecewise constant argument of the form (x (t) + px (t− 1))′′ = qx ([t]) + f (t) is al-
most automorphic. In [19] and [20] almost and pseudo-almost periodic solutions for the
second-order neutral differential equations with piecewise constant argument are inves-
tigated. Green’s function for second order differential equations with piecewise constant
arguments is studied in [21] and [22]. Dads and Lhachimi give necessary and sufficient
conditions in order to ensure the existence and uniqueness of pseudo almost periodic solu-
tions in [23]. The existence of a solution, existence of almost and quasi-periodic solutions
and the spectrum containment of almost periodic solution for a class of second-order
functional differential equations with piecewise constant arguments are investigated in
[24], [25] and [26], respectively. In [27], we consider the second order differential equation
with piecewise constant mixed arguments

x′′ (t)− a2x (t) = bx ([t− 1]) + cx ([t]) + dx ([t+ 1])

where a, b, c, d ∈ R− {0} and [.] denotes the greatest integer function. We prove the
existence and uniqueness of solutions of this equation, state the necessary and sufficient
conditions that make the zero solution is a global attractor and derive some conditions
under which it has oscillatory, non-oscillatory and k periodic solutions.

All these have made us motivated to study the qualitative aspects of the second order
mixed type impulsive differential equation with piecewise constant arguments.
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In this paper, we consider the following second order mixed type impulsive differential
equation with piecewise constant arguments:

x′′ (t)− a2x (t) = bx ([t− 1]) + cx ([t]) + dx ([t+ 1]) , t 6= n, t ≥ 0,(1.3)

∆x′ (n) = αx′ (n) , t = n, n ∈ Z+,(1.4)

where a, b, c, d and α are real constants which are different from zero, Z+ = {1, 2, . . .} ,
∆x′ (n) = x′

(
n+
)
−x′

(
n−
)
such that x′

(
n+
)

= limt→n+ x′ (t) and x′
(
n−
)

= limt→n− x
′ (t),

and [.] denotes the greatest integer function.
This paper is organised as below:
The existence and uniqueness of solutions of Eq.(1.3)-(1.4) is studied in section 2;

section 3 is devoted to the main results such as oscillation, non-oscillation and periodicity.
It should be emphasized that the results obtained for Eq.(1.3)-(1.4) coincide with the

results for equations without impulses in [27] when we take α = 0 in (1.4).
Now, let us give the definition for a solution and the oscillation of a solution

1.1. Definition. A function x (t) defined on Ω : {−1} ∪ [0,∞) is said to be a solution
of the Eq.(1.3)-(1.4) if it satisfies the following conditions:
(i) x : Ω→ R is continuous on [0,∞),
(ii) x′ (t) exists and is continuous on [0,∞) with the possible exception of the points

[t] ∈ Z+,
(iii) At the points [t] ∈ Z+, x′ (t) is right continuous and has left hand side limits,
(iv) x′′ (t) exists at each point t ∈ [0,∞) with the possible exception of the points

[t] ∈ Z+ where one-sided derivatives exist,
(v) x (t) satisfies (1.3) for any t ∈ [0,∞) with the possible exception of the points

[t] ∈ Z+ ,
(vi) x′ (t) satisfies (1.4) for every [t] ∈ Z+.

1.2. Definition. A solution x (t) of Eq.(1.3)-(1.4) is said to be oscillatory if x (t) has
arbitrarily large zeros, otherwise it is called non-oscillatory.

2. Existence and Uniqueness of Solutions
This section includes theorems which insures that Eq.(1.3)-(1.4) has a solution and

with the initial conditions it is unique.

Note that along this section it is assumed that α 6= 1 and d 6= a2

cosh a− 1
.

2.1. Theorem. Eq.(1.3)-(1.4) has a solution on [0,∞) .

Proof. Denote

(2.1) xn (t) = xn (n+ s) = λnv (s)

is a solution of Eq.(1.3)-(1.4) on the interval [n, n+ 1) , where n ∈ Z+, λ is a constant, 0 ≤
s < 1 and v : [0, 1)→ R is a continuous function and consider the initial conditions

(2.2) v (0) = 1, v (1) = λ.

On the other hand, for n ≤ t < n+ 1, Eq.(1.3) is written as

(2.3)
d2xn (t)

dt2
− a2xn (t) = bxn (n− 1) + cxn (n) + dxn (n+ 1) .

In view of (2.1) and (2.2),

(2.4) xn (n− 1) = λn−1, xn (n) = λn, xn (n+ 1) = λn+1 and
d2xn (t)

dt2
= λn

d2v

ds2
.
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Substituting (2.4) in (2.3), we get

(2.5) v′′ − a2v = bλ−1 + c+ dλ.

The solution of Eq.(2.5) with the conditions (2.2) is

v (s) =

(
a2
(
e−a − λ

)
+
(
e−a − 1

) (
bλ−1 + c+ dλ

)
a2 (e−a − ea)

)
eas

+

(
a2 (λ− ea)− (ea − 1)

(
bλ−1 + c+ dλ

)
a2 (e−a − ea)

)
e−as

−
(
bλ−1

a2
+

c

a2
+
dλ

a2

)
.

Since x (t) = λnv (t− n), we have the following solution, denoted by xn (t) on the interval
[n, n+ 1)

xn (t) =
λn−1b

a2 (e−a − ea)
{ea(t−n−1) − e−a(t−n−1) − ea(t−n) + e−a(t−n) + ea − e−a}

+
λn

a2 (e−a − ea)
{a2

(
ea(t−n−1) − e−a(t−n−1)

)
+ c

(
ea(t−n−1) − e−a(t−n−1) − ea(t−n) + e−a(t−n) + ea − e−a

)
}

+
λn+1

a2 (e−a − ea)
{a2

(
e−a(t−n) − ea(t−n)

)
+ d

(
ea(t−n−1) − e−a(t−n−1) − ea(t−n) + e−a(t−n) + ea − e−a

)
}.(2.6)

We can also extend this solution on the interval [0,∞) as follows by taking n − 1 =
[t− 1] , n = [t] , n + 1 = [t+ 1] and t − n = t − [t] = {t} which denotes the fractional
part of t :

xλ (t) =
λ[t−1]b

a2 (e−a − ea)
{ea({t}−1) − e−a({t}−1) − ea{t} + e−a{t} + ea − e−a}

+
λ[t]

a2 (e−a − ea)
{a2

(
ea({t}−1) − e−a({t}−1)

)
+ c

(
ea({t}−1) − e−a({t}−1) − ea{t} + e−a{t} + ea − e−a

)
}

+
λ[t+1]

a2 (e−a − ea)
{a2

(
e−a{t} − ea{t}

)
+ d

(
ea({t}−1) − e−a({t}−1) − ea{t} + e−a{t} + ea − e−a

)
}.(2.7)

On the other hand, from the condition (1.4) we have

(2.8) x′n (n+ 1) = (1− α)x′n+1 (n+ 1)

since the first derivative of the solution is right continuous. Here x′n (t) and x′n+1 (t)
denote the derivatives of the solutions xn (t) and xn+1 (t) on the intervals [n, n+ 1) and
[n+ 1, n+ 2), respectively.
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Now, by taking the derivative of (2.6), we obtain

x′n (t) =
λn−1b

a (e−a − ea)
{ea(t−n−1) + e−a(t−n−1) − ea(t−n) − e−a(t−n)}

+
λn

a (e−a − ea)
{a2

(
ea(t−n−1) + e−a(t−n−1)

)
+ c

(
ea(t−n−1) + e−a(t−n−1) − ea(t−n) − e−a(t−n)

)
}

+
λn+1

a (e−a − ea)
{a2

(
−e−a(t−n) − ea(t−n)

)
+ d

(
ea(t−n−1) + e−a(t−n−1) − ea(t−n) − e−a(t−n)

)
}.(2.9)

Substituting n+ 1 in place of n in (2.9) and considering the equation (2.8) gives us the
following equation

λ3 +

(
cosh a (1− α)

(
a2 + c

)
− c (1− α) + a2 cosh a+ d (cosh a− 1)

(1− α) (d (cosh a− 1)− a2)

)
λ2

+

(
(1− α) (b+ c) (cosh a− 1)− a2

(1− α) (d (cosh a− 1)− a2)

)
λ+

b (cosh a− 1)

(1− α) (d (cosh a− 1)− a2)
= 0(2.10)

which is called the characteristic equation of the Eq.(1.3)-(1.4). Eq.(2.10) has three
nontrivial solutions. If λ1, λ2 and λ3 are different characteristic roots, the corresponding
solutions xλ1 , xλ2 and xλ3 ,which are obtained by taking λ1, λ2 and λ3 in place of λ in
the solution (2.7), are independent solutions of the Eq.(1.3)-(1.4). We can also write the
general solution of Eq.(1.3)-(1.4) as

(2.11) x (t) = c1xλ1 (t) + c2xλ2 (t) + c3xλ3 (t)

where ci, i = 1, 2, 3 are arbitrary constants. �

2.2. Theorem. Consider Eq.(1.3)-(1.4) with the initial conditions

(2.12) x (−1) = x−1, x (0) = x0, x
′ (0) = y0.

If λi, i = 1, 2, 3, are distinct roots of Eq. (2.10) and

(2.13) λ2λ3 (λ2 − λ3) + λ1λ2 (λ1 − λ2)− λ1λ3 (λ1 − λ3) 6= 0,

then the initial value problem (1.3)-(1.4) with (2.12) has a unique solution on the interval
[0,∞) where x−1, x0 and y0 are given numbers.

Proof. If λi, i = 1, 2, 3, are distinct roots of the Eq. (2.10), then the general solution of
the Eq.(1.3)-(1.4) is given by (2.11). Let us substitute the initial conditions (2.12) into
(2.11), then we have

(2.14)


c1xλ1 (−1) + c2xλ2 (−1) + c3xλ3 (−1) = x−1,

c1xλ1 (0) + c2xλ2 (0) + c3xλ3 (0) = x0,

c1x
′
λ1

(0) + c2x
′
λ2

(0) + c3x
′
λ3

(0) = y0.

Since the determinant of the coefficients matrix of the system (2.14), which is calculated
as

∆ =

(
2a2 − d

(
e−a + ea − 2

)
a (e−a − ea)

)(
λ2λ3 (λ2 − λ3) + λ1λ2 (λ1 − λ2)− λ1λ3 (λ1 − λ3)

λ1λ2λ3

)
,

is different from zero then the system (2.14) has a unique solution c1, c2, c3. It should
be noticed that the derivative used in this proof is right hand derivative. �
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2.3. Theorem. Assume that λ1 and λ2 are equal (say λ) and λ3 is a distinct root of
Eq.(2.10). If

(2.15) λ2 + 2λλ3 + λ2
3 6= 0,

then the initial value problem (1.3)-(1.4) with (2.12) has a unique solution on the interval
[0,∞).

Proof. First of all, for this case let us start with writing the general solution of Eq.(1.3)-
(1.4) on [0,∞):

A general solution of Eq.(1.3)-(1.4) when λ1 = λ2 (= λ) and λ3 is a distinct charac-
teristic root is given by

(2.16) x (t) = c1x1 (t) + c2x2 (t) + c3x3 (t)

where ci, i = 1, 2, 3, are arbitrary constants and

x1 (t) = A1 ([t])W1 ({t}) +A2 ([t])W2 ({t}) +A3 ([t])W3 ({t})
x2 (t) = [t− 1]A1 ([t])W1 ({t}) + [t]A2 ([t])W2 ({t}) + [t+ 1]A3 ([t])W3 ({t})
x3 (t) = xλ3 (t)(2.17)

with

(2.18) A1 ([t]) =
bλ[t−1]

a2 (e−a − ea)
, A2 ([t]) =

λ[t]

a2 (e−a − ea)
, A3 ([t]) =

λ[t+1]

a2 (e−a − ea)

and

W1 ({t}) = ea({t}−1) − e−a({t}−1) − ea{t} + e−a{t} + ea − e−a,

W2 ({t}) = c
(
ea({t}−1) − e−a({t}−1) − ea{t} + e−a{t} + ea − e−a

)
+ a2

(
ea({t}−1) − e−a({t}−1)

)
,

W3 ({t}) = d
(
ea({t}−1) − e−a({t}−1) − ea{t} + e−a{t} + ea − e−a

)
+ a2

(
ea({t}) − e−a({t})

)
,(2.19)

where {t} is the fractional part of t and xλ3 (t) is the same as (2.7) provided that replacing
λ with λ3.

Substituting the initial conditions (2.12) into (2.16) gives us a system similar to (2.14)
and the determinant of the coefficient matrix is computed as

∆ =

(
λ2 − 2λλ3 + λ2

3

λλ3

)(
d
(
e−a + ea − 2

)
− 2a2

a (e−a − ea)

)
which is different from zero. So there exists a unique c1, c2 and c3. �

2.4. Theorem. Assume that all roots of Eq.(2.10) are equal (i.e. λ1 = λ2 = λ3 = λ).
Then the initial value problem (1.3)-(1.4) with (2.12) has a unique solution on the interval
[0,∞).

Proof. If λ1 = λ2 = λ3 = λ, then the general solution of the Eq.(1.3)-(1.4) is given by
the formula

(2.20) x (t) = c1x1 (t) + c2x2 (t) + c3x3 (t)
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where ci, i = 1, 2, 3, are arbitrary constants and

x1 (t) = A1 ([t])W1 ({t}) +A2 ([t])W2 ({t}) +A3 ([t])W3 ({t})
x2 (t) = [t− 1]A1 ([t])W1 ({t}) + [t]A2 ([t])W2 ({t}) + [t+ 1]A3 ([t])W3 ({t})

x3 (t) = [t− 1]2A1 ([t])W1 ({t}) + [t]2A2 ([t])W2 ({t}) + [t+ 1]2A3 ([t])W3 ({t})(2.21)

where the functions Ai and Wi i = 1, 2, 3, are defined as in (2.18) and (2.19), re-
spectively. When we consider the initial conditions (2.12) in (2.20), we obtain a system
similar to (2.14). The determinant of the coefficient matrix is computed as

∆ =
2
(
d
(
e−a + ea − 2

)
− 2a2

)
a (e−a − ea)

which is different from zero. So, the solution is unique. �

2.5. Remark. If α = 0, then the equation is reduced to just a differential equation
with mixed type piecewise constant arguments which is investigated in [27]. Also the
characteristic equation (2.10) is reduced to Eq.(2.4) in [27].

2.6. Corollary. If a = 0, then

xλ (t) =
b {t}

2
({t} − 1)λ[t−1]+

(
c {t}

2
− 1

)
({t} − 1)λ[t]+

(
d {t}

2
+ 1

)
({t})λ[t+1]

is a solution of Eq.(1.3)-(1.4) on the interval [0,∞) which is also a limiting case of (2.7)
as a→ 0.

2.7. Corollary. If b+ c+d = −a2, there exists constant solutions of Eq.(1.3)-(1.4). For
constant solutions we do not need any extra condition on impulse condition (1.4), because
a constant solution has already satisfied this condition.

3. Main Results
This section contains investigation of some qualitative results for Eq.(1.3)-(1.4) such

as oscillation, non-oscillation and periodicity.

3.1. Theorem. If one of the following conditions is satisfied, then Eq.(1.3)-(1.4) has
oscillatory solutions:

(i) α > 2, b > 0, c > 0, d < 0, b+ c >
a2

(cosh a− 1) (1− α)
;

(ii) α < 1,
a2

(cosh a− 1) (1− α)
− c < b < 0, c > 0, 0 < d <

a2

(cosh a− 1)
;

(iii) 1 < α < 2, c < 0, b < 0, 0 <
a2

(cosh a− 1)
< d, b+ c >

a2

(cosh a− 1) (1− α)
;

(iv) α < 1, b > 0, c > 0, b+ c <
a2

(cosh a− 1) (1− α)
, 0 <

a2

(cosh a− 1)
< d.

Proof. A solution of Eq.(1.3)-(1.4) on the interval [n, n+ 1) is given by (2.6). If we take
t = n and t = n + 1 in (2.6), we find x (n) = λn and x (n+ 1) = λn+1, respectively. So
we have

(3.1) x (n)x (n+ 1) = λ2n+1

where λ is a root of Eq.(2.10).
On the other hand, considering the characteristic equation (2.10) as a function of λ,

we get

(3.2) f (λ) = λ3 + P1λ
2 + P2λ+ P3
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where

P1 =
cosh a (1− α)

(
a2 + c

)
− c (1− α) + a2 cosh a+ d (cosh a− 1)

(1− α) (d (cosh a− 1)− a2)

P2 =
(1− α) (b+ c) (cosh a− 1)− a2

(1− α) (d (cosh a− 1)− a2)
(3.3)

P3 =
b (cosh a− 1)

(1− α) (d (cosh a− 1)− a2)
.

For the investigation of negative characteristic root, let us consider the function

(3.4) f (−λ) = −λ3 + P1λ
2 − P2λ+ P3.

Under each condition, we find the following statements for the coefficients Pi, i = 1, 2, 3:
For (i) and (ii),

P1 < 0, P2 < 0 and P3 > 0,

for (iii),

P1 < 0, P2 > 0 and P3 < 0,

and for (iv),

P1 > 0, P2 < 0 and P3 > 0.

So, by using the well known Descartes’ rule of sign method in (3.4), we conclude that
the characteristic equation (2.10) has just one negative root. Thus, from (3.1), it is easy
to see that x (n)x (n+ 1) < 0 and this yields the oscillatory solutions of (1.3)-(1.4). �

3.2. Theorem. If

(i) α > 2, d < 0, c > 0 and b+ c <
a2

(1− α) (cosh a− 1)
or

(ii) α < 1, 0 < d <
a2

cosh a− 1
, c > 0 and 0 < b <

a2

(1− α) (cosh a− 1)
− c,

then there exists non-oscillatory solutions of Eq.(1.3)-(1.4).

Proof. Assume that (i) is true, then the coefficients of the characteristic equation is found
as

P1 < 0, P2 > 0, P3 < 0.

So considering (3.2) in view of the Descartes’ rule of sign method, it is concluded that the
characteristic equation has at least one positive root. Thus from (3.1), x (n)x (n+ 1) > 0
and this means that Eq.(1.3)-(1.4) has non-oscillatory solutions.

Under the assumption of (ii), the same inequalities are obtained with the same method.
�

3.3. Theorem. If one of the following conditions is satisfied, then Eq.(1.3)-(1.4) has
both oscillatory and non-oscillatory solutions:

(i) α > 2, b < 0, c > 0, d < 0, c >
a2

(cosh a− 1) (1− α)
− b;

(ii) α < 1, b > 0, c > 0, 0 < d <
a2

(cosh a− 1)
, b >

a2

(cosh a− 1) (1− α)
− c;

(iii) 1 < α < 2, b > 0, c <
a2

(cosh a− 1) (1− α)
− b < 0, 0 <

a2

(cosh a− 1)
< d.
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Proof. For each condition, it is easy to see that

P1 < 0, P2 < 0, P3 < 0

where Pi , i = 1, 2, 3 are given in (3.3). So, from Descartes’ rule of sign method, we
conclude that there exist just one positive root of the characteristic equation (2.10) and
this root yields the non-oscillatory solutions. On the other hand, the remained two
roots must be negative or complex and these roots give us that there exists oscillatory
solutions. �

3.4. Theorem. If

(i) α < 1, c > 0, d >
a2

cosh a− 1
, b >

a2

(cosh a− 1) (1− α)
− c > 0,

or

(ii) 1 < α < 2, b > 0, 0 < d <
a2

cosh a− 1
, c <

a2

(cosh a− 1) (1− α)
− b < 0,

is satisfied, then every solution of Eq.(1.3)-(1.4) is oscillatory.

Proof. Under each condition we obtain that

P1 > 0, P2 > 0, P3 > 0.

So, in view of the Descartes’ rule of sign method we see that Eq.(2.10) has not any
positive root. This means that all roots are negative or complex. Thus, these roots
yields that every solution of Eq.(1.3)-(1.4) is oscillatory. �

3.5. Theorem. Let

(3.5) P2 >
P 2
1

4
+

2P3

P1
.

where Pi , i = 1, 2, 3 are given in (3.3). If any of the following conditions is satisfied,
then each solution of Eq.(1.3)-(1.4) is oscillatory:

(i) α < 1, b > 0, c <
1

1− α

(
−a2 cosh a (2 + α)

cosh a− 1
− d
)
, d >

a2

cosh a− 1
;

(ii) α > 2, b > 0, c > 0, d < 0;
(iii) α < 1, b < 0, c > 0, −c (1− α) < d < 0;

(iv) 1 < α < 2, b < 0, c < 0, d >
a2

cosh a− 1
.

Proof. The characteristic equation (2.10) can be written as

f (λ) = g (λ)

where

f (λ) = λ2 + P1λ+ P2 and g (λ) =
−P3

λ
.

The minimum point of the parabola f (λ) is λmin =
−P1

2
. Considering (3.5) and any of

(i), (ii), (iii) and (iv), we find that g (λmin) < f (λmin). Thus, it is said that the parabola
f (λ) intersects the hyperbola g (λ) at a single point with a negative abscissa. Therefore
Eq.(2.10) has no positive roots which implies that every solution of Eq.(1.3)-(1.4) is
oscillatory. �

3.6. Theorem. Every solution of Eq.(1.3)-(1.4) is k-periodic if and only if

λki = 1

where λi, i = 1, 2, 3 are the distinct roots of the characteristic equation of (2.10) and
k > 0 is an integer.
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Proof. Assume that Eq.(1.3)-(1.4) has a k-periodic solution. Then

xλi (t+ k) = xλi (t) , i = 1, 2, 3.

From (2.7)

λ[t+k−1]b

a2 (e−a − ea)
{ea({t+k}−1) − e−a({t+k}−1) − ea{t+k} + e−a{t+k} + ea − e−a}

+
λ[t+k]

a2 (e−a − ea)
{a2

(
ea({t+k}−1) − e−a({t+k}−1)

)
+ c

(
ea({t+k}−1) − e−a({t+k}−1) − ea{t+k} + e−a{t+k} + ea − e−a

)
}

+
λ[t+k+1]

a2 (e−a − ea)
{a2

(
e−a{t+k} − ea{t+k}

)
+ d

(
ea({t+k}−1) − e−a({t+k}−1) − ea{t+k} + e−a{t+k} + ea − e−a

)
}

=
λ[t−1]b

a2 (e−a − ea)
{ea({t}−1) − e−a({t}−1) − ea{t} + e−a{t} + ea − e−a}

+
λ[t]

a2 (e−a − ea)
{a2

(
ea({t}−1) − e−a({t}−1)

)
+ c

(
ea({t}−1) − e−a({t}−1) − ea{t} + e−a{t} + ea − e−a

)
}

+
λ[t+1]

a2 (e−a − ea)
{a2

(
e−a{t} − ea{t}

)
+ d

(
ea({t}−1) − e−a({t}−1) − ea{t} + e−a{t} + ea − e−a

)
}.

Since [t+ k − 1] = [t− 1] + k, [t+ k] = [t] + k, [t+ k + 1] = [t+ 1] + k, {t+ k} = {t},(
λki − 1

)
xλi (t) = 0.

So, we get

λki = 1.

Now, on the contrary assume that λki = 1. Consider the solution (2.6) for n = 0 and
n = k, respectively as follows:

x0 (t) =
λ−1b

a2 (e−a − ea)
{ea(t−1) − e−a(t−1) − eat + e−at + ea − e−a}

+
1

a2 (e−a − ea)
{a2

(
ea(t−1) − e−a(t−1)

)
+ c

(
ea(t−1) − e−a(t−1) − eat + e−at + ea − e−a

)
}

+
λ

a2 (e−a − ea)
{a2

(
e−at − eat

)
+ d

(
ea(t−1) − e−a(t−1) − eat + e−at + ea − e−a

)
}, 0 ≤ t < 1,



1088

and

xk (t) =
λk−1b

a2 (e−a − ea)
{ea(t−k−1) − e−a(t−k−1) − ea(t−k) + e−a(t−k) + ea − e−a}

+
λk

a2 (e−a − ea)
{a2

(
ea(t−k−1) − e−a(t−k−1)

)
+ c

(
ea(t−k−1) − e−a(t−k−1) − ea(t−k) + e−a(t−k) + ea − e−a

)
}

+
λk+1

a2 (e−a − ea)
{a2

(
e−a(t−k) − ea(t−k)

)
+ d

(
ea(t−k−1) − e−a(t−k−1) − ea(t−k) + e−a(t−k) + ea − e−a

)
}, k ≤ t < k + 1.

So, we have

x0 (t− k) = xk (t) , k ≤ t < k + 1.

Again substituting n = 1 and n = k + 1 in (2.6), respectively we get

x1 (t− k) = xk+1 (t) , k + 1 ≤ t < k + 2.

Continuing the same way, we obtain

xk−1 (t− k) = x2k−1 (t) , 2k − 1 ≤ t < 2k.

So it is said that x (t) is k-periodic. �

3.7. Corollary. If

(3.6) d = b (1− α)− a2 (1 + (2− α) cosh a)

cosh a− 1

and

(3.7) c = d+
α
(
a2 + b (cosh a− 1)

)
(cosh a− 1) (1− α)

,

then Eq.(1.3)-(1.4) has 3-periodic solutions.

Proof. Substituting (3.6) and (3.7) in the characteristic equation (2.10) yields that

λ3 +

(
(1− α) a2 (2 + (2− α) cosh a)− b (cosh a− 1)

(
1 + (1− α)2

)
(1− α) a2 (2 + (2− α) cosh a)− b (1− α)2 (cosh a− 1)

)
λ2

+

(
(1− α) a2 (2 + (2− α) cosh a)− b (cosh a− 1)

(
1 + (1− α)2

)
(1− α) a2 (2 + (2− α) cosh a)− b (1− α)2 (cosh a− 1)

)
λ

− b (cosh a− 1)

(1− α) a2 (2 + (2− α) cosh a)− b (1− α)2 (cosh a− 1)
= 0.(3.8)

The roots of (3.8) are

λ1,2 =
1

2
± i
√

3

2
, λ3 =

b (cosh a− 1)

(1− α) a2 (2 + (2− α) cosh a)− b (1− α)2 (cosh a− 1)
.

Since λ3
1,2 = 1, according to Theorem 3.6, there exists 3-periodic solutions of Eq.(1.3)-

(1.4). �

3.8. Corollary. If

(3.9) c =
a2
(
α−

(
α2 − 3α+ 2

)
cosh a

)
(cosh a− 1) (α2 − 3α+ 2)
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and

(3.10) d = b+ c− αa2

(1− α) (cosh a− 1)

then Eq.(1.3)-(1.4) has 4-periodic solutions.

Proof. If (3.9) and (3.10) are true, then the characteristic roots of the Eq.(2.10) are found
as

λ1,2 = ±i, λ3 =
−b (cosh a− 1)

(1− α) (d (cosh a− 1)− a2)
.

Since λ4
1,2 = 1, in view of Theorem 3.6, there exists 4-periodic solutions of Eq.(1.3)-

(1.4). �

At the end of this section let us give the following examples to illustrate our results
about periodicity:

3.9. Example. Consider the following equation for t ≥ 0,

x′′ (t)− x (t) = x ([t− 1]) +
3 cosh 1

1− cosh 1
x ([t]) +

cosh 1

1− cosh 1
x ([t+ 1]) , t 6= n,(3.11)

∆x′ (n) = 2x′ (n) , t = n, n ∈ Z+.(3.12)

Here, all hypotheses of Corollary 3.7 are satisfied. So it is said that Eq.(3.11)-(3.12) has
3-periodic solutions.

Indeed, the characteristic roots of corresponding characteristic equation to (3.11)-
(3.12) are found as

λ1,2 =
1

2
± i
√

3

2
, λ3 =

−1 + cosh 1

−1− cosh 1
.

So we get λ3
1,2 = 1. On the other hand, it can be easily seen from the graphics of the

solution as follows:

1 2 3 4 5 6
t

-1.0

-0.5

0.5

1.0
x

Figure 1. 3-periodic solutions of (3.11)-(3.12)
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3.10. Example. The equation

x′′ (t)− x (t) = x ([t− 1]) +
3− 2 cosh 1

2(cosh 1− 1)
x ([t]) +

2

cosh 1− 1
x ([t+ 1]) , t 6= n,(3.13)

∆x′ (n) = 3x′ (n) , t = n, n ∈ Z+.(3.14)

has 4-periodic solutions because all of the conditions in Corollary 3.8 are satisfied.
The characteristic roots of corresponding characteristic equation to (3.13)-(3.14) are

found as

λ1,2 = ±i, λ3 =
cosh 1− 1

2
.

So we obtain λ4
1,2 = 1. However, it can be easily seen from the graphics of the solution

as below:

2 4 6 8
t

-1.0

-0.5

0.5

1.0

Figure 2. 4-periodic solutions of (3.13)-(3.14)
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