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A structure theorem of left regular cyber-groups
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Abstract
An abundant semigroup S is a superabundant semigroup if each H∗-
class of S contains an idempotent. We call a superabundant semigroup
a left regular cyber-group if the set of its idempotents forms a left reg-
ular band. After the investigation of the properties of superabundant
semigroups, we establish a structure theorem for the left regular cyber-
groups by using the newly defined left twist product of semigroups.
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1. Introduction
Recall that the generalized Green∗ relation L∗ on a semigroup S is defined by

aL∗b if and only if the elements a, b of S are L-related in some oversemigroup of S.
The generalized Green∗ relation R∗ is dually defined, and also the generalized Green∗

relation H∗ = L∗ ∧R∗. According to J. B. Fountain [4], we call a semigroup S abundant
if every L∗-class and every R∗-class of S contains an idempotent. Clearly, all regular
semigroups are abundant and in this case, we see that L∗ = L and R∗ = R, where
L and R are the usual Green relations on a semigroup S. In [4], J. B. Fountain first
introduced and studied a superabundant semigroup, which is a semigroup S in which
every H∗-class of S contains an idempotent. It is easy to see that abundant semigroups
and superabundant semigroups are natural generalizations of regular semigroups and
completely regular semigroups, respectively.

In the theory of regular semigroups the class of completely regular semigroups and
some of its subclasses play a crucial role from the richness of their structures (see Petrich
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and Reilly [9]). In view of the theory of superabundant semigroups, it becomes very
natural to ask to what extent the structure of superabundant semigroups and its special
subclass can be determined by the properties of its idempotents. In particular, we call a
superabundant semigroup whose set of idempotents forms a subsemigroup a cyber-group.
A left cyber-group in the class of abundant semigroups was first studied by X. J. Guo
and K. P. Shum in 2004. A structure theorem of cyber-groups was also established by
Ren and Shum [13].

In this paper, we consider a superabundant semigroup in which the set of all idem-
potents becomes a left regular band, namely the left regular cyber-group. Thus, a left
regular cyber-group is an analogue for abundant semigroups of left regular orthogroups
in the class of completely regular semigroups. After proving some characterization the-
orems of cyber-groups, we establish a structure theorem of left regular cyber-groups by
using the newly defined left twist product of semigroups. As an application of the above
structure theorem of left regular cyber- groups, we construct a non-trivial example of left
regular cyber-groups.

The readers are referred to the known monographs of J. M. Howie, see ([6],[7]), M.
Petrich and N. Reilly [9] for the notations and terminologies not given in this paper.

2. Preliminaries
We begin with some basic results, which will be frequently used in this paper. Let

S be a semigroup. Firstly, we give an alternative description of L∗ from [7] and [4].

2.1. Lemma. Let S be a semigroup and a, b ∈ S. Then the following conditions are
equivalent:

(i) aL∗b;
(ii) for all x, y ∈ S1, ax = ay if and only if bx = by.

As a direct consequence of Lemma 2.1, we immediately obtain the following corollary.

2.2. Corollary. Let S be a semigroup, a ∈ S, and e be an idempotent of S. Then the
following conditions are equivalent:

(i) aL∗e;
(ii) ae = a and for all x, y ∈ S1, ax = ay implies ex = ey.

It is clear that on any semigroup S we always have L ⊆ L∗ and also for the regular
elements a, b of S, we have aL∗b if and only if aLb. In particular, if S is a regular
semigroup, then we have L∗ = L.

The dual results for R∗ also hold in a semigroup S. We use H∗ to denote the intersec-
tion of the relations L∗ and R∗. The L∗-class containing the element a of a semigroup S
is always denoted by L∗a or L∗a(S). In case of ambiguity. The corresponding notation is
adopted for the classes of the other relations.

Assume that S is an abundant semigroup and a is an element of S. Then we denote
an arbitrary idempotent of L∗a and R∗a by a∗ and a+, respectively. In particular, if S
is a superabundant semigroup, then it is clear that every H∗-class of S is a cancellative
monoid and so, for any a ∈ S, the identity of H∗a which is the H∗-class contains the
element a is denoted by a0.

We call a semigroup S a semilattice Y of semigroups Sα(α ∈ Y ) if there exists an
epimorphism ϕ of S onto the semilattice Y with αϕ−1 = Sα(α ∈ Y ). In this case, we
usually write S = (Y ;Sα).
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Let T be a cancellative monoid. Let I and Λ be a left zero band and a right zero
band, respectively. Then we call the direct product I×T ×Λ of T, I and Λ a rectangular
monoid; The direct products I × T and T × Λ are also called a left rectangular monoid
and a right rectangular monoid, respectively.

In view of the results given by Ren and Shum in [13], we give below a description for
the cyber-groups in the following lemma.

2.3. Lemma. [13] A semigroup S is a cyber-group if and only if S is a semilattice Y
of rectangular monoids Sα = Iα × Tα × Λα (α ∈ Y ) such that for any α ∈ Y and
a = (i, x, λ) ∈ Sα, we have aH∗(S)a0, where a0 = (i, eα, λ) and eα is the identity of a
cancellative monoid Tα.

At the end of this section, we recall an interesting subclass of cyber-groups (super-
abundant semigroups), namely, the C-a semigroups. The following statements on C-a
semigroups is directly taken from [3] and [13].

2.4. Lemma. Let S be an adequate semigroup with semilattice of idempotents E(S).
Then the following conditions are equivalent:

(i) each H∗-class of S contains an idempotent;
(ii) E is central in S;
(iii) for all elements a of S, a∗ = a+;
(iv) L∗ = R∗ = H∗;
(v) S is a strong semilattice of cancellative monoids.

An adequate semigroup satisfying one of the above conditions is said to be a C-a
semigroup. It is easy to see that a semigroup S is a C-a semigroup if and only if S is
superabundant and E is central in S. Clearly, a C-a semigroup is a natural generalization
for abundant semigroups of a Clifford semigroup.

3. Definitions and characterization theorems
In this section, we concentrate on some special subclases of superabundant semi-

groups. We first recall the following notation for some of varieties of bands.
SL semilattices xy = yx
LRB left regular bands xy = xyx
RLB right regular bans yx = xyx

We formulate the following basic definition.

3.1. Definition. A superabundant semigroup S is called a left (right) regular cyber-
group if the set of its idempotents forms a left (right) regular band.

It is easy to see that a left (right) regular orthogroup in the class of completely regular
semigroups is a left( right) regular cyber-group and so a left (right) regular cyber-group
is a natural generalization of a left (right) regular orthogroup in the class of regular
semigroups for abundant semigroups. A characterization theorem of a left regular cyber-
group is given below:

3.1. Theorem. A semigroup S is a left regular cyber-group if and only if S satisfies the
following conditions:

(i) S is a semilattice Y of left rectangular monoids Sα = Iα × Tα (α ∈ Y );
(ii) For all α ∈ Y and a = (i, x) ∈ Sα, aH∗(S)a0, where a0 = (i, eα) and eα is the

identity of the cancellative monoid Tα;
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(iii) For any a0, b0 ∈ E(S), a0b0 = a0b0a0.

Proof. By using Lemma 2.3 and noting the fact that if E(S) is a left regular band
then every Sα given in Lemma 2.3 becomes a left rectangular monoid, that is, Sα =
Iα × Tα (α ∈ Y ), the proof follows directly by using a similar argument as described in
Lemma 2.3 (in detail, see [13]). �

Following the notation in Section 2, and using Lemma 2.3 and Theorem 4.3 in [13],
we now express a superabundant semigroup or a cyber-group S by S = (Y ;Sα).

A fundamental property of cyber-groups can be easily observed in the following lemma.

3.2. Lemma. Let S = (Y ;Sα) be a cyber-group. Let α, β ∈ Y be such that α 6 β.
Then E(Sα) is a rectangular band and for any a, b ∈ Sα, e ∈ E(Sβ), we have aeb = ab.

Proof. It is evident from Lemma 2.3 that E(Sα) is a rectangular band for every α ∈ Y .
Suppose that a, b ∈ Sα and e ∈ E(Sβ). Again by Lemma 2.3, it is clear that a0e ∈ E(Sα).
Because E(Sα) is a rectangular band, we immediately have ab = a(a0b0)b = a(a0 · a0e ·
b0)b = a(a0eb0)b = aeb. �

4. Structure of left regular cyber-groups
In this section, we establish a structure theorem of left regular cyber-groups.

We use the notation λa to denote the inner left translation on a semigroup S deter-
mined by a ∈ S and we use the symbol End (S) to denote the semigroup of endomor-
phisms of a semigroup S operating on left, respectively.

Let Y be a semilattice. Let T = [Y ;Tα; θα,β ] be a strongly semilattice of cancellative
monoids Tα(α ∈ Y ), that is, T is a C-a semigroup. Now, let I =

⋃
α∈Y Iα be a semilattice

decomposition of a left regular band so that I is decomposed into some left zero bands
Iα, for each α ∈ Y . Now we form the direct product Sα = Iα × Tα and assume that
1α ∈ Iα. Define

σ : T −→ End (I)

by t 7→ σt to be the mapping satisfying the following conditions:
(C1) For all t ∈ Tα and β ∈ Y , σt(Iβ) ⊆ Iαβ ;
(C2) σeα = λ1α , where (1α, eα) is a given element of Sα for each α ∈ Y ;
(C3) For all s ∈ Tα, t ∈ Tβ , i ∈ Iαβ , λiσsσt = λiσst;
(C4) For all (i, a) ∈ Sα, (j, s) ∈ S1

β , and (k, t) ∈ S1
γ , if iσa(j) = iσa(k) and as = at,

then we have iσeα(j) = iσeα(k) and eαs = eαt,where eα is the identity element of Tα.

On the set S =
⋃
α∈Y Sα, we define a multiplication “◦" by the following equation.

(4.1) (i, s) ◦ (j, t) = (ijσs , st)

for any (i, s), (j, t) ∈ S, where jσs = σs(j). To see that the multiplication “◦" given by
the formula (4.1) above is well-defined, we assume that (i, s) ∈ Sα, (j, t) ∈ Sβ for some
α, β ∈ Y . Then, by the condition (C1), it is clear that jσs ∈ Iαβ and so ijσs ∈ Iαβ . Since
T is a strong semilattice of cancellative monoids Tα(α ∈ Y ), it is evident that st ∈ Tαβ .
Thus, the product (ijσs , st) belongs to Sαβ ⊆ S.

We first state the following lemma.

4.1. Lemma. The above binary operation “◦" defined on the set S =
⋃
α∈Y Sα is

associative.
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Proof. Suppose that (i, s) ∈ Sα, (j, t) ∈ Sβ and (k, g) ∈ Sγ for some α, β, γ ∈ Y . Then, it
is clear from the condition (C1) that jσs ∈ Iαβ and so ijσs ∈ Iαβ . Now, by the definition
of “◦", we immediately deduce the following equality:

[(i, s) ◦ (j, t)] ◦ (k, g) = (ijσs , st) ◦ (k, g)
= (ijσskσst , (st)g)
= (ijσs · l · kσst , stg) (some l ∈ Iαβ)
= (ijσs · λlkσst , stg) (since l ∈ Iαβ)
= (ijσs · λlkσsσt , stg) (by (C3 ))
= (ijσs · l · kσsσt , stg)
= (ijσs · kσsσt , stg) (since l, ijσs ∈ Iαβ)
= (i · jσs · (kσt)σs , stg)
= (i(jkσt)σs , s(tg)) (since σs ∈ End(I))
= (i, s) ◦ (jkσt , tg)
= (i, s) ◦ [(j, t) ◦ (k, g)].

This shows that the multiplication “◦" is associative. �

By Lemma 4.1, we have already known that the set S under the multiplication “◦" is
precisely a semigroup. Now, we give the following definition.

4.1. Definition. The semigroup constructed above is called a left twist product of a
left regular band I =

⋃
α∈Y Iα and a C-a semigroup T = [Y ;Tα; θαβ ] with respect to the

semilattice Y , and is denoted by I nY T .

We now state the following main theorem of the paper.

4.2. Theorem. Let Y be a semilattice. Let T = [Y ;Tα; θα,β ] be a strongly semilattice
of cancellative monoids Tα(α ∈ Y ) and let I =

⋃
α∈Y Iα be a semilattice decomposition

of a left regular band I into left zero bands Iα. Then, a left twist product I nY T of I
and T with respect to the semilattice Y is a left regular cyber-group.

Conversely, every left regular cyber-group S is isomorphic to one so constructed.

To prove the necessity part of Theorem 4.3, we need Definition 3.1 and also the
following lemmas.

4.3. Lemma. Let E be the set of all idempotents of the semigroup I nY T . Then
E = {(i, eα) | i ∈ Iα, eα is the identity of Tα for each α ∈ Y } and E is a left regular
band.

Proof. We first check that every idempotent of the semigroup S = InY T can be expressed
as the type (i, eα) for some α ∈ Y , where eα is the identity of the cancellative Tα. To
see this, let (i, s) ∈ Sα for some α ∈ Y . If (i, s) ∈ E, then by definition, (i, s) ◦ (i, s) =
(iiσs , s2) = (i, s). Consequently, s2 = s in Tα and so the element s must be the identity
eα of the cancelltive monoid Tα. Hence, (i, s) = (i, eα). Conversely, by the condition
(C1), it follows that (i, eα) ◦ (i, eα) = (iiσeα , e2α) = (i, eα) and so (i, eα) ∈ E.

It remains to prove that E is a left regular band. We consider a mapping ϕ : E −→ I
given by (i, eα) 7→ i. It is evident that ϕ is a bijection. In fact, the mapping ϕ is also a
homomorphism, for if (i, eα), (j, eβ) ∈ E, then we have the following equalities:

[(i, eα) ◦ (j, eβ)]ϕ = (ijσeα , eαeβ)ϕ
= ijσeα

= i1α · j (1α ∈ Iα, by (C2 ))
= ij = (i, eα)ϕ(j, eβ)ϕ.
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This shows that ϕ is an isomorphism and so E ' I. By hypothesis, E become a left
regular band. �

4.4. Lemma. The semigroup S = I nY T constructed above is a superabundant semi-
group.

Proof. To see that S constructed above is superabundant, we let a = (i, s) ∈ Sα for
some α ∈ Y . We only need to prove that there exists an idempotent a0 ∈ E such
that aH∗a0. Putting a0 = (i, eα), we will verify that aL∗a0 and aR∗a0. Assume that
u = (j, g) ∈ S1

β and v = (k, h) ∈ S1
γ . If a ◦ u = a ◦ v, then it can be easily verified

that (ijσs , sg) = (ikσs , sh), which implies that ijσs = ikσs and sg = sh. By applying
the condition (C4), it follows that ijσeα = ikσeα and eαg = eαh. Hence, a0 ◦ u =
(i, eα) ◦ (j, g) = (ijσeα , eαg) = (ikσeα , eαh) = (i, eα) ◦ (k, h) = a0 ◦ v. Furthermore, we
have a ◦ a0 = (i, s) ◦ (i, eα) = (iiσs , seα) = (i, s) = a. It follows from Corollary 2.2 that
aL∗a0.

Similarly, notice the fact that T = [Y ;Tα; θαβ ], we can easily check that aR∗a0 and
so a0 is precisely the identity of Ha∗-class for every a ∈ S. This shows that S is indeed
a superabundant semigroup.

�

Using Definition 3.1 and summing up Lemma 4.1, Lemma 4.4 and Lemma 4.5, we
have already proved the first part of Theorem 4.3.

We now turn to prove the sufficiency part of Theorem 4.3. we first observe the fol-
lowing properties of a left regular cyber-group.

Suppose that S is a left regular cyber-group. By virtue of Theorem 3.2, there exists
a semilattice Y such that S = (Y ;Sα), where each Sα = Iα × Tα is a left rectangular
monoid, that is, S is a semilattice Y of left rectangular monoids Sα = Iα × Tα(α ∈ Y ).
It is easy to see that

E(S) = {(i, eα) | i ∈ Iα, eα is the identity of Tα for every α ∈ Y }.
Now, we choose a fixed element uα = (1α, eα) ∈ E(S) for every α ∈ Y . Furthermore, we
let

I =
⋃

α∈Y
Iα and T =

⋃
α∈Y

Tα.

We now prove the following lemmas.

4.5. Lemma. Let S = (Y ;Sα) be a left regular cyber-group. If a multiplication on the
set I =

⋃
α∈Y Iα is defined as follows: for any i ∈ Iα, j ∈ Iβ ,

ij = k ⇔ (i, eα)(j, eβ) = (k, eαβ),

where (i, eα), (j, eβ) ∈ E(S), then I becomes a left regular band.

Proof. Consider the mapping φ : E(S) −→ I given by (i, eα) 7→ i. It is easy to see that φ is
a bijection. By Theorem 3.2, for any (i, eα), (j, eβ) ∈ E(S), there exists some k ∈ Iαβ such
that (i, eα)(j, eβ) = (k, eαβ). Hence, By hypothesis, for any i ∈ Iα and j ∈ Iβ , we define
ij = k if and only if (i, eα)(j, eβ) = (k, eαβ) for (i, eα), (j, eβ) ∈ E(S). Consequently,
[(i, eα)(j, eβ)]φ = (k, eαβ)φ = (ij, eαβ)φ = ij = (i, eα)φ(j, eβ)φ. This shows that φ is an
isomorphism and hence I is a left regular band because E(S) is a left regular band. �

4.6. Lemma. Suppose that S = (Y ;Sα) is a left regular cyber-group and T =
⋃
α∈Y Tα.

Let θα,β be the mapping from Tα to Tβ defined by the rule that for any α, β ∈ Y with
α > β:

θα,β : s 7→ sθα,β ⇔ (1β , eβ)(1α, s) = (1β , sθα,β)
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where (1β , eβ) ∈ Sβ and (1α, s) ∈ Sα. Then T = T (Y ;Tα; θα,β) becomes a strong semi-
lattice of Tα with homomorphisms θα,β . Furthermore, for any (i, s) ∈ Sα, (j, t) ∈ Sβ , we
have the following equality:

(4.2) (i, s)(j, t) = (k, st)

for some k ∈ Iαβ .

Proof. Suppose that S = (Y ;Sα) is a left regular cyber-group, (1β , eβ) ∈ Sβ , (1α, s) ∈ Sα.
Let T =

⋃
α∈Y Tα, 1β ∈ Iβ , and 1α ∈ Iα such that 1α1β = 1β for α > β, by Lemma 4.6.

Now define a mapping from Tα to Tβ by the rule that for α > β,

θα,β : s 7→ sθα,β ⇔ (1β , eβ)(1α, s) = (1β , sθα,β).

It is easy to see that θα,α is the identical automorphism of Tα for each α ∈ Y . Let
α, β ∈ Y be such that α > β and let (1α, s), (1α, t) ∈ Sα. Then, we have

(1β , eβ)[(1α, s)(1α, t)] = (1β , eβ)(1α, st)
= (1β , (st)θα,β)

and

[(1β , eβ)(1α, s)](1α, t) = (1β , sθα,β)(1α, t)
= (1β , sθα,β)(1β , eβ)(1α, t)
= (1β , sθα,β)[(1β , eβ)(1α, t)]
= (1β , sθα,β)(1β , tθα,β)
= (1β , sθα,βtθα,β).

Hence, (st)θα,β = sθα,βtθα,β and so θα,β is a homomorphism from Tα to Tβ .
Let α, β, γ ∈ Y be such that α > β > γ and let (1α, s) ∈ Sα. Then,

(1γ , sθα,γ) = (1γ , eγ)(1α, s)
= (1γ , eγ)(1β , eβ)(1α, s) (by Lemma 4.6)
= (1γ , eγ)(1β , sθα,β)
= (1γ , (sθα,β)θβ,γ).

Consequently, the mapping θα,β defined by the formula (4.2) satisfies the properties
θα,γ = θα,βθβ,γ . We have proved that T = T (Y ;Tα; θα,β) is a strong semilattice of
cancellative monoids Tα under the multiplication given by st = sθα,αβtθβ,αβ for any
s ∈ Tα, t ∈ Tβ .

To complete the remaining part of the proof, suppose that for any (i, s) ∈ Sα and
(j, t) ∈ Sβ ,

(i, s)(j, t) = (k, u)

for some k ∈ Iαβ , u ∈ Tαβ . Then,

(k, u) = (k, eαβ)(k, u)(k, eαβ)
= (k, eαβ)(i, s)(j, t)(k, eαβ)
= (k, eαβ)(1αβ , eαβ)(i, s)(j, t)(k, eαβ)
= [(k, eαβ)(1αβ , eαβ)(i, s)](1αβ , eαβ)[(j, t)(k, eαβ)] (by Lemma 3.3)
= (k, eαβ)[(1αβ , eαβ)(1α, eα)](i, s)[(1αβ , eαβ)(1β , eβ)](j, t)(k, eαβ)

(by Lemma 4.6)
= (k, eαβ)(1αβ , eαβ)[(1α, eα)(i, s)](1αβ , eαβ)[(1β , eβ)(j, t)](k, eαβ)
= (k, eαβ)[(1αβ , eαβ)(1α, s)][(1αβ , eαβ)(1β , t)](k, eαβ)
= (k, eαβ)(1αβ , sθα,αβ)(1αβ , tθβ,αβ)(k, eαβ)
= (k, sθα,αβtθβ,αβ)
= (k, st).



1100

The proof is completed. �

For any s ∈ Tα and α ∈ Y we define a mapping σs : I −→ I given by the rule that for
any j ∈ Iβ and β ∈ Y ,

(4.3) (1α, s)(j, eβ) = (σs(j),−)

where eβ is the identity of a cancellative monoid Tβ .

4.7. Lemma. Let S = (Y ;Sα) be a left regular cyber-group and let σs be the mapping
as given above by the formula (4.3). Then for any i, j ∈ I, σs(ij) = σs(i)σs(j), that is,
σs ∈ End (I).

Proof. Suppose that S = (Y ;Sα) be a left regular cyber-group. By Lemma 4.6 and
Lemma 4.7, I =

⋃
α∈Y Iα and T =

⋃
α∈Y Tα forms a left regular band and a strong

semilattice of cancellative monoids Tα, respectively. For any s ∈ Tγ , let σs be the
mapping as given by the formula (4.3). Then for any i ∈ Iα and j ∈ Iβ it follows by
Lemma 4.6 that (1γ , eγ)(i, eα)(j, eβ) = (1γij, eαβγ).Moreover, since T is a C-a semigroup,
it is clear from Lemma 2.4 that seα = eαs for any s ∈ T and eα ∈ E(T ). Hence, by the
formula (4.3), we deduce the following equities:

(σs(ij), seαβ) = (1γ , s)(ij, eαβ)
= (1γ , s)(i, eα)(j, eβ) (by Lemma 4.6)
= (1γ , s)(1γ , eγ)(i, eα)(j, eβ)
= (1γ , s)[(1γ , eγ)(i, eα)(j, eβ)]2

= (1γ , s)(i, eα)(j, eβ)(1γij, eαβγ) (by Lemma 4.6)
= [(1γ , s)(i, eα)](j, eβ)(1γij, eαβγ)
= (σs(i), seα)(j, eβ)(1γij, eαβγ) (by (4.2) and (4.3))
= (σs(i), eαγ)(1αγ , seα)(j, eβ)(1γij, eαβγ)
= (σs(i), eαγ)(1αγ , eαs)(j, eβ)(1γij, eαβγ)
= (σs(i), eαγ)(1α, eα)(1γ , s)(j, eβ)(1γij, eαβγ)

(by (4.2))
= (σs(i), eαγ)[(1α, eα)(1γ , eγ)](1γ , s)(j, eβ)(1γij, eαβγ)
= (σs(i), eαγ)(1αγ , eαγ)[(1γ , s)(j, eβ)](1γij, eαβγ)
= (σs(i), eαγ)(σs(j), seβ)(1γij, eαβγ)

(by (4.2) and (4.3))
= [(σs(i), eαγ)(σs(j), eγβ)][(1γβ , seβ)(1γij, eαβγ)]
= (σs(i)σs(j), eαβγ)(−, seαβ) (by (4.2) and Lemma 4.6)
= (σs(i)σs(j), seαβ).

Hence, σs(ij) = σs(i)σs(j) and so σs ∈ End (I), as required. �

4.8. Lemma. Suppose that S = (Y ;Sα) is a left regular cyber-group. Let I and T =
T (Y ;Tα;ϕα,β) be a left regular band and a strong semilattice of cancellative monoids
Tα, respectively. Then the mapping σ : T −→ End (I) defined by s 7→ σs satisfies the
previous conditions (C1)-(C4), where σs is given by the formula (4.3).

Proof. By the formulae (4.3) and (4.2), it follows directly that

(4.4) (1α, s)(j, eβ) = (σs(j), seβ)

for any s ∈ Tα, j ∈ Iβ , and any α, β ∈ Y . From the formula (4.4), it is easy to see that the
mapping σ : T → End(I) given by s 7→ σs satisfies the condition (C1) and (C2). To see
that the condition (C3) is satisfied by the mapping σ, suppose that s ∈ Tα, t ∈ Tβ , i ∈ Iαβ
and j ∈ Iγ . Then, by Lemma 4.6 and Lemma 4.7 we have
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(λiσsσt(j), steγ)
= [(i, eαβ)(σsσt(j), eαβγ)](−, steγ)
= (i, eαβ)(σsσt(j), seβγ)(−, teαγ)
= (i, eαβ)[(1α, s)(σt(j), eβγ)](−, teαγ)
= (i, eαβ)[(1α, s)(σt(j), eβγ)](σtσs(j), teαγ) (σtσs(j) ∈ Iαβγ)
= (i, eαβ)(1α, s)(σt(j), eβγ)[(1β , t)(σs(j), eαγ)]
= (i, eαβ)(1α, s)[(σt(j), eβγ)(1β , t)](σs(j), eαγ)
= (i, eαβ)(1α, s)[(σt(j), eβγ)(1βγ , eβγ)(1β , t)](σs(j), eαγ)
= (i, eαβ)(1α, s)[(σt(j), eβγ)(−, teβγ)](σs(j), eαγ)
= (i, eαβ)(1α, s)(σt(j), teβγ)(σs(j), eαγ)
= (i, eαβ)(1α, s)(σt(j), teγ)(σs(j), eαγ)
= (i, eαβ)(1α, s)(1β , t)(j, eγ)(σs(j), eαγ)
= (i, eαβ)[(1α, s)(1β , t)](j, eγ)(σs(j), eαγ)
= (i, eαβ)(1αβ , st)(j, eγ)(σs(j), eαγ)
= (i, eαβ)[(1αβ , st)(j, eγ)](−, eαγ)
= (i, eαβ)(σst(j), steγ)(−, eαγ)
= (i, eαβ)(σst(j), eαβγ)(σst(j), steγ)(−, eαγ)
= (iσst(j), eαβγ)(σst(j), steγ)[(1αβγ , eαβγ)(−, eαγ)]
= (iσst(j), steγ)(1αβγ , eαβγ)
= (λiσst(j), steγ).

This shows that λiσsσt(j) = λiσst(j) and so the condition (C3) is satisfied by the mapping
σ.

To show that the mapping σ satisfies the condition (C4) , we notice the fact that for
any u = (i, a) ∈ Sα = Iα × Tα, there exists a unique element u0 = (i, eα) ∈ E(S) ∩ Sα
such that uL∗u0 and uR∗u0 in the left regular cyber-group S. Suppose that (j, s) ∈ Sβ =
Iβ × Tβ , (k, t) ∈ Sγ = Iγ × Tγ such that (i, a)(j, s) = (i, a)(k, t), that is, iσa(j) = iσa(k)
and as = at. Then, since uL∗u0, it follows by Lemma 2.1 that (i, eα)(j, s) = (i, eα)(k, t)
which implies iσeα(j) = iσeα(k) and eαs = eαt. Consequently, the condition (C4) is
satisfied. This complete the proof. �

The Proof of Theorem 4.3 Finally, we return to the proof of Theorem 4.3. Suppose
that S = (Y ;Sα) is a left regular cyber-group. Then, by Lemma 4.6, Lemma 4.7, Lemma
4.8, and Lemma 4.9, we have already known that there exist two semigroups I and T ,
where I is a left regular band and T is a strong semilattice of cancellative monoids, and
also there exists a mapping σ from T to End (I) given by the formula (4.3) satisfying the
conditions (C1)-(C4). Thus, by our definition, we directly obtain the left twist product
I nY T of I and T with respect to semilattice Y. To complete the proof of the second
part of Theorem 4.3, we only need to show that the multiplication of S coincides with
that of the left twist product I nY T so that S ' I nY T. Hence, we let (i, s) ∈ Sα and
(j, t) ∈ Sβ . Then, using Lemma 4.6, Lemma 4.7, and the formula (4.4) we deduce that

(i, s)(j, t) = (i, eα)(1α, s)(j, eβ)(1β , t)
= (i, eα)[(1α, s)(j, eβ)](1β , t)
= (i, eα)(σs(j), seβ)(1β , t)
= (i, eα)(σs(j), eαβ)(1αβ , seβ)(1β , t)
= (iσs(j), eαβ)(−, st)
= (iσs(j), st)
= (ijσs , st)

where σs(j) = jσs . Consequently, the proof is now completed.
Remark: In the construction of a left regular cyber-group S = I nY T , if we let

T = [Y ;Tα; θα,β ] be a strongly semilattice of groups Tα(α ∈ Y ), that is, T is a Clifford
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semigroup, then we can modify our requirement condition (C1) − (C4) to (C1) − (C3).
In this case, the semigroup S = I nY T will become a completely regular semigroup in
which its idempotents is a left regular band, that is, a left regular orthogroup (detail,see
[9]). Thus the known structure theorem given by M.Yamada and M.Petrich of left regular
orthogroups now follows as a direct consequence of our Theorem 4.3.

5. A constructed left regular cyber-group
In this section, we construct an example of a non-trivial left regular cyber-groups

by using the method given in the above section.
Let Y = {α, β} be a semilattice such that α > β. Let I = Iα∪Iβ be a left regular band

with the following Cayley table, where Iα = {e1, e2} and Iβ = {e3, e4} are respectively
left zero bands.

∗ e1 e2 e3 e4
e1 e1 e1 e4 e4
e2 e2 e2 e4 e4
e3 e3 e3 e3 e3
e4 e4 e4 e4 e4

Furthermore, assume that Tα = {s0, s1, s2} is a group with the identity element s0

and A is the matrix
(

1 0
1 0

)
. Then Tβ = {tn = 2nA | n > 0 & n ∈ N} under

the matrix multiplication forms an infinite cancellative monoid. Let T = Tα ∪ Tβ and
define a multiplication on T which extends on Tα and Tβ as follows : xy = yx = y for
all x ∈ Tα, y ∈ Tβ . It is routine to check that T is a strong semilattice of cancellative
monoids Tα (α ∈ Y ), that is, T = T [Y ;Tα; θα,β ], a C-a semigroup.

By using the above constructed I and T , we form the set
S = Sα ∪ Sβ = {a, b, c, d, e, f, u0, v0, un, vm | n,m ∈ N}, where the elements have the
following expressions:

a = (e1, s0), b = (e2, s0), c = (e1, s1), d = (e2, s1), e = (e1, s2)
f = (e2, s2), u0 = (e3, t0), v0 = (e4, t0), un = (e3, tn), vn = (e4, tn)

for n = 1, 2, · · · .
As described in Section 3, to obtain the left twist product I nY T of the left regular

band I and the C-a semigroup T , we need to define a mapping

σ : T −→ End (I)

by s 7→ σs as follows:

σs0 =

(
e1 e2 e3 e4
e1 e1 e4 e4

)
, σs1 =

(
e1 e2 e3 e4
e1 e1 e3 e4

)
,

σs2 =

(
e1 e2 e3 e4
e2 e2 e4 e4

)
, σt0 =

(
e1 e2 e3 e4
e3 e3 e3 e3

)
,

σtn =

(
e1 e2 e3 e4
e4 e4 e4 e4

)
,

where n = 1, 2, · · · .
It is easy to check that the mapping σ : T −→ End (I) satisfies the conditions (C1)-

(C4) in the left twist product of semigroups I and T . By using the left twist product of
I and T , as described above, we put the product of the semigroup I nY T as follows: for
any (i, s), (j, t) ∈ S,

(i, s) ◦ (j, t) = (ijσs , st)
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where jσs = σs(j). Consequently, by using the above defined multiplication, we obtain
the following Cayley table for the semigroup S = I nY T , the left twist produce of
semigroups I and T.

∗ a b c d e f u0 v0 ul vm
a a a c c e e v0 v0 vl vm
b b b d d f f v0 v0 vl vm
c c c e e a a v0 v0 vl vm
d d d f f b b v0 v0 vl vm
e e e a a c c v0 v0 vl vm
f f f b b d d v0 v0 vl vm
u0 u0 u0 u0 u0 u0 u0 u0 u0 ul um
v0 v0 v0 v0 v0 v0 v0 v0 v0 vl vm
uk uk uk uk uk uk uk uk uk uk+l uk+m
vn vn vn vn vn vn vn vn vn vn+l vn+m

where k, l,m, n = 1, 2, 3, · · · .
By Theorem 4.3, it can be verified that the above constructed semigroup S = I nY T

is an infinite left regular cyber-group. It is worth to note that, in our verification that
S = I nY T is a semigroup, there is no need to check that the associative law holds in
the Cayley table. The associativity follows from the definition of left twist produce of
semigroups.

In the above Cayley table, we can see that E(S) = {a, b, u0, v0} is the set of all
idempotents of the semigroup S. By Lemma 2.1 and its dual for R∗, we can easily verify
that L∗-classes of S are the sets {a, b, c, d, e, f} and {u0, v0, un, vn | n ∈ N}. The R∗-
classes of S are the sets {a, c, e}; {b, d, f};
{u0, un | n ∈ N} and {v0, vn | n ∈ N} respectively. Hence, the H∗-classes of S are the
sets {a, c, e}; {b, d, f};{u0, un | n ∈ N} and {v0, vn | n ∈ N}. Clearly, each H∗-class of
S contains an idempotent and so S is a superabundant semigroup. In fact, by definition
S is precisely a left regular cyber-group because the set of all idempotents of S forms a
left regular band.

It is easy to see that S1 = {a, b, c, d, e, f, u0, v0} is a subsemigroup of S, which is
completely regular and in which the set of all idempotents forms a left regular band.
Also we know that every element of S \ S1 is non-regular. This shows that S1 is a left
regular orthogroup (see [9]) and also the class of left regular orthogroups are a proper
subclasses of the class of left regular cyber-groups. More complicated left regular cyber-
groups can also be constructed by using this method.
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