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Some properties of ¢— close-to-convex functions
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Abstract

Quantum calculus had been used first time by M.E.H.Ismail, E.Merkes
and D.Steyr in the theory of univalent functions [5].

In this present paper we examine the subclass of univalent functions
which is defined by quantum calculus.
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1. Introduction

Let © be the family of functions ¢(z) regular in the open unit disc D = {z : |z| < 1}
and satisfy the conditions ¢(0) = 0, |¢(z)| < 1 for all z € D. Denote by P(q) the family
of functions of the form p(z) = 14 p1z + pez® + - -+ which are regular in the open unit
disc D and satisfying

1 1

where ¢ € (0,1) is a fixed real number. Let A be the family of functions f(z) which
are regular in the open unit disc D and satisfying the conditions f(0) = 0, f'(0) = 1
for every z € D. In other words; each f in A has the power series representation
f(2) = 2+ a22® + a3z® + -+ Let fi(z) and fa(z) be an elements of A, if there ex-
ists a function ¢(z) € Q, such that fi(z) = f2(¢(2)) for all z € D, then we say that
fi(z) is subordinate to f2(z) and we write fi(z) < f2(z), thus fi(z) < f2(2) if and
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only if f1(0) = f2(0) and f1(D) C f2(D) implies f1(D,) C f2(D,), where D, defined as
D, ={z:|z| <r,0 < r < 1}(Subordination principle[4]).

In this paragraph we will give the concept of the g— calculus. Let g € (0,1) be a
fixed number. A subset of B of C is called g— geometric if gz € B whenever z € B, if
a subset B of C is a g— geometric set, then it contains all geometric sequences {¢"z}7°,
zq € B. Let f be a function (real or complex valued) defined on g— geometric set B,
lg| # 1, the ¢g— difference operator which was introduced by Jackson F.H. and E.Heine
or Euler([1],[2],[3],[7]) defined by

f(2) — flaz)
1.2 Dyf(z) = —————— 2z B\{0
The g— difference operator (1.2) sometimes called Jackson g—difference operator. If
0 € B, the g— derivative at zero by |¢| < 1

(13)  Dyf(0) = tim LCI =TSO " g (o

n— oo z2qn
provided the limit exists, and does not depend on z in addition g— derivative at zero
defined by |g| < 1

(14)  Dyf(0) = D1 £(0)

Under the hypothesis of the definition of g—difference operator, then we have the following
rules:
(1) For a function f(z) = 2" we observe that qu(z) = Dg2" = 11;(17:”717
—q
therefore we have f(z) = z + as2? +azz® - +apnz" =

- 1_qn n—1
z)zl—l—Zan 1iqz
n=2

(2) Let f(z) and g(z) be defined on a g— geometric set B C C such that ¢ derivatives
of f and g exist for all z € B, then

(i) Dq(af(z) £bg(z)) = aDqf(z) & bDgeg(z) where a and b are real or complex
constants

N NTATY q( DB ataDne) — niaiDaste

9g\z)\ _ qh(z 9\z) _ 9\gz)Lqn(z) — h(gz)Lqg\2

@) D) = s - geneE where
h(z)h(qz) # 0.

(iv) As a right inverse, Jackson([1],[2],[3],[7]) introduced the ¢g— integral

/ et = 21— ) S a" (")

provided that the series converges. The following theorem is an analogue of the
fundamental theorem of calculus.

1.1. Theorem ([7]). Let f be a ¢— regular at zero, defined on g— geometric set
B containing zero. Define

:/Z F(€)dyt . (z € B)
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where c is a fixed point in B, then F is a regular at zero. Furthermore Dy F(z)

exists for every z € B and

for all z € B.
Conversely; If a and b are two points in B, then

b
[ Dus@iez = 10) - 1(@)
(3) The g— differential is defined as
dqf(z) = f(2) — f(qz)

therefore

_df() _ 1) = fa2) _
= Tde T dmge M=

Dy f(2)

f(x1, 22,23, ..., Tiz1, Ti, Tit1, ..., Tn) tO & variable x; defined by

DmmF@):ig%;%ﬁgﬁawi#&QE(QD

(Do P(@)lim0 = lim, Dy (2

G - @),
(1-9q)z oz

(4) The partial g— derivative of a multivariable real continuous function

i koo
where €42, f(Z) = f(x1, 22,23, ..., i 1,q%i, Tit1, ..., Tn) and we use Dy, , instead

k
q

of operator
ok
q

for some simplification.

1.2. Lemma. ([6] JACK’S LEMMA) Let ¢(z) be analytic in D with ¢(0) = 0. If the
maximum value of the |¢(z)| on the circle |z| = r, (0 < r < 1) is attained at z = 2o, then

we have
z0¢'(20) = me(z0),m > 1

Making use of the g— derivative Dgf(z), we introduce the following classes.

si={f)e Al 229G _ 10y by e Pl

f(z)
(The class of g— starlike functions [5].)
Cy={rre A 2B ) ) € Pl

(The class of g— convex functions)

Ko={a) € Al 55 =)l € PGS € C)

(The class of g— close-to-convex functions.)

In the present paper we will investigate the class of K.
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2. Main Results

2.1. Theorem ([8]). p(z) € P(q) if and only if
1+2
1—gz

p(z) <

Proof. Let p(z) be an element of P(q) then we have

where

Therefore the function 1
$(2) = pla) — 1
has modulus at most 1 in the open unit disc D and so
sy~ LE =00 Gpe) =1~ — )
1=9(0)p(z) 1= (5 = D(5p(z) = 1)
satisfies the conditions of Schwarz Lemma, this shows that
14 ¢(2) 1+2
=— "2 o < .
O =i e T " R g
Conversely; Suppose that the function p(z) analytic in D and satisfies the condition
p(0) =1 and

142
p(z) < 1= e
then we have
1+2 1+ ¢(z) S+ e(2)
z) < z) = =pk)-m=m—"——-.
, S+ 9(2) Lo .
On the other hand the function T+ gy maps the unit circle onto itself, then
= o(z
we have L @)
=4 o(z
z) —m|=|m—" <m.
R e
This shows that p(z) € P(q). O

2.2. Lemma ([8]). Let f(z) be a function (real or complex valued) defined on g—
geometric set B with |g| # 1,then

21 Diltogs () = 2/

Proof. Using the definition of g— difference operator, then we have

_ logf(2) — logf(qz) _ ( D,f(2) > "
Dq(logf(2)) T log { 1+h=47s
Taking limit for h — 0 we obtain (2.1) O

2.3. Lemma. (¢—Jack’s Lemma [8]) Let ¢(z) be analytic in D with ¢(0) = 0. Then if
|¢(z)| attains its maximum value on the circle |z| = r at a point z9 € D, then we have

20Dq¢(20) = me(20),

where m > 1 is a real number.
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Proof. Using the definition of ¢— difference operator and Jack’s Lemma (Lemma 1.2)

then we have
P(z) — ¢(qz) _ é(2) — ¢(20)

qu’(Z) = (l—q)Z 2 — 20 9

Z =20
taking limit for z — zp we get

lim Dyé(2) = Dyd(zo) = lim L= _ gy

z— 20 zZ— 20 zZ — 20
Therefore we have z0Dq¢(20) = 200’ (20) = md(z0) O
2.4. Theorem ([8]). Let f(z) be an element of Cy, then
(22) Pdf)  _1

flz) 1-gz
Proof. We define the function ¢(z) by
Dqf(2) 1

2.3 2= =
R (O R ETIe)

. 2 3 1-¢* , 1-¢° 5
Since f(z) = z+a22" +asz” + -+, 2Dqf(2) = 2 + a2 1_qz + as ¢ z° 4 -, then
@(2) is well defined and analytic at the same time

Dy f(2) 1
P 1= —— = ¢(0)=0
f(2) 1.0 1 —qé(z2) ©)

We need to show that |¢(z)| < 1 for all z € D. Assume to the contrary, then there exists a
zo € D such that |¢(z0)| = 1. The definition of the class Cy and subordination principle,
then we write

Dq(Dqf(2)) 1+qr®

(2.4) A(r) = {f(z) : ’(1 +qz) D, f(2) T 1= q2r2

14+ q)r
< i—q22“27 () € Cq}

On the other hand, using the definition ¢— derivative, theorem 2.1 and the relation (2.3)
and after the straightforward calculations we get

Dy(Dqf(2)) _ ( 1 ) logg™" 2D4¢(2) ( _ lo!]q_l)
Go) O+ =he ~ N iwm) T g 1w T T
Using g—Jack’s Lemma in (2.5)
Dy(Dqf(20)) _ ( 1 ) logg™"  me(z0) < B logq’l)
(+ ¢z0) DfGzo)  N\T=ao(a) ) " 1=q T=aoz0) T\ 714 # Alr)-
But this is a contradict with (2.4). Therefore |¢(z)| < 1 for all z € D. O

2.5. Theorem ([8]). Let f(z) be an element of Cy, then

v S r >z—1
(2 ((1+qr>3q) e ((1—qr>3"

These bounds are sharp because extremal function is the solution of the ¢— differential
equation
Dy f(2) 1

TIe) T i-¢
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1

Proof. Since the linear transformation w = 1 maps |z| = r onto the disc with
— gz

the centre C(r) = T and the radius p(r) = $ Using theorem 2.1 and

subordination principle ,then we can write

D 1
(27) 2 Qf(z) _ < qr
fz)  1=g¢r?| 7 1—¢*?

The inequality (2.7) can be written in the following form

1 wDuf(re?) 1
< R - <
14+gqr — efre f(rei?) )< 1—gqr

On the other hand we have (using the g— partial rule)

(29) Re (reww> = r%log|f(rew)|

(2.8)

f(re?) O
Considering (2.8) and (2.9) together we can write
1 19) 0 1
2.10) ——— < Llog|f(re”)| € ——
(2.10) itg =2 g/ ( )\_T(l_qr)
If we take g— integral both sides of (2.10) we get (2.6). O

2.6. Remark. Since lim —4
q— 1 logg~1!

=1, then (2.6) reduces to

T T
< <
O e

This is the growth theorem for convex functions [4].

2.7. Theorem. Let f(z) be an element of Cy, then
_(i) _(i)
(211)  (1+qr) FeoT) <D f(2)] < (1 - gr)” \PronT
These bounds are sharp, because extremal function is the solution of the ¢— differential

equation
Dy(Dgf(2)) _ 1+2

Dy f(2) 11— qz

14+ gz

1
Proof. Since the linear transformation (#) maps |z| = r onto the disc with the
— gz

1
and the radius p(r) = % Using the definition of Cy and

1—i—qr2

centre C'(r) = T2
— ¢

subordination principle ,then we can write
1+ quq(qu(Z)) 1+ qr’
Dy f(2) L —g*r?

Using the same technique of the proof theorem 2.5, we can obtain

< d+gr
-1 —q27"2

l+q 1 % oy o 1t+a 1
2.12 < —=log|D <
r2) UL < Do, ey < LA
Taking g— integral both sides of (2.12) we get (2.11). O

2
2.8. Remark. Since lim ——9
g~ 1 g*logg™!
(1+n)2<|f)<1—r)7

This is the distortion theorem of convex functions [5].

= 2, then (2.11) gives
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2.9. Theorem. Let g(z) be an element of K, then
— 1-g?
(213)  (1—7r)(1+qr) (i1
These bounds are sharp because the extremal function is the solution of the g— dif-
ferential equation

—q2

) <|Dgg(z)| < (1 +7)(1 - qr)_(m"'l)

Dyg(z) _ 1+2
Dy f(2) 1—gz
under the provided that f(z) is g—convex function.

Proof. Using the definition of the class K, and theorem 2.1, then we can write

Dog(z) _ ) o Dagl2) 14z |Doglz)  L1tar | _ (Lta)r
Dq f(2) Def(z) 1—gz Dof(z) 1—¢*?| = 1—g*r?
1—7r 1+7r
D <|D < D
1+q7,| of(2)] < |Dqg(2)| < 1*(]1"' of(2)]
which gives (2.13). O

2.10. Theorem. Let g(z) be an element of K4, then

g(z)  1+=2
(2.14) ORI

Proof. Since g(z) € Kq ,then we have

(2.15) A(r) = {Dqg(z) . 'Dqg(Z) 1+¢?| _ (1+qr

qu(z) . qu(z) - 1 —q27‘2 S 1—(]27"27 (Z) € eqvq € (071)}
O

Now we define the function ¢(z) by
9(2) _ 1+¢(2)

f) = T-a0)’
thus ¢(z) is analytic and ¢(0) = 0. Now we want to show that |¢(z)| < 1 for all z € D.
Assume to the contrary, then there exists zo € D such that |¢(z0)| = 1. On the other

hand we have ( ) L4 6(2)
D‘?(?é)) :D(W) -

(1+9)Dyg(2) f(2)

Dqg(2) _ 9(az) |
Dqf(z)  flgz) = (1 —qo(2))(1 —qd(gz)) Dqf(2)
(2.16) Dog(z0) 1+ ¢(q20) (14 q)z0Dq9(20) f(20)

Dyf(z0) 1 —4qg(gz0) (1 —qd(20))(1 — qp(gz20)) 20Dq f(20)

In this step, if we use lemma 2.3 (g-Jack’s Lemma) and theorem 2.4, then we have

Dqg(20) _ < 1+ ¢(gz0) (+gme(zo) (1 q2r2)> ¢ A(r)
Dy f(20) 1—qé(qz0) (1 —qo(20))(1 — qd(q20)) 1+ qre® '
But this is a contradiction with (2.15). Therefore |¢(z)| < 1 for all z € D. We note that
—¢’r*y . : 2Dq f(2)
) is the reciprocal value of the boundary value of (7)

f(2)

the factor (17
1+ gre?

2.11. Corollary. If g(z) € K, then

1-¢ 1-¢
r logg—1 1 —1r r logg—1 141
(2.17) ((Hq> <lg(z)| < ((Hq)

1+gqr)« 1—qr
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Proof. Using the theorem 2.10, then we can write

1—r g(2) 1+7r
Ltgr = | f(z)] = 1—gr
1—7r 1+7r
< <
A < 9] < @I
In this step, if we use theorem 2.5 we get (2.17) O
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