Some properties of q - close-to-convex functions

H.Esra Özkan Uçar*, Oya Mert ${ }^{\dagger}$ and Yaşar Polatoğlu ${ }^{\ddagger}$

Abstract

Quantum calculus had been used first time by M.E.H.Ismail, E.Merkes and D.Steyr in the theory of univalent functions [5]. In this present paper we examine the subclass of univalent functions which is defined by quantum calculus.

Keywords: $\quad q-$ convex function, $q-$ close to convex function, growth theorem, distortion theorem, coefficient inequality.
2000 AMS Classification: 30C45

Received: 03.10.2016 Accepted: 08.03.2017 Doi: 10.15672/ HJMS.2017.459

1. Introduction

Let Ω be the family of functions $\phi(z)$ regular in the open unit disc $\mathbb{D}=\{z:|z|<1\}$ and satisfy the conditions $\phi(0)=0,|\phi(z)|<1$ for all $z \in \mathbb{D}$. Denote by $\mathcal{P}(q)$ the family of functions of the form $p(z)=1+p_{1} z+p_{2} z^{2}+\cdots$ which are regular in the open unit disc \mathbb{D} and satisfying

$$
\begin{equation*}
\left|p(z)-\frac{1}{1-q}\right|<\frac{1}{1-q}, \quad z \in \mathbb{D} \tag{1.1}
\end{equation*}
$$

where $q \in(0,1)$ is a fixed real number. Let A be the family of functions $f(z)$ which are regular in the open unit disc \mathbb{D} and satisfying the conditions $f(0)=0, f^{\prime}(0)=1$ for every $z \in \mathbb{D}$. In other words; each f in A has the power series representation $f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\cdots$ Let $f_{1}(z)$ and $f_{2}(z)$ be an elements of A, if there exists a function $\phi(z) \in \Omega$, such that $f_{1}(z)=f_{2}(\phi(z))$ for all $z \in \mathbb{D}$, then we say that $f_{1}(z)$ is subordinate to $f_{2}(z)$ and we write $f_{1}(z) \prec f_{2}(z)$, thus $f_{1}(z) \prec f_{2}(z)$ if and

[^0]only if $f_{1}(0)=f_{2}(0)$ and $f_{1}(\mathbb{D}) \subset f_{2}(\mathbb{D})$ implies $f_{1}\left(\mathbb{D}_{r}\right) \subset f_{2}\left(\mathbb{D}_{r}\right)$, where \mathbb{D}_{r} defined as $\mathbb{D}_{r}=\{z:|z|<r, 0<r<1\}$ (Subordination principle[4]).

In this paragraph we will give the concept of the q - calculus. Let $q \in(0,1)$ be a fixed number. A subset of \mathbb{B} of \mathbb{C} is called q - geometric if $q z \in \mathbb{B}$ whenever $z \in \mathbb{B}$, if a subset \mathbb{B} of \mathbb{C} is a q - geometric set, then it contains all geometric sequences $\left\{q^{n} z\right\}_{0}^{\infty}$, $z q \in \mathbb{B}$. Let f be a function (real or complex valued) defined on q - geometric set \mathbb{B}, $|q| \neq 1$, the q - difference operator which was introduced by Jackson F.H. and E.Heine or $\operatorname{Euler}([1],[2],[3],[7])$ defined by

$$
\begin{equation*}
D_{q} f(z)=\frac{f(z)-f(q z)}{(1-q) z}, z \in \mathbb{B} \backslash\{0\} \tag{1.2}
\end{equation*}
$$

The q - difference operator (1.2) sometimes called Jackson q-difference operator. If $0 \in \mathbb{B}$, the q - derivative at zero by $|q|<1$

$$
\begin{equation*}
D_{q} f(0)=\lim _{n \rightarrow \infty} \frac{f\left(z q^{n}\right)-f(0)}{z q^{n}}, z \in \mathbb{B} \backslash\{0\} \tag{1.3}
\end{equation*}
$$

provided the limit exists, and does not depend on z in addition q - derivative at zero defined by $|q|<1$

$$
\begin{equation*}
D_{q} f(0)=D_{q^{-1}} f(0) \tag{1.4}
\end{equation*}
$$

Under the hypothesis of the definition of q-difference operator, then we have the following rules:
(1) For a function $f(z)=z^{n}$ we observe that $D_{q} f(z)=D_{q} z^{n}=\frac{1-q^{n}}{1-q} z^{n-1}$, therefore we have $f(z)=z+a_{2} z^{2}+a_{3} z^{3} \cdots+a_{n} z^{n} \cdots \Rightarrow$

$$
D_{q} f(z)=1+\sum_{n=2}^{\infty} a_{n} \frac{1-q^{n}}{1-q} z^{n-1}
$$

(2) Let $f(z)$ and $g(z)$ be defined on a q - geometric set $\mathbb{B} \subset \mathbb{C}$ such that q derivatives of f and g exist for all $z \in \mathbb{B}$, then
(i) $D_{q}(a f(z) \pm b g(z))=a D_{q} f(z) \pm b D_{q} g(z)$ where a and b are real or complex constants
(ii) $D_{q}(f(z) g(z))=g(z) D_{q} f(z)+f(q z) D_{q} g(z)$
(iii) $D_{q}\left(\frac{g(z)}{h(z)}\right)=\frac{g(z) D_{q} h(z)-h(z) D_{q} g(z)}{h(z) h(q z)}=\frac{g(q z) D_{q} h(z)-h(q z) D_{q} g(z)}{h(z) h(q z)}$ where $h(z) h(q z) \neq 0$.
(iv) As a right inverse, $\operatorname{Jackson}([1],[2],[3],[7])$ introduced the q - integral

$$
\int_{0}^{z} f(t) d_{q} t=z(1-q) \sum_{n=0}^{\infty} q^{n} f\left(z q^{n}\right)
$$

provided that the series converges. The following theorem is an analogue of the fundamental theorem of calculus.
1.1. Theorem ([7]). Let f be a q - regular at zero, defined on q - geometric set \mathbb{B} containing zero. Define

$$
F(z)=\int_{c}^{z} f(\xi) d_{q} \xi,(z \in \mathbb{B})
$$

where c is a fixed point in \mathbb{B}, then F is a regular at zero. Furthermore $D_{q} F(z)$ exists for every $z \in \mathbb{B}$ and

$$
D_{q} F(z)=f(z)
$$

for all $z \in \mathbb{B}$.
Conversely; If a and b are two points in \mathbb{B}, then

$$
\int_{a}^{b} D_{q} f(z) d_{q} z=f(b)-f(a)
$$

(3) The q - differential is defined as

$$
d_{q} f(z)=f(z)-f(q z)
$$

therefore

$$
D_{q} f(z)=\frac{d_{q} f(z)}{d_{q} z}=\frac{f(z)-f(q z)}{(1-q) z} \Rightarrow d_{q} f(z)=\frac{f(z)-f(q z)}{(1-q) z} d_{q} z .
$$

(4) The partial q - derivative of a multivariable real continuous function $f\left(x_{1}, x_{2}, x_{3}, \ldots, x_{i-1}, x_{i}, x_{i+1}, \ldots, x_{n}\right)$ to a variable x_{i} defined by

$$
\begin{gathered}
D_{q, x_{i}} F(\vec{x})=\frac{f(\vec{x})-\varepsilon_{q, x_{i}} f(\vec{x})}{(1-q) x_{i}}, x_{i} \neq 0, q \in(0,1) \\
{\left[D_{q, x_{i}} F(\vec{x})\right]_{x_{i}=0}=\lim _{x_{i} \rightarrow 0} D_{q, x_{i}} f(\vec{x})}
\end{gathered}
$$

where $\varepsilon_{q, x_{i}} f(\vec{x})=f\left(x_{1}, x_{2}, x_{3}, \ldots, x_{i-1}, q x_{i}, x_{i+1}, \ldots, x_{n}\right)$ and we use $D_{k, x}^{k}$ instead of operator $\frac{\partial_{q}^{k}}{\partial_{q} x^{k}}$ for some simplification.
1.2. Lemma. ([6] JACK'S LEMMA) Let $\phi(z)$ be analytic in \mathbb{D} with $\phi(0)=0$. If the maximum value of the $|\phi(z)|$ on the circle $|z|=r,(0<r<1)$ is attained at $z=z_{0}$, then we have

$$
z_{0} \phi^{\prime}\left(z_{0}\right)=m \phi\left(z_{0}\right), m \geq 1
$$

Making use of the q - derivative $D_{q} f(z)$, we introduce the following classes.

$$
S_{q}^{*}=\left\{f(z) \in A \left\lvert\, \quad z \frac{D_{q} f(z)}{f(z)}=p(z)\right., p(z) \in P(q)\right\}
$$

(The class of $q-$ starlike functions [5].)

$$
C_{q}=\left\{f(z) \in A \left\lvert\, \quad \frac{D_{q}\left(z D_{q} f(z)\right)}{D_{q} f(z)}=p(z)\right., p(z) \in P(q)\right\}
$$

(The class of $q-$ convex functions)

$$
K_{q}=\left\{g(z) \in A \left\lvert\, \quad \frac{D_{q} g(z)}{D_{q} f(z)}=p(z)\right., p(z) \in P(q), f(z) \in C_{q}\right\}
$$

(The class of q - close-to-convex functions.)
In the present paper we will investigate the class of K_{q}.

2. Main Results

2.1. Theorem ([8]). $p(z) \in P(q)$ if and only if

$$
p(z) \prec \frac{1+z}{1-q z}
$$

Proof. Let $p(z)$ be an element of $P(q)$ then we have

$$
\left|p(z)-\frac{1}{1-q}\right|<\frac{1}{1-q} \Rightarrow|p(z)-m|<m
$$

where

$$
\frac{1}{1-q}=m \Longleftrightarrow 1-q=\frac{1}{m} \Rightarrow 1-\frac{1}{m}=q .
$$

Therefore the function

$$
\psi(z)=\frac{1}{m} p(z)-1
$$

has modulus at most 1 in the open unit disc \mathbb{D} and so

$$
\phi(z)=\frac{\psi(z)-\psi(0)}{1-\overline{\psi(0)} \psi(z)}=\frac{\left(\frac{1}{m} p(z)-1\right)-\left(\frac{1}{m}-1\right)}{1-\left(\frac{1}{m}-1\right)\left(\frac{1}{m} p(z)-1\right)}
$$

satisfies the conditions of Schwarz Lemma, this shows that

$$
p(z)=\frac{1+\phi(z)}{1-\left(1-\frac{1}{m}\right) \phi(z)} \Rightarrow p(z) \prec \frac{1+z}{1-q z}
$$

Conversely; Suppose that the function $p(z)$ analytic in \mathbb{D} and satisfies the condition $p(0)=1$ and

$$
p(z) \prec \frac{1+z}{1-q z}
$$

then we have

$$
p(z) \prec \frac{1+z}{1-q z} \Rightarrow p(z)=\frac{1+\phi(z)}{1-\left(1-\frac{1}{m}\right) \phi(z)} \Rightarrow p(z)-m=m \frac{\frac{1-m}{m}+\phi(z)}{1+\frac{1-m}{m} \phi(z)}
$$

On the other hand the function $\left(\frac{\frac{1-m}{m}+\phi(z)}{1+\frac{1-m}{m} \phi(z)}\right)$ maps the unit circle onto itself, then we have

$$
|p(z)-m|=\left|m \frac{\frac{1-m}{m}+\phi(z)}{1+\frac{1-m}{m} \phi(z)}\right|<m
$$

This shows that $p(z) \in P(q)$.
2.2. Lemma ([8]). Let $f(z)$ be a function (real or complex valued) defined on q geometric set \mathbb{B} with $|q| \neq 1$, then

$$
\begin{equation*}
D_{q}(\log f(z))=\frac{D_{q} f(z)}{f(z)} \tag{2.1}
\end{equation*}
$$

Proof. Using the definition of q - difference operator, then we have

$$
D_{q}(\log f(z))=\frac{\log f(z)-\log f(q z)}{(1-q) z}=\log \left(1+h \frac{D_{q} f(z)}{f(z)}\right)^{\frac{1}{h}}
$$

Taking limit for $h \rightarrow 0$ we obtain (2.1)
2.3. Lemma. (q-Jack's Lemma [8]) Let $\phi(z)$ be analytic in \mathbb{D} with $\phi(0)=0$. Then if $|\phi(z)|$ attains its maximum value on the circle $|z|=r$ at a point $z_{0} \in \mathbb{D}$, then we have

$$
z_{0} D_{q} \phi\left(z_{0}\right)=m \phi\left(z_{0}\right)
$$

where $m \geq 1$ is a real number.

Proof. Using the definition of q - difference operator and Jack's Lemma (Lemma 1.2) then we have

$$
D_{q} \phi(z)=\frac{\phi(z)-\phi(q z)}{(1-q) z}=\frac{\phi(z)-\phi\left(z_{0}\right)}{z-z_{0}}, \quad q z=z_{0}
$$

taking limit for $z \rightarrow z_{0}$ we get

$$
\lim _{z \rightarrow z_{0}} D_{q} \phi(z)=D_{q} \phi\left(z_{0}\right)=\lim _{z \rightarrow z_{0}} \frac{\phi(z)-\phi\left(z_{0}\right)}{z-z_{0}}=\phi^{\prime}\left(z_{0}\right)
$$

Therefore we have $z_{0} D_{q} \phi\left(z_{0}\right)=z_{0} \phi^{\prime}\left(z_{0}\right)=m \phi\left(z_{0}\right)$
2.4. Theorem ([8]). Let $\mathrm{f}(\mathrm{z})$ be an element of C_{q}, then

$$
\begin{equation*}
z \frac{D_{q} f(z)}{f(z)} \prec \frac{1}{1-q z} \tag{2.2}
\end{equation*}
$$

Proof. We define the function $\phi(z)$ by

$$
\begin{equation*}
z \frac{D_{q} f(z)}{f(z)}=\frac{1}{1-q \phi(z)} \tag{2.3}
\end{equation*}
$$

Since $f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\cdots, z D_{q} f(z)=z+a_{2} \frac{1-q^{2}}{1-q} z^{2}+a_{3} \frac{1-q^{3}}{1-q} z^{3}+\cdots$, then $\phi(z)$ is well defined and analytic at the same time

$$
\left.z \frac{D_{q} f(z)}{f(z)}\right|_{z=0}=1=\frac{1}{1-q \phi(z)} \Rightarrow \phi(0)=0
$$

We need to show that $|\phi(z)|<1$ for all $z \in \mathbb{D}$. Assume to the contrary, then there exists a $z_{0} \in \mathbb{D}$ such that $\left|\phi\left(z_{0}\right)\right|=1$. The definition of the class C_{q} and subordination principle, then we write

$$
\begin{equation*}
A(r)=\left\{f(z):\left|(1+q z) \frac{D_{q}\left(D_{q} f(z)\right)}{D_{q} f(z)}-\frac{1+q r^{2}}{1-q^{2} r^{2}}\right| \leq \frac{(1+q) r}{1-q^{2} r^{2}}, f(z) \in C_{q}\right\} \tag{2.4}
\end{equation*}
$$

On the other hand, using the definition q - derivative, theorem 2.1 and the relation (2.3) and after the straightforward calculations we get

$$
\begin{equation*}
(1+q z) \frac{D_{q}\left(D_{q} f(z)\right)}{D_{q} f(z)}=q\left(\frac{1}{1-q \phi(z)}\right)+\frac{\log q^{-1}}{1-q} \frac{z D_{q} \phi(z)}{1-q \phi(z)}+\left(1-q \frac{\log q^{-1}}{1-q}\right) \tag{2.5}
\end{equation*}
$$

Using q-Jack's Lemma in (2.5)
$\left(1+q z_{0}\right) \frac{D_{q}\left(D_{q} f\left(z_{0}\right)\right)}{D_{q} f\left(z_{0}\right)}=q\left(\frac{1}{1-q \phi\left(z_{0}\right)}\right)+\frac{\log q^{-1}}{1-q} \frac{m \phi\left(z_{0}\right)}{1-q \phi\left(z_{0}\right)}+\left(1-q \frac{\log q^{-1}}{1-q}\right) \notin A(r)$.
But this is a contradict with (2.4). Therefore $|\phi(z)|<1$ for all $z \in \mathbb{D}$.
2.5. Theorem ([8]). Let $\mathrm{f}(\mathrm{z})$ be an element of C_{q}, then

$$
\begin{equation*}
\left(\frac{r}{(1+q r)^{\frac{1+q}{q}}}\right)^{\frac{1-q}{\log q-1}} \leq|f(z)| \leq\left(\frac{r}{(1-q r)^{\frac{1+q}{q}}}\right)^{\frac{1-q}{\log q^{-1}}} \tag{2.6}
\end{equation*}
$$

These bounds are sharp because extremal function is the solution of the q - differential equation

$$
z \frac{D_{q} f(z)}{f(z)}=\frac{1}{1-q z}
$$

Proof. Since the linear transformation $w=\frac{1}{1-q z}$ maps $|z|=r$ onto the disc with the centre $C(r)=\frac{1}{1-q^{2} r^{2}}$ and the radius $\rho(r)=\frac{q r}{1-q^{2} r^{2}}$. Using theorem 2.1 and subordination principle ,then we can write

$$
\begin{equation*}
\left|z \frac{D_{q} f(z)}{f(z)}-\frac{1}{1-q^{2} r^{2}}\right| \leq \frac{q r}{1-q^{2} r^{2}} \tag{2.7}
\end{equation*}
$$

The inequality (2.7) can be written in the following form

$$
\begin{equation*}
\frac{1}{1+q r} \leq \operatorname{Re}\left(r e^{i \theta} \frac{D_{q} f\left(r e^{i \theta}\right)}{f\left(r e^{i \theta}\right)}\right) \leq \frac{1}{1-q r} \tag{2.8}
\end{equation*}
$$

On the other hand we have (using the q - partial rule)

$$
\begin{equation*}
\operatorname{Re}\left(r e^{i \theta} \frac{D_{q} f\left(r e^{i \theta}\right)}{f\left(r e^{i \theta}\right)}\right)=r \frac{\partial_{q}}{\partial_{r}} \log \left|f\left(r e^{i \theta}\right)\right| \tag{2.9}
\end{equation*}
$$

Considering (2.8) and (2.9) together we can write

$$
\begin{equation*}
\frac{1}{r(1+q)} \leq \frac{\partial_{q}}{\partial_{r}} \log \left|f\left(r e^{i \theta}\right)\right| \leq \frac{1}{r(1-q r)} \tag{2.10}
\end{equation*}
$$

If we take q - integral both sides of (2.10) we get (2.6).
2.6. Remark. Since $\lim _{q \rightarrow 1} \frac{1-q}{\log q^{-1}}=1$, then (2.6) reduces to

$$
\frac{r}{1+r} \leq|f(z)| \leq \frac{r}{1-r}
$$

This is the growth theorem for convex functions [4].
2.7. Theorem. Let $\mathrm{f}(\mathrm{z})$ be an element of C_{q}, then

$$
\begin{equation*}
(1+q r)^{-\left(\frac{1-q^{2}}{q^{2} \log q^{-1}}\right)} \leq\left|D_{q} f(z)\right| \leq(1-q r)^{-\left(\frac{1-q^{2}}{q^{2} \log q^{-1}}\right)} \tag{2.11}
\end{equation*}
$$

These bounds are sharp, because extremal function is the solution of the q - differential equation

$$
1+q z \frac{D_{q}\left(D_{q} f(z)\right)}{D_{q} f(z)}=\frac{1+z}{1-q z}
$$

Proof. Since the linear transformation $\left(\frac{1+z}{1-q z}\right)$ maps $|z|=r$ onto the disc with the centre $C(r)=\frac{1+q r^{2}}{1-q^{2} r^{2}}$ and the radius $\rho(r)=\frac{(1+q) r}{1-q^{2} r^{2}}$. Using the definition of C_{q} and subordination principle, then we can write

$$
\left|1+q z \frac{D_{q}\left(D_{q} f(z)\right)}{D_{q} f(z)}-\frac{1+q r^{2}}{1-q^{2} r^{2}}\right| \leq \frac{(1+q) r}{1-q^{2} r^{2}}
$$

Using the same technique of the proof theorem 2.5 , we can obtain

$$
\begin{equation*}
\frac{1+q}{q} \frac{1}{1+q r} \leq \frac{\partial_{q}}{\partial_{r}} \log \left|D_{q} f\left(r e^{i \theta}\right)\right| \leq \frac{1+q}{q} \frac{1}{1-q r} \tag{2.12}
\end{equation*}
$$

Taking q - integral both sides of (2.12) we get (2.11).
2.8. Remark. Since $\lim _{q \rightarrow 1} \frac{1-q^{2}}{q^{2} \log q^{-1}}=2$, then (2.11) gives

$$
(1+r)^{-2} \leq\left|f^{\prime}(z)\right| \leq(1-r)^{-2}
$$

This is the distortion theorem of convex functions [5].
2.9. Theorem. Let $g(z)$ be an element of K_{q}, then

$$
\begin{equation*}
(1-r)(1+q r)^{-\left(\frac{1-q^{2}}{q^{2} \log q^{-1}}+1\right)} \leq\left|D_{q} g(z)\right| \leq(1+r)(1-q r)^{-\left(\frac{1-q^{2}}{q^{2} \log q^{-1}}+1\right)} \tag{2.13}
\end{equation*}
$$

These bounds are sharp because the extremal function is the solution of the $q-$ differential equation

$$
\frac{D_{q} g(z)}{D_{q} f(z)}=\frac{1+z}{1-q z}
$$

under the provided that $f(z)$ is q-convex function.
Proof. Using the definition of the class K_{q} and theorem 2.1, then we can write

$$
\begin{aligned}
\frac{D_{q} g(z)}{D_{q} f(z)}=p(z) \Leftrightarrow & \frac{D_{q} g(z)}{D_{q} f(z)} \prec \frac{1+z}{1-q z} \Rightarrow\left|\frac{D_{q} g(z)}{D_{q} f(z)}-\frac{1+q r^{2}}{1-q^{2} r^{2}}\right| \leq \frac{(1+q) r}{1-q^{2} r^{2}} \Rightarrow \\
& \frac{1-r}{1+q r}\left|D_{q} f(z)\right| \leq\left|D_{q} g(z)\right| \leq \frac{1+r}{1-q r}\left|D_{q} f(z)\right|
\end{aligned}
$$

which gives (2.13).
2.10. Theorem. Let $g(z)$ be an element of K_{q}, then

$$
\begin{equation*}
\frac{g(z)}{f(z)} \prec \frac{1+z}{1-q z} \tag{2.14}
\end{equation*}
$$

Proof. Since $g(z) \in K_{q}$, then we have

$$
\begin{equation*}
A(r)=\left\{\frac{D_{q} g(z)}{D_{q} f(z)}:\left|\frac{D_{q} g(z)}{D_{q} f(z)}-\frac{1+q r^{2}}{1-q^{2} r^{2}}\right| \leq \frac{(1+q) r}{1-q^{2} r^{2}}, f(z) \in \mathcal{C}_{q}, q \in(0,1)\right\} \tag{2.15}
\end{equation*}
$$

Now we define the function $\phi(z)$ by

$$
\frac{g(z)}{f(z)}=\frac{1+\phi(z)}{1-q \phi(z)}
$$

thus $\phi(z)$ is analytic and $\phi(0)=0$. Now we want to show that $|\phi(z)|<1$ for all $z \in \mathbb{D}$. Assume to the contrary, then there exists $z_{0} \in \mathbb{D}$ such that $\left|\phi\left(z_{0}\right)\right|=1$. On the other hand we have

$$
\begin{gathered}
D_{q}\left(\frac{g(z)}{f(z)}\right)=D_{q}\left(\frac{1+\phi(z)}{1-q \phi(z)}\right) \Rightarrow \\
\frac{D_{q} g(z)}{D_{q} f(z)}=\frac{g(q z)}{f(q z)}+\frac{(1+q) D_{q} \phi(z)}{(1-q \phi(z))(1-q \phi(q z))} \frac{f(z)}{D_{q} f(z)}
\end{gathered}
$$

or

$$
\begin{equation*}
\frac{D_{q} g\left(z_{0}\right)}{D_{q} f\left(z_{0}\right)}=\frac{1+\phi\left(q z_{0}\right)}{1-q \phi\left(q z_{0}\right)}+\frac{(1+q) z_{0} D_{q} \phi\left(z_{0}\right)}{\left(1-q \phi\left(z_{0}\right)\right)\left(1-q \phi\left(q z_{0}\right)\right)} \frac{f\left(z_{0}\right)}{z_{0} D_{q} f\left(z_{0}\right)} \tag{2.16}
\end{equation*}
$$

In this step, if we use lemma 2.3 (q-Jack's Lemma) and theorem 2.4, then we have

$$
\frac{D_{q} g\left(z_{0}\right)}{D_{q} f\left(z_{0}\right)}=\left(\frac{1+\phi\left(q z_{0}\right)}{1-q \phi\left(q z_{0}\right)}+\frac{(1+q) m \phi\left(z_{0}\right)}{\left(1-q \phi\left(z_{0}\right)\right)\left(1-q \phi\left(q z_{0}\right)\right)} \frac{\left(1-q^{2} r^{2}\right)}{1+q r e^{i \theta}}\right) \notin A(r)
$$

But this is a contradiction with (2.15). Therefore $|\phi(z)|<1$ for all $z \in \mathbb{D}$. We note that the factor $\left(\frac{1-q^{2} r^{2}}{1+q r e^{i \theta}}\right)$ is the reciprocal value of the boundary value of $\left(\frac{z D_{q} f(z)}{f(z)}\right)$.
2.11. Corollary. If $g(z) \in K_{q}$, then

$$
\begin{equation*}
\left(\frac{r}{(1+q r)^{\frac{1+q}{q}}}\right)^{\frac{1-q}{\log q^{-1}}} \frac{1-r}{1+q r} \leq|g(z)| \leq\left(\frac{r}{(1-q r)^{\frac{1+q}{q}}}\right)^{\frac{1-q}{\log q^{-1}}} \frac{1+r}{1-q r} \tag{2.17}
\end{equation*}
$$

Proof. Using the theorem 2.10, then we can write

$$
\begin{gathered}
\frac{1-r}{1+q r} \leq\left|\frac{g(z)}{f(z)}\right| \leq \frac{1+r}{1-q r} \Rightarrow \\
|f(z)| \frac{1-r}{1+q r} \leq|g(z)| \leq|f(z)| \frac{1+r}{1-q r}
\end{gathered}
$$

In this step, if we use theorem 2.5 we get (2.17)

References

[1] G.E.Andrews, Application of basic Hypergeometric Functions, SIAM Rew,(16) 1974, 441484.
[2] N.J.Fine, Basic Hypergeometric Series and Applications, Mathematical Surveys No 27 American Math.Soc.Providence, 1988.
[3] G. Gasper and M.Rahman, Basic Hypergeometric Series, Cambridge University Press, 2004.
[4] A.W. Goodman, Univalent Functions Volume I and Volume II, Mariner Pub. Comp. Inc., Tampa,Florida, 1984.
[5] M.E.H. Ismail,E.Merkes and D.Steyr, A generalization of Starlike functions, Complex Variables (14)(1990), 77-84.
[6] I.S.Jack, Functions starlike and convex of order alpha, J. Lond. Math. Soc., 2(3) 1971, 469-474.
[7] V. Koc and P.Cheung, Quantum Calculus ,Springer,2001.
[8] A. Yemişçi Arzu and Y. Polatoğlu, Growth and Distortion theorems for q-Convex Functions, Mathematica Slovaca.(2016 Submitted)

[^0]: *Department of Mathematics and Computer Sciences, İstanbul Kültür University, İstanbul, Turkey
 Email : e.ozkan@iku.edu.tr
 ${ }^{\dagger}$ Department of Basic Sciences, Altinbas University, İstanbul, Turkey
 Email : oya.mert@altinbas.edu.tr
 ${ }^{\ddagger}$ Department of Mathematics and Computer Sciences, İstanbul Kültür University, İstanbul, Turkey
 Email: y.polatoglu@iku.edu.tr

