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Some properties of q− close-to-convex functions
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Abstract
Quantum calculus had been used first time by M.E.H.Ismail, E.Merkes
and D.Steyr in the theory of univalent functions [5].
In this present paper we examine the subclass of univalent functions
which is defined by quantum calculus.
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1. Introduction
Let Ω be the family of functions φ(z) regular in the open unit disc D = {z : |z| < 1}

and satisfy the conditions φ(0) = 0, |φ(z)| < 1 for all z ∈ D. Denote by P(q) the family
of functions of the form p(z) = 1 + p1z + p2z

2 + · · · which are regular in the open unit
disc D and satisfying

(1.1)
∣∣∣∣ p(z)− 1

1− q

∣∣∣∣ < 1

1− q , z ∈ D

where q ∈ (0, 1) is a fixed real number. Let A be the family of functions f(z) which
are regular in the open unit disc D and satisfying the conditions f(0) = 0, f ′(0) = 1
for every z ∈ D. In other words; each f in A has the power series representation
f(z) = z + a2z

2 + a3z
3 + · · · Let f1(z) and f2(z) be an elements of A, if there ex-

ists a function φ(z) ∈ Ω, such that f1(z) = f2(φ(z)) for all z ∈ D, then we say that
f1(z) is subordinate to f2(z) and we write f1(z) ≺ f2(z), thus f1(z) ≺ f2(z) if and
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only if f1(0) = f2(0) and f1(D) ⊂ f2(D) implies f1(Dr) ⊂ f2(Dr), where Dr defined as
Dr = {z : |z| < r , 0 < r < 1}(Subordination principle[4]).

In this paragraph we will give the concept of the q− calculus. Let q ∈ (0, 1) be a
fixed number. A subset of B of C is called q− geometric if qz ∈ B whenever z ∈ B, if
a subset B of C is a q− geometric set, then it contains all geometric sequences {qnz}∞0 ,
zq ∈ B. Let f be a function (real or complex valued) defined on q− geometric set B,
|q| 6= 1, the q− difference operator which was introduced by Jackson F.H. and E.Heine
or Euler([1],[2],[3],[7]) defined by

(1.2) Dqf(z) =
f(z)− f(qz)

(1− q)z , z ∈ B\{0}

The q− difference operator (1.2) sometimes called Jackson q−difference operator. If
0 ∈ B, the q− derivative at zero by |q| < 1

(1.3) Dqf(0) = lim
n→∞

f(zqn)− f(0)

zqn
, z ∈ B\{0}

provided the limit exists, and does not depend on z in addition q− derivative at zero
defined by |q| < 1

(1.4) Dqf(0) = Dq−1f(0)

Under the hypothesis of the definition of q−difference operator, then we have the following
rules:

(1) For a function f(z) = zn we observe that Dqf(z) = Dqz
n =

1− qn

1− q z
n−1,

therefore we have f(z) = z + a2z
2 + a3z

3 · · ·+ anz
n · · · ⇒

Dqf(z) = 1 +

∞∑
n=2

an
1− qn

1− q z
n−1

(2) Let f(z) and g(z) be defined on a q− geometric set B ⊂ C such that q derivatives
of f and g exist for all z ∈ B, then

(i) Dq(af(z)± bg(z)) = aDqf(z) ± bDqg(z) where a and b are real or complex
constants

(ii) Dq(f(z)g(z)) = g(z)Dqf(z) + f(qz)Dqg(z)

(iii) Dq
( g(z)

h(z)

)
=

g(z)Dqh(z)− h(z)Dqg(z)

h(z)h(qz)
=

g(qz)Dqh(z)− h(qz)Dqg(z)

h(z)h(qz)
where

h(z)h(qz) 6= 0.
(iv) As a right inverse, Jackson([1],[2],[3],[7]) introduced the q− integral∫ z

0

f(t)dqt = z(1− q)
∞∑
n=0

qnf(zqn)

provided that the series converges. The following theorem is an analogue of the
fundamental theorem of calculus.

1.1. Theorem ([7]). Let f be a q− regular at zero, defined on q− geometric set
B containing zero. Define

F (z) =

∫ z

c

f(ξ)dqξ , (z ∈ B)
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where c is a fixed point in B, then F is a regular at zero. Furthermore DqF (z)
exists for every z ∈ B and

DqF (z) = f(z)

for all z ∈ B.
Conversely; If a and b are two points in B, then∫ b

a

Dqf(z)dqz = f(b)− f(a)

(3) The q− differential is defined as

dqf(z) = f(z)− f(qz)

therefore

Dqf(z) =
dqf(z)

dqz
=
f(z)− f(qz)

(1− q)z ⇒ dqf(z) =
f(z)− f(qz)

(1− q)z dqz.

(4) The partial q− derivative of a multivariable real continuous function
f(x1, x2, x3, ..., xi−1, xi, xi+1, ..., xn) to a variable xi defined by

Dq,xiF (~x) =
f(~x)− εq,xif(~x)

(1− q)xi
, xi 6= 0, q ∈ (0, 1)

[Dq,xiF (~x)]xi=0 = lim
xi→0

Dq,xif(~x)

where εq,xif(~x) = f(x1, x2, x3, ..., xi−1, qxi, xi+1, ..., xn) and we use Dk
k,x instead

of operator
∂kq
∂qxk

for some simplification.

1.2. Lemma. ([6] JACK’S LEMMA) Let φ(z) be analytic in D with φ(0) = 0. If the
maximum value of the |φ(z)| on the circle |z| = r, (0 < r < 1) is attained at z = z0, then
we have

z0φ
′(z0) = mφ(z0),m ≥ 1

Making use of the q− derivative Dqf(z), we introduce the following classes.

S∗q = {f(z) ∈ A
∣∣ z

Dqf(z)

f(z)
= p(z), p(z) ∈ P (q)}

(The class of q− starlike functions [5].)

Cq = {f(z) ∈ A
∣∣ Dq(zDqf(z))

Dqf(z)
= p(z), p(z) ∈ P (q)}

(The class of q− convex functions)

Kq = {g(z) ∈ A
∣∣ Dqg(z)

Dqf(z)
= p(z), p(z) ∈ P (q), f(z) ∈ Cq}

(The class of q− close-to-convex functions.)

In the present paper we will investigate the class of Kq.
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2. Main Results
2.1. Theorem ([8]). p(z) ∈ P (q) if and only if

p(z) ≺ 1 + z

1− qz

Proof. Let p(z) be an element of P (q) then we have∣∣∣∣ p(z)− 1

1− q

∣∣∣∣ < 1

1− q ⇒ |p(z)−m| < m

where
1

1− q = m ⇐⇒ 1− q =
1

m
⇒ 1− 1

m
= q.

Therefore the function
ψ(z) =

1

m
p(z)− 1

has modulus at most 1 in the open unit disc D and so

φ(z) =
ψ(z)− ψ(0)

1− ψ(0)ψ(z)
=

( 1
m
p(z)− 1)− ( 1

m
− 1)

1− ( 1
m
− 1)( 1

m
p(z)− 1)

satisfies the conditions of Schwarz Lemma, this shows that

p(z) =
1 + φ(z)

1− (1− 1
m

)φ(z)
⇒ p(z) ≺ 1 + z

1− qz .

Conversely; Suppose that the function p(z) analytic in D and satisfies the condition
p(0) = 1 and

p(z) ≺ 1 + z

1− qz
then we have

p(z) ≺ 1 + z

1− qz ⇒ p(z) =
1 + φ(z)

1− (1− 1
m

)φ(z)
⇒ p(z)−m = m

1−m
m

+ φ(z)

1 + 1−m
m

φ(z)
.

On the other hand the function
( 1−m

m
+ φ(z)

1 + 1−m
m

φ(z)

)
maps the unit circle onto itself, then

we have

|p(z)−m| =
∣∣∣∣m 1−m

m
+ φ(z)

1 + 1−m
m

φ(z)

∣∣∣∣ < m.

This shows that p(z) ∈ P (q). �

2.2. Lemma ([8]). Let f(z) be a function (real or complex valued) defined on q−
geometric set B with |q| 6= 1,then

(2.1) Dq(logf(z)) =
Dqf(z)

f(z)

Proof. Using the definition of q− difference operator, then we have

Dq(logf(z)) =
logf(z)− logf(qz)

(1− q)z = log

(
1 + h

Dqf(z)

f(z)

) 1
h

Taking limit for h→ 0 we obtain (2.1) �

2.3. Lemma. (q−Jack’s Lemma [8]) Let φ(z) be analytic in D with φ(0) = 0. Then if
|φ(z)| attains its maximum value on the circle |z| = r at a point z0 ∈ D, then we have

z0Dqφ(z0) = mφ(z0),

where m ≥ 1 is a real number.
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Proof. Using the definition of q− difference operator and Jack’s Lemma (Lemma 1.2)
then we have

Dqφ(z) =
φ(z)− φ(qz)

(1− q)z =
φ(z)− φ(z0)

z − z0
, qz = z0

taking limit for z → z0 we get

lim
z→z0

Dqφ(z) = Dqφ(z0) = lim
z→z0

φ(z)− φ(z0)

z − z0
= φ′(z0)

Therefore we have z0Dqφ(z0) = z0φ
′(z0) = mφ(z0) �

2.4. Theorem ([8]). Let f(z) be an element of Cq, then

(2.2) z
Dqf(z)

f(z)
≺ 1

1− qz

Proof. We define the function φ(z) by

(2.3) z
Dqf(z)

f(z)
=

1

1− qφ(z)

Since f(z) = z + a2z
2 + a3z

3 + · · · , zDqf(z) = z + a2
1− q2

1− q z
2 + a3

1− q3

1− q z
3 + · · · , then

φ(z) is well defined and analytic at the same time

z
Dqf(z)

f(z)

∣∣∣∣
z=0

= 1 =
1

1− qφ(z)
⇒ φ(0) = 0

We need to show that |φ(z)| < 1 for all z ∈ D. Assume to the contrary, then there exists a
z0 ∈ D such that |φ(z0)| = 1. The definition of the class Cq and subordination principle,
then we write

(2.4) A(r) =

{
f(z) :

∣∣∣∣(1 + qz)
Dq(Dqf(z))

Dqf(z)
− 1 + qr2

1− q2r2

∣∣∣∣ ≤ (1 + q)r

1− q2r2 , f(z) ∈ Cq

}
On the other hand, using the definition q− derivative, theorem 2.1 and the relation (2.3)
and after the straightforward calculations we get

(2.5) (1 + qz)
Dq(Dqf(z))

Dqf(z)
= q

(
1

1− qφ(z)

)
+
logq−1

1− q
zDqφ(z)

1− qφ(z)
+

(
1− q logq

−1

1− q

)
Using q−Jack’s Lemma in (2.5)

(1 + qz0)
Dq(Dqf(z0))

Dqf(z0)
= q

(
1

1− qφ(z0)

)
+
logq−1

1− q
mφ(z0)

1− qφ(z0)
+

(
1− q logq

−1

1− q

)
/∈ A(r).

But this is a contradict with (2.4). Therefore |φ(z)| < 1 for all z ∈ D. �

2.5. Theorem ([8]). Let f(z) be an element of Cq, then

(2.6)

(
r

(1 + qr)
1+q
q

) 1−q

logq−1

≤ |f(z)| ≤

(
r

(1− qr)
1+q
q

) 1−q

logq−1

These bounds are sharp because extremal function is the solution of the q− differential
equation

z
Dqf(z)

f(z)
=

1

1− qz
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Proof. Since the linear transformation w =
1

1− qz maps |z| = r onto the disc with

the centre C(r) =
1

1− q2r2 and the radius ρ(r) =
qr

1− q2r2 . Using theorem 2.1 and

subordination principle ,then we can write

(2.7)
∣∣∣∣zDqf(z)

f(z)
− 1

1− q2r2

∣∣∣∣ ≤ qr

1− q2r2

The inequality (2.7) can be written in the following form

(2.8)
1

1 + qr
≤ Re(reiθDqf(reiθ)

f(reiθ)
) ≤ 1

1− qr
On the other hand we have (using the q− partial rule)

(2.9) Re

(
reiθ

Dqf(reiθ)

f(reiθ)

)
= r

∂q
∂r
log|f(reiθ)|

Considering (2.8) and (2.9) together we can write

(2.10)
1

r(1 + q)
≤ ∂q
∂r
log|f(reiθ)| ≤ 1

r(1− qr)
If we take q− integral both sides of (2.10) we get (2.6). �

2.6. Remark. Since lim
q→ 1

1− q
logq−1

= 1, then (2.6) reduces to

r

1 + r
≤ |f(z)| ≤ r

1− r
This is the growth theorem for convex functions [4].

2.7. Theorem. Let f(z) be an element of Cq, then

(2.11) (1 + qr)
−
(

1−q2

q2logq−1

)
≤ |Dqf(z)| ≤ (1− qr)−

(
1−q2

q2logq−1

)
These bounds are sharp, because extremal function is the solution of the q− differential
equation

1 + qz
Dq(Dqf(z))

Dqf(z)
=

1 + z

1− qz

Proof. Since the linear transformation
(

1 + z

1− qz

)
maps |z| = r onto the disc with the

centre C(r) =
1 + qr2

1− q2r2 and the radius ρ(r) =
(1 + q)r

1− q2r2 . Using the definition of Cq and

subordination principle ,then we can write∣∣∣∣1 + qz
Dq(Dqf(z))

Dqf(z)
− 1 + qr2

1− q2r2

∣∣∣∣ ≤ (1 + q)r

1− q2r2

Using the same technique of the proof theorem 2.5, we can obtain

(2.12)
1 + q

q

1

1 + qr
≤ ∂q
∂r
log|Dqf(reiθ)| ≤ 1 + q

q

1

1− qr
Taking q− integral both sides of (2.12) we get (2.11). �

2.8. Remark. Since lim
q→ 1

1− q2

q2logq−1
= 2, then (2.11) gives

(1 + r)−2 ≤ |f ′(z)| ≤ (1− r)−2

This is the distortion theorem of convex functions [5].
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2.9. Theorem. Let g(z) be an element of Kq, then

(2.13) (1− r)(1 + qr)
−
(

1−q2

q2logq−1 +1
)
≤ |Dqg(z)| ≤ (1 + r)(1− qr)−

(
1−q2

q2logq−1 +1
)

These bounds are sharp because the extremal function is the solution of the q− dif-
ferential equation

Dqg(z)

Dqf(z)
=

1 + z

1− qz
under the provided that f(z) is q−convex function.

Proof. Using the definition of the class Kq and theorem 2.1, then we can write
Dqg(z)

Dqf(z)
= p(z)⇔ Dqg(z)

Dqf(z)
≺ 1 + z

1− qz ⇒
∣∣∣∣Dqg(z)

Dqf(z)
− 1 + qr2

1− q2r2

∣∣∣∣ ≤ (1 + q)r

1− q2r2 ⇒

1− r
1 + qr

|Dqf(z)| ≤ |Dqg(z)| ≤ 1 + r

1− qr |Dqf(z)|

which gives (2.13). �

2.10. Theorem. Let g(z) be an element of Kq, then

(2.14)
g(z)

f(z)
≺ 1 + z

1− qz

Proof. Since g(z) ∈ Kq ,then we have

(2.15) A(r) =

{
Dqg(z)

Dqf(z)
:

∣∣∣∣Dqg(z)

Dqf(z)
− 1 + qr2

1− q2r2

∣∣∣∣ ≤ (1 + q)r

1− q2r2 , f(z) ∈ Cq, q ∈ (0, 1)

}
�

Now we define the function φ(z) by
g(z)

f(z)
=

1 + φ(z)

1− qφ(z)
,

thus φ(z) is analytic and φ(0) = 0. Now we want to show that |φ(z)| < 1 for all z ∈ D.
Assume to the contrary, then there exists z0 ∈ D such that |φ(z0)| = 1. On the other
hand we have

Dq

(
g(z)

f(z)

)
= Dq

(
1 + φ(z)

1− qφ(z)

)
⇒

Dqg(z)

Dqf(z)
=
g(qz)

f(qz)
+

(1 + q)Dqφ(z)

(1− qφ(z))(1− qφ(qz))

f(z)

Dqf(z)
or

(2.16)
Dqg(z0)

Dqf(z0)
=

1 + φ(qz0)

1− qφ(qz0)
+

(1 + q)z0Dqφ(z0)

(1− qφ(z0))(1− qφ(qz0))

f(z0)

z0Dqf(z0)

In this step, if we use lemma 2.3 (q-Jack’s Lemma) and theorem 2.4, then we have

Dqg(z0)

Dqf(z0)
=

(
1 + φ(qz0)

1− qφ(qz0)
+

(1 + q)mφ(z0)

(1− qφ(z0))(1− qφ(qz0))

(1− q2r2)

1 + qreiθ

)
/∈ A(r).

But this is a contradiction with (2.15). Therefore |φ(z)| < 1 for all z ∈ D. We note that

the factor
( 1− q2r2

1 + qreiθ

)
is the reciprocal value of the boundary value of

(zDqf(z)

f(z)

)
.

2.11. Corollary. If g(z) ∈ Kq, then

(2.17)
(

r

(1 + qr)
1+q
q

) 1−q

logq−1 1− r
1 + qr

≤ |g(z)| ≤
(

r

(1− qr)
1+q
q

) 1−q

logq−1 1 + r

1− qr
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Proof. Using the theorem 2.10, then we can write
1− r
1 + qr

≤
∣∣∣∣ g(z)

f(z)

∣∣∣∣ ≤ 1 + r

1− qr ⇒

|f(z)| 1− r
1 + qr

≤ |g(z)| ≤ |f(z)| 1 + r

1− qr

In this step, if we use theorem 2.5 we get (2.17) �
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