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Abstract: In order to represent real-world problems, modeling and stability concepts of a system are two essential steps, and functional 

differential inclusions become favorable among other methods because of their flexibility and robustness to handle those problems. 

Thus, functional differential inclusions (FDIs) provide a solid foundation for engineering problems, and the calculation of their 

derivatives becomes an important issue in checking the stability of them. Especially, to check the Lyapunov stability, various chain rules 

for FDIs are defined in the literature. In this work, a new chain rule is introduced in terms of the reduction procedure, a comparison with 

another one is represented, and the stability theorems in terms of Lyapunov are extended to the reduced functional differential 

inclusions. 
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1. Introduction 
Functional differential inclusions (FDIs), a sophisticated 

branch of mathematical analysis, have emerged as a 

versatile framework for modeling and analyzing complex 

dynamical systems that exhibit intricate interactions 

between time-dependent variables and their histories. 

These powerful mathematical tools, which generalize the 

classic concept of differential equations, have proven 

invaluable in capturing the nuanced behaviors of systems 

that are influenced both by their current state and past 

trajectories. Functional differential inclusions are 

particularly valuable when modeling systems where the 

rate of change depends not only on the current state but 

also on the history of the state variables. These inclusions 

generalize functional differential equations so that they 

allow multi-valued right-hand sides. This allows the 

derivative to belong to a set of possible values rather than 

being uniquely defined. This property makes FDIs 

particularly useful for modeling systems with uncertainty, 

non-smooth dynamics, or control constraints. They 

provide benefits from different perspectives such as 

flexibility (FDIs handle non-uniqueness in solutions, 

making them suitable for systems with inherent ambiguity 

or multiple possible trajectories) or robustness (they 

model systems under uncertainty effectively, providing a 

framework for robust analysis and synthesis). They play a 

vital role in several domains such as control systems and 

optimization, modeling uncertainty, non-smooth and 

hybrid systems, population dynamics and biological 

models, material Science and mechanics, economics and 

finance in economic modeling. FDIs are widely applied in 

control theory, particularly in optimal control and 

differential games where the system’s dynamics are 

influenced by control actions that may vary within a range 

of admissible values. This is common in situations with 

bang-bang control or state-dependent constraints (Aubin 

and Cellina, 1984). FDIs are used to model systems with 

uncertainty in the dynamics, such as when the exact form 

of the derivative is unknown but is known to lie within a 

specified set. This is critical in engineering and economics, 

where systems are influenced by external disturbances or 

imprecise measurements (Filippov, 1988). Hybrid 

systems that involve both continuous dynamics and 

discrete transitions often exhibit non-smooth behavior. 

FDIs can describe such systems’ evolution by 

accommodating jumps, switches, and other 

discontinuities (Clarke et al., 1998). In population 

dynamics and epidemiology, FDIs may be used to account 

for time delays in reproduction or infection processes and 

to model systems with uncertain growth rates or carrying 

capacities. In economic modeling, FDIs may be used to 

represent markets where decisions depend on historical 

trends or delayed responses to changes in economic 

indicators. These applications align with the foundational 

works by Hale (1977) and Kolmanovskii and Myshkis 

(1992) in functional differential equations. 

Apart from the previously mentioned works, recent 

studies on functional differential inclusions have 
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advanced the theory and applications significantly. In 

(Aitalioubrahim and Raghib, 2023), explored existence 

results for inclusions driven by maximal monotone 

operators with nonconvex perturbations are explored, 

broadening classical frameworks. In (Bokalo et al., 2024), 

strong nonlinear functional-differential variational 

inequalities without initial conditions are focused on, 

addressing dynamic processes beyond fixed starts. 

Research on optimal control of hereditary differential 

inclusions has provided insights into systems with 

memory effects (Mahmudov and Mastaliyeva, 2024). 

Additionally, the topological properties of solution sets 

have been studied to better understand stability and 

robustness (Haddad, 1981b). These studies reflect a 

dynamic research front, bridging advanced mathematics 

with applications in areas such as engineering and the 

sciences. 

In this work, a new chain rule for functional differential 

inclusions is obtained by the reduction procedure defined 

in (Kamalapurkar et al., 2020), a comparison with the 

chain rule in (Liu et al., 2015) is done and the stability 

theorems for the reduced functional differential inclusion 

are obtained. The paper’s structure can be summarized as 

the following. In Section 2, preliminaries are mentioned 

and the necessary definitions and theorems in order to be 

utilized in Sections 5.1, 5.2 and 5.3 are given. In sections 3 

and 4 a new chain rule is defined and a comparison 

between two chain rules is considered. In Sections 5.1, 5.2 

and 5.3 stability theorems for autonomous and 

nonautonomous systems and Razumikhin type theorems 

are given, respectively. 

 

2. Functional Differential Inclusions  
Observe the functional (delay) differential inclusion; 
 

𝑥̇ ∈  ℱ(𝑡, 𝑥𝑡) (1) 
 

where ℱ: 𝑅≥𝟘 × 𝐷 ⇉ 𝑅𝑛 is a functional that is set valued 

and moreover, it is bounded on closed bounded subsets of 

D. The solutions of equation (1) are assumed to satisfy 

basic assumptions in (Liu et al., 2016, p. 3216) and the 

property (Liu et al., 2016, Theorem 1). The definitions for 

solution, precompact solution, maximal solution can be 

found in (Surkov, 2007; Kamalapurkar et al., 2020). The 

definitions of weakly invariant set and strongly forward 

invariant set can be found in (LaSalle, 1976; Surkov, 2007; 

Kamalapurkar et al., 2020). The set-valued functional F 

satisfies the, ℱ is upper semi-continuous and ℱ(ϕ) is 

nonempty, compact, and convex for each ϕ ∈ 𝐷 where 

𝐷 ⊂ 𝐶𝑟 is an open set containing the origin and 𝐶𝑟 is the 

collection of continuous functions from [−r, 0] to ℛ𝓃 , with 

the norm ‖ϕ‖𝑟 = 𝑚𝑎𝑥−𝑟≤𝑠≤0|ϕ(𝑠)| and ϕ ∈

𝐶([−𝑟, 0]; 𝑅𝑛). With the given basic assumptions there 

exists at least a solution for (1) on the interval[𝑡0 − 𝑟, 𝑇] 

for some 𝑇 >  0 (Liu et al., 2016, Haddad, 1981a). The 

chain rule for delay differential inclusion (1) is given by as 

the following in (Liu et al., 2016). A locally absolutely 

continuous function x is called a solution for 2.1 if it is a 

solution of 2.1 and verifies 𝑥𝑡0
= ϕ. In this case, the 

solution will be represented by 𝑥(𝑡, 𝑡0, ϕ) where 𝑡0 is the 

initial time and 𝜙 ∈ 𝐶𝑟 is the initial value. The definitions 

of weakly forward invariant set, strongly forward 

invariant set, precompactness of solutions, the conditions 

that admits local solutions can be found in (Liu et al., 

2015). 

 

3. Set-Valued Derivatives 
Proposition 3.1. Observe the functional (delay) 

differential inclusion (1). Let V: R≥𝟘 × R × 𝒞𝓇 → R≥𝟘 is a 

functional that is locally Lipschitz and moreover the 

following conditions hold (Liu et al., 2016): 

(1) Functional V is composite locally absolutely 

continuous;  

(2) For each point(α, β) ∈ (R≥𝟘 × R) × 𝒞𝓇 it is 

possible to find the invariant directional 

derivative;  

 

(3) V′(α, β, z) = Vo(α, β, z) for each (α, β) ∈

(R≥𝟘 × R) × 𝒞𝓇 and z ∈ R≥𝟘 × R 

Then for any solution x: [t0 − r, T] of (1), it holds that for 

almost all t ∈ [t0, T) 
 

 

(2) 

 

Since the chain rule in (Liu et al., 2016) represents an 

analogy of the chain rule defined in (Paden and Sastry, 

1987) for the functional differential inclusions, then it is 

possible to define a chain rule analogous to the one 

defined in (Bacciotti, and Ceargioli, 1999). 

Definition 3.2. For a locally Lipschitz functional 𝑉: 𝑅≥𝟘 ×

𝑅 × 𝒞𝓇 → 𝑅≥𝟘 that satisfies the conditions of (Liu et al., 

2016, Proposition 1) (given in proposition 3.1), the set 

valued derivative of V with respect to 2.1 is defined as  
 

 

(3) 

 

Proposition 3.3. Suppose that the set valued functional 

ℱ: R≥𝟘 × D is upper semicontinuous, with compact, 

nonempty, and convex values. If V is a locally Lipschitz 

functional which satisfies properties of (Liu et al., 2016, 

Proposition 1) (given in proposition 3.1) and max V
̇

≤ 0 or 

max V̇̃ ≤ 0, then the trivial solution of (1) is stable.  

Proof. It is straightforward to verify the proof using results 

of (Shevitz and Paden, 1994; Bacciotti and Ceragioli, 

1999).  
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4. Construction of Reduced Functional 

Differential Inclusions and Generalized 

Time Derivatives 
Definition 4.1. For any regular, locally Lipschitz function 

𝑈: 𝑅≥𝟘 × 𝑅 × 𝐶𝑟 → 𝑅 and the set-valued functional 

𝐻: 𝑅≥𝟘 × 𝐷 ⇉ 𝑅𝑛, the reduction 𝑅𝑈
𝐻: 𝑅≥𝟘 × 𝐷 ⇉ 𝑅𝑛 is 

define as. 

 

(4) 

 

By using 4.1, the chain rule 3.2 can be written as follows.  
 

 

(5) 

 

Proposition 4.2. Suppose that ℱ: 𝑅≥𝟘 × 𝐷 ⇉ 𝑅𝑛 is a 

functional which is upper semi-contiuous and takes 

nonempty, convex and compact values. Let 𝑉: 𝑅≥𝟘 × 𝑅 ×

𝐶𝑟 → 𝑅 be a locally Lipschitz functional with the 

conditions c1, c2 and c3 of (Liu et al., 2016, Proposition 1) 

and V : R≥0 × R × Cr → R be a regular functional. If then the 

trivial solution of 2.1 is stable. 
 

 

(6) 

 

Proof. Using theorem 4.4 of this paper, one may prove the 

stability and global asymptotic stability of equation 5.1. 

Then the statement of the proposition is concluded. □  
Definition 4.3. Let 𝒰 = {𝑈𝑖}𝑖=1

∞ 𝑤ℎ𝑒𝑟𝑒{𝑈𝑖}𝑖=1
∞  where {𝑈𝑖}𝑖=1

∞  

is a collection of real-valued locally Lipschitz regular 

functions. ℱ: 𝑅 × 𝒞𝑟  is defined as  
 

 
(7) 

 

Theorem 4.4. Let U be defined as in Definition 4.3 and 

𝑥(𝑡): ℐ𝒟 → 𝑅 is a solution of 2.1. Then, 𝑥̇(𝑡) ∈ ℱ𝒰(𝑡, 𝑥𝑡) for 

almost all 𝑡 ∈ ℐ𝒟 .  
Proof. By using the fact that x(t) is locally absolutely 

continuous and 𝑈(𝑡, 𝑥(𝑡), β) is composite locally 

absolutely continuous, 𝑈𝑖(𝑡, 𝑥(𝑡), 𝑥𝑡) is locally absolutely 

continuous. If 𝐸0 is the set of measure zero such that x(t) 

and 𝑈𝑖(𝑡, 𝑥(𝑡), 𝑥𝑡) are not differentiable. By following the 

steps in (Shevitz and Paden, 1994; Liu et al., 2016, 

Kamalapurkar et al., 2020) it can be verified that the right 

derivative of 𝑈𝑖(𝑡, 𝑥(𝑡), 𝑥𝑡) is equal to  
 

 

(8) 

 

With a similar approach, the left derivative of 

𝑈𝑖(𝑡, 𝑥(𝑡), 𝑥𝑡) is equal to  
 

 

(9) 

 

The remaining steps follow from (Kamalapurkar et al., 

2020, Theorem 1) and therefore 𝑥̇(𝑡) ∈ ℱ𝒰  

 
Generalized time derivative definitions are given as 

follows.  

Definition 4.5. The U-generalized time derivative of V , 𝑉𝒰
̇

, 

whenever V is regular, is equal to  
 

 

(10) 

 

The U-generalized time derivative of V , 𝑉𝒰
̇

, whenever V is 

not regular, is equal to  
 

 

(11) 

 

Definition 4.6. If V is locally Lipschitz, positive definite and 

if 𝑉𝒰
̇

≤ 0, then V is called a U-generalized Lyapunov 

function for 2.1.  

Theorem 4.7. If 𝑉 ∈ 𝐿𝑖𝑝(𝐶𝑟, 𝑅), then ∀𝑥(⋅) ∈ 𝒮(Ω),  
 

 

(12) 

 

for almost all 𝑡 ∈ ℐ𝒟 . Moreover, if there exists a function 

𝑊: Ω → 𝑅 such that 𝑉𝒰
̇ (𝑡, 𝑥(𝑡), 𝑥𝑡) ≤

𝑊(𝑡, 𝑥(𝑡), 𝑥𝑡), ∀(𝑡, 𝑥(𝑡), 𝑥𝑡) ∈  Ω then 𝑉𝒰̇(𝑡, 𝑥(𝑡), 𝑥𝑡) ≤

𝑊(𝑡, 𝑥(𝑡), 𝑥𝑡), for almost all 𝑡 ∈ ℐ𝒟 .  

Proof. Investigate two cases: when V is regular or not. If 

regular, the result follows from (Bacciotti, and Ceargioli, 

1999). If not regular, then the result is obtained from 

(Shevitz and Paden, 1994). □ 
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5. Stability Theorems for Reduced 

Functional Differential Inclusions 
5.1. Stability of Autonomous Systems 

Consider the functional differential inclusion; 

𝑥̇ ∈  ℱ(𝑥𝑡) (13) 

Theorem 5.1. Let V be a functional such that 𝑉: 𝒞 → 𝑅 and 

𝑉𝒰
̇

≤ 0 for all ϕ ∈ G and f ∈ F(ϕ). Moreover, assume that 

x(t) is precompact and 𝑥𝑡 remains in G for all t ≥ 0. Then, for 

some c, 𝑥𝑡 approaches 𝑀𝑣 ∩ 𝑉−1(𝑐).  

Proof. Two cases are investigated. If V is regular then the 

result follows from (Liu et al., 2015, Theorem 1) and from 

very well-known Arzela-Ascoli theorem, omega limit set is 

compact. If V is not regular, then the result follows from 

(Kamalapurkar et al., 2020, Theorem 19) and (Moreau and 

Valadier, 1987). 

5.2. Stability of Nonautonomous Systems 

Definition 5.2. The differential inclusion (1) is said to be 

uniformly stable at x = 0 if ∀ϵ > 0 ∃δ > 0 such that if x(⋅) ∈

ℬ(0, δ) × ℛ≥𝟘, then x(·) is complete and x(t) ∈

B(0, ϵ), ∀t ≥ t0.  

Theorem 5.3. Consider (1). Let V: R≥𝟘 × 𝒞𝓇 → R≥𝟘 be a 

locally Lipschitz functional. If there exist positive definite 

functions u, v , w that is positive for s > 0, and u(0) = v(0) 

= 0. If the following condition is satisfied 
 

 

(14) 

 
(15) 

  

 

Proof. Investigation of two cases is enough to prove the 

theorem. If 𝑉𝒰
̇

 is regular follow (Liu et al., 2016, Theorem 

3). If 𝑉𝒰
̇

 is not regular follow similar steps to 

(Kamalapurkar et al., 2020, Theorem 19) and (Moreau and 

Valadier, 1987).  

5.3. Razumikhin Theorem 

The chain rule will be defined by reduced Lyapunov 

functions in this case. More specifically, the chain rule will 

be defined as  

 

(16) 

Theorem 5.4. Observe the equation (1). u, v, w: R+ →

R+such that u, v, w are continuous functions and they are 

non-decreasing, u(s), v(s) positive whenever s > 0 and 

u(0) = v(0) = 0. Moreover, v is strictly increasing. Assume 

that a continuous function V: R × Rn → R, with the 

following conditions  
 

 

(17) 

and  

 
(18) 

  
 

Proof. Start by choosing some variable θ0 from [−r,0]. 

Check the cases where θ0 < 0 and θ0. Then use of 

theorem 5.3 for non-autonomous case of this paper. This 

finishes the proof of uniform stability.  

 

6. Conclusion 

In summary, the chain rule and stability theorems 

constitute fundamental analytical tools for functional 

differential inclusions, offering a robust framework for 

the investigation of intricate system behaviors and the 

verification of solution dependability. The chain rule, 

particularly in its generalized forms applicable to set-

valued mappings and non-smooth analysis, facilitates the 

computation of derivatives along solution trajectories, 

thereby enabling the characterization of system 

sensitivity to perturbations and parameter variations. 

Stability theorems, encompassing Lyapunov-like 

approaches and fixed-point methodologies, furnish 

criteria for ascertaining the qualitative properties of 

solutions, including boundedness, convergence, and 

robustness in the face of uncertainties. These theoretical 

underpinnings are not merely abstract mathematical 

constructs but have tangible implications across various 

scientific and engineering disciplines. Functional 

differential inclusions, which inherently incorporate 

memory effects and hereditary characteristics, demand 

sophisticated mathematical techniques for their analysis, 

where the chain rule allows for the effective propagation 

of derivative information through the functional 

arguments of the inclusion, while stability theorems 

provide a rigorous basis for assessing the long-term 

behavior of solutions, ensuring that the system’s 

response remains within acceptable bounds.  

Future investigations may extend the reduction-based 

chain rule to stochastic and more general classes of 

functional differential inclusions, broadening its 

theoretical scope. At the same time, integrating these 

analytical advances with computational techniques could 

facilitate the stability assessment of complex systems, 

reinforcing the connection between abstract analysis and 

applied practice. 
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