Black Sea Journal of Engineering and Science
doi: 10.34248/bsengineering.1746300

Open Access Journal
e-ISSN: 2619 - 8991

Research Article

Volume 8 - Issue 5: 1556-1560 / September 2025

A CHAIN RULE FOR REDUCED FUNCTIONAL DIFFERENTIAL
INCLUSIONS AND STABILITY THEOREMS

Nurgiil GOKGOZ1.2*

1Cankaya University, Faculty of Arts and Sciences, Department of Computer Science, 06815, Ankara, Tiirkiye
2Cankaya University, Faculty of Arts and Sciences, Department of Mathematics, 06815, Ankara, Tiirkiye

Abstract: In order to represent real-world problems, modeling and stability concepts of a system are two essential steps, and functional
differential inclusions become favorable among other methods because of their flexibility and robustness to handle those problems.
Thus, functional differential inclusions (FDIs) provide a solid foundation for engineering problems, and the calculation of their
derivatives becomes an important issue in checking the stability of them. Especially, to check the Lyapunov stability, various chain rules
for FDIs are defined in the literature. In this work, a new chain rule is introduced in terms of the reduction procedure, a comparison with
another one is represented, and the stability theorems in terms of Lyapunov are extended to the reduced functional differential

inclusions.
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1. Introduction

Functional differential inclusions (FDIs), a sophisticated
branch of mathematical analysis, have emerged as a
versatile framework for modeling and analyzing complex
dynamical systems that exhibit intricate interactions
between time-dependent variables and their histories.
These powerful mathematical tools, which generalize the
classic concept of differential equations, have proven
invaluable in capturing the nuanced behaviors of systems
that are influenced both by their current state and past
trajectories.
particularly valuable when modeling systems where the
rate of change depends not only on the current state but
also on the history of the state variables. These inclusions
generalize functional differential equations so that they
allow multi-valued right-hand sides. This allows the
derivative to belong to a set of possible values rather than
being uniquely defined. This property makes FDIs

Functional differential inclusions are

particularly useful for modeling systems with uncertainty,
non-smooth dynamics, or control constraints. They
provide benefits from different perspectives such as
flexibility (FDIs handle non-uniqueness in solutions,
making them suitable for systems with inherent ambiguity
or multiple possible trajectories) or robustness (they
model systems under uncertainty effectively, providing a
framework for robust analysis and synthesis). They play a
vital role in several domains such as control systems and
optimization, modeling uncertainty, non-smooth and
hybrid systems, population dynamics and biological

models, material Science and mechanics, economics and
finance in economic modeling. FDIs are widely applied in
control theory, particularly in optimal control and
differential games where the system’s dynamics are
influenced by control actions that may vary within a range
of admissible values. This is common in situations with
bang-bang control or state-dependent constraints (Aubin
and Cellina, 1984). FDIs are used to model systems with
uncertainty in the dynamics, such as when the exact form
of the derivative is unknown but is known to lie within a
specified set. This is critical in engineering and economics,
where systems are influenced by external disturbances or
imprecise (Filippov, 1988). Hybrid
systems that involve both continuous dynamics and
discrete transitions often exhibit non-smooth behavior.
FDIs can
accommodating

measurements

describe such systems’ evolution by

jumps, switches, and other
discontinuities (Clarke et al, 1998). In population
dynamics and epidemiology, FDIs may be used to account
for time delays in reproduction or infection processes and
to model systems with uncertain growth rates or carrying
capacities. In economic modeling, FDIs may be used to
represent markets where decisions depend on historical
trends or delayed responses to changes in economic
indicators. These applications align with the foundational
works by Hale (1977) and Kolmanovskii and Myshkis
(1992) in functional differential equations.

Apart from the previously mentioned works, recent
studies inclusions have

on functional differential
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advanced the theory and applications significantly. In
(Aitalioubrahim and Raghib, 2023), explored existence
results for inclusions driven by maximal monotone
operators with nonconvex perturbations are explored,
broadening classical frameworks. In (Bokalo et al.,, 2024),
strong nonlinear functional-differential variational
inequalities without initial conditions are focused on,
addressing dynamic processes beyond fixed starts.
Research on optimal control of hereditary differential
inclusions has provided insights into systems with
memory effects (Mahmudov and Mastaliyeva, 2024).
Additionally, the topological properties of solution sets
have been studied to better understand stability and
robustness (Haddad, 1981b). These studies reflect a
dynamic research front, bridging advanced mathematics
with applications in areas such as engineering and the
sciences.

In this work, a new chain rule for functional differential
inclusions is obtained by the reduction procedure defined
in (Kamalapurkar et al, 2020), a comparison with the
chain rule in (Liu et al, 2015) is done and the stability
theorems for the reduced functional differential inclusion
are obtained. The paper’s structure can be summarized as
the following. In Section 2, preliminaries are mentioned
and the necessary definitions and theorems in order to be
utilized in Sections 5.1, 5.2 and 5.3 are given. In sections 3
and 4 a new chain rule is defined and a comparison
between two chain rules is considered. In Sections 5.1, 5.2
and 5.3 stability theorems for
nonautonomous systems and Razumikhin type theorems
are given, respectively.

autonomous and

2. Functional Differential Inclusions

Observe the functional (delay) differential inclusion;
X € F(t, x¢) 8]

where F:R,g X D 3 R™ is a functional that is set valued
and moreover, it is bounded on closed bounded subsets of
D. The solutions of equation (1) are assumed to satisfy
basic assumptions in (Liu et al.,, 2016, p. 3216) and the
property (Liu et al,, 2016, Theorem 1). The definitions for
solution, precompact solution, maximal solution can be
found in (Surkov, 2007; Kamalapurkar et al., 2020). The
definitions of weakly invariant set and strongly forward
invariant set can be found in (LaSalle, 1976; Surkov, 2007;
Kamalapurkar et al,, 2020). The set-valued functional F
satisfies the, F is upper semi-continuous and F(¢) is
nonempty, compact, and convex for each ¢ € D where
D c C, is an open set containing the origin and C, is the
collection of continuous functions from [-r1, 0] to R", with
the  norm  ||§ll, = max_,<s<oldp(s)|  and G €
C([—r,0]; R™). With the given basic assumptions there
exists at least a solution for (1) on the interval(t, — r, T]
for some T > 0 (Liu et al, 2016, Haddad, 1981a). The
chain rule for delay differential inclusion (1) is given by as
the following in (Liu et al, 2016). A locally absolutely
continuous function x is called a solution for 2.1 if it is a

solution of 2.1 and verifies x; = ¢. In this case, the
solution will be represented by x(t, ty, &) where t, is the
initial time and ¢ € C, is the initial value. The definitions
of weakly forward invariant set, strongly forward
invariant set, precompactness of solutions, the conditions
that admits local solutions can be found in (Liu et al,
2015).

3. Set-Valued Derivatives
Proposition 3.1. Observe the functional (delay)
differential inclusion (1). Let V:Ryg X R X C,- = Ryp is a
functional that is locally Lipschitz and moreover the
following conditions hold (Liu et al,, 2016):
(1) Functional V is composite locally absolutely
continuous;
(2) For each point(a,B) € (Ryg X R) X C,. it is
possible to find the invariant directional
derivative;

(3) V'(a,B,z) = V°(a,B,z) for each (a,B) €
(Ryg XR) X C,andz € Ryg X R
Then for any solution x: [ty — r, T] of (1), it holds that for
almostall t € [t,, T)
Vit 2(t), ) € V(t,2(t), z2)
1

F(t,z¢)
1

(2)

where l:'(t.r(f)”r,) = Necov(a,e)€ and o = (t,z(t)).

Since the chain rule in (Liu et al., 2016) represents an
analogy of the chain rule defined in (Paden and Sastry,
1987) for the functional differential inclusions, then it is
possible to define a chain rule analogous to the one
defined in (Bacciotti, and Ceargioli, 1999).

Definition 3.2. For a locally Lipschitz functional V: R,q X
R X C,- = R, that satisfies the conditions of (Liu et al,,
2016, Proposition 1) (given in proposition 3.1), the set
valued derivative of V with respect to 2.1 is defined as

) 1
rtf..l‘[f).,r,):{nef*':EL'E.F(f.‘T,]sm‘htlmt Ty =a Ve € V(t,x(t),z)). (3)
1

Proposition 3.3. Suppose that the set valued functional
F:Rsp XD is upper semicontinuous, with compact,
nonempty, and convex values. If V is a locally Lipschitz
functional which satisfies properties of (Liu et al.,, 2016,
Proposition 1) (given in proposition 3.1) and maxV < Oor
maxV < 0, then the trivial solution of (1) is stable.

Proof. Itis straightforward to verify the proof using results
of (Shevitz and Paden, 1994; Bacciotti and Ceragioli,
1999).
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4. Construction of Reduced Functional
Differential Inclusions and Generalized
Time Derivatives

Definition 4.1. For any regular, locally Lipschitz function
U:R,g XRXCr—>R and the set-valued functional
H:Rs9 X D 3 R", the reduction RI:R.oXD 3 R" is
define as.

1
RE(t,a(t),z) = { € F(t,z,) /€7 {L‘} =0,Y¢ € aV(t,(t),2,)}. (4)
1

By using 4.1, the chain rule 3.2 can be written as follows.

= _ T
max V(t,z(t),z;) = min max L. 5
( ( } ) p&ill'tf.r{f).l‘r_)qéR‘r(f.;t‘,]g : ] ( )

Proposition 4.2. Suppose that F:R.gX D 33 R™ is a
functional which is upper semi-contiuous and takes
nonempty, convex and compact values. Let V:R,g X R X
Cr > R be a locally Lipschitz functional with the
conditions c1, c2 and ¢3 of (Liu et al., 2016, Proposition 1)
and V: R=0 x R x Cr - Rbe aregular functional. If then the
trivial solution of 2.1 is stable.

min max ET:lz ;1 <0, (g
EEI‘H-”.J'(I’}.-i'[,'"L'f'—_Rit“.I;}

Proof. Using theorem 4.4 of this paper, one may prove the
stability and global asymptotic stability of equation 5.1.
Then the statement of the proposition is concluded. o
Definition 4.3. Let U = {U;}{2,where{U;}{Z, where {U;}{2,
is a collection of real-valued locally Lipschitz regular
functions. F: R X C, is defined as

Fult,ze) = F(t,z) N (N2 RE (8 20)). )

Theorem 4.4. Let U be defined as in Definition 4.3 and
x(t):Jp — R is a solution of 2.1. Then, x(t) € Fy(t, x;) for
almost all t € Jp.

Proof. By using the fact that x(t) is locally absolutely
and U(t,x(t),B) is composite locally
absolutely continuous, U;(t, x(t), x;) is locally absolutely

continuous

continuous. If E is the set of measure zero such that x(t)
and U;(t, x(t), x,) are not differentiable. By following the
steps in (Shevitz and Paden, 1994; Liu et al, 2016,
Kamalapurkar et al,, 2020) it can be verified that the right
derivative of U;(t, x(t), x;) is equal to

1
Uilt,z(t),z) = max{¢ | F(t,z,) | [¢ € Ui(w,z)}.  (8)
1

With a similar approach, the left derivative of

U; (t, x(t), x;) is equal to

1
(;']{_f..r(f].;r,)=min{£ F(t,ze) | [€ € Ui(w, )} 9)
1

The remaining steps follow from (Kamalapurkar et al,
2020, Theorem 1) and therefore x(t) € Fy

Generalized time derivative definitions are given as
follows.

Definition 4.5. The U-generalized time derivative of V, Vy,
whenever V is regular, is equal to

Vy:= mi max iT[lL 1), (10)
EE(H r“l“‘]‘if II L'E.}'—““..J"r |

The U-generalized time derivative of V, Vy;, whenever V is
not regular, is equal to

Vy:=  max max & [1;4;1]. (1)
E€OV (t,a(t)20)ve oy (1.01)

Definition 4.6. If V is locally Lipschitz, positive definite and

if V¢ <0, then V is called a U-generalized Lyapunov
function for 2.1.
Theorem 4.7. IfV € Lip(C,, R), then Vx(-) € §(),

V(t,z(t),z0) € (OV(t,2(t),20))" | Fult.z,) (12)
1

for almost all t € Jp. Moreover, if there exists a function

wW:Q-R such that Vaut,x(@®),x,) <
W(t, x(t),xe), V(t, x(t),x) € Q  then Vy(t,x(t),x,) <
W (t, x(t),x;), for almost all t € Jp.

Proof. Investigate two cases: when V is regular or not. If
regular, the result follows from (Bacciotti, and Ceargioli,
1999). If not regular, then the result is obtained from
(Shevitz and Paden, 1994). o
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5. Stability Theorems for Reduced

Functional Differential Inclusions
5.1. Stability of Autonomous Systems
Consider the functional differential inclusion;

x € F(xe) (13)
Theorem 5.1. Let V be a functional such that V:C — R and

Vy <0 for all ¢ € G and f € F(¢). Moreover, assume that
x(t) is precompact and x; remains in G for all t 2 0. Then, for
some c, x; approaches M,, N V=1(c).

Proof. Two cases are investigated. If V is regular then the
result follows from (Liu et al,, 2015, Theorem 1) and from
very well-known Arzela-Ascoli theorem, omega limit set is
compact. If V is not regular, then the result follows from
(Kamalapurkar et al.,, 2020, Theorem 19) and (Moreau and
Valadier, 1987).

5.2. Stability of Nonautonomous Systems

Definition 5.2. The differential inclusion (1) is said to be
uniformly stable at x = 0 if Ve > 0 38 > 0 such thatif x(-) €
B(0,8) X Rsg, then x(-) is and x(t) €
B(0,€), Vt = t.

Theorem 5.3. Consider (1). Let V:R,p X C,- = R be a
locally Lipschitz functional. If there exist positive definite

complete

functions u, v, w that is positive for s > 0, and u(0) = v(0)
= 0. If the following condition is satisfied

(14)

u(|p(0)]) < V(t,0) < v(|é])

Vult, 8) < ~u(|6(0)) (15)

then the solution x = 0 of (2.1) is uniformly stable.

Proof. Investigation of two cases is enough to prove the
theorem. If Vy; is regular follow (Liu et al,, 2016, Theorem

3). If Vy is not regular follow similar steps to
(Kamalapurkar etal.,, 2020, Theorem 19) and (Moreau and
Valadier, 1987).

5.3. Razumikhin Theorem

The chain rule will be defined by reduced Lyapunov
functions in this case. More specifically, the chain rule will
be defined as

V(tx(t) = {a e R: 3 € F(t,z,) such that €7

” =a, e € dV(t,a(t))}. (16)

Theorem 5.4. Observe the equation (1). u,v,w:R* -
R*such that u, v, w are continuous functions and they are
non-decreasing, u(s), v(s) positive whenever s > 0 and
u(0) =v(0) = 0. Moreover, v is strictly increasing. Assume
that a continuous function V:RXR"™ —» R, with the
following conditions

u(jz) <V(t,z) <vljz)), teR z€R", (17)

and

Valt,6(0)) < ~w((6(0)]) if V(t+6,000) < V(t.60), (18)

exist for 0 € [~r,0]. Then the trivial solution, x =10, of (2.1) is uniformly stable.

Proof. Start by choosing some variable 6, from [-1,0].
Check the cases where 6, <0 and 6,. Then use of
theorem 5.3 for non-autonomous case of this paper. This
finishes the proof of uniform stability.

6. Conclusion

In summary, the chain rule and stability theorems
constitute fundamental analytical tools for functional
differential inclusions, offering a robust framework for
the investigation of intricate system behaviors and the
verification of solution dependability. The chain rule,
particularly in its generalized forms applicable to set-
valued mappings and non-smooth analysis, facilitates the
computation of derivatives along solution trajectories,
thereby enabling the characterization of system
sensitivity to perturbations and parameter variations.
Stability  theorems, encompassing Lyapunov-like
approaches and fixed-point methodologies, furnish
criteria for ascertaining the qualitative properties of
solutions, including boundedness, convergence, and
robustness in the face of uncertainties. These theoretical
underpinnings are not merely abstract mathematical
constructs but have tangible implications across various
scientific and engineering disciplines. Functional
differential inclusions, which inherently incorporate
memory effects and hereditary characteristics, demand
sophisticated mathematical techniques for their analysis,
where the chain rule allows for the effective propagation
of derivative information through the functional
arguments of the inclusion, while stability theorems
provide a rigorous basis for assessing the long-term
behavior of solutions, ensuring that the system'’s
response remains within acceptable bounds.

Future investigations may extend the reduction-based
chain rule to stochastic and more general classes of
functional inclusions, broadening its
theoretical scope. At the same time, integrating these
analytical advances with computational techniques could
facilitate the stability assessment of complex systems,

differential

reinforcing the connection between abstract analysis and
applied practice.
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