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SOME GENERATING RELATIONS INVOLVING 2-VARIABLE
LAGUERRE AND EXTENDED SRIVASTAVA POLYNOMIALS

Ahmed Ali Al Gonah 1

ABSTRACT: In this paper, we derive families of bilateral and mixed multi-
lateral generating relations involving 2-variable Laguerre and extended Srivastava
polynomials. Further, several bilateral and trilateral generating functions involving
2-variable Laguerre polynomials and other classical polynomials are obtained as
applications of main results.

1. INTRODUCTION

Srivastava [9] introduced the Srivastava polynomials (SP) SNn (w) by the fol-
lowing series definition:

SNn (w) =

[ n
N ]∑
k=0

(−n)Nk
k!

An,k w
k (n ∈ N0 = N ∪ {0};N ∈ N), (1.1)

where N is the set of positive integers, {An,k}∞n,k=0 is a bounded double sequence

of real or complex numbers, [a] denotes the greatest integer in a ∈ R and (λ)ν ,
(λ)0 ≡ 1, denotes the Pochhammer symbol defined by [10]

(λ)ν =
Γ(λ+ ν)

Γ(λ)
, (1.2)

in terms of familiar Gamma function.
Afterward, González et al. [3] extended the SP SNn (w) as follows:

SNn,q(w) =

[ n
N ]∑
k=0

(−n)Nk
k!

An+q,k w
k (q, n ∈ N0;N ∈ N), (1.3)

which were investigated rather extensively in [3] and more recently in [6]. The poly-
nomials SNn,q(w) called as extended Srivastava polynomials (ESP), since SNn,0(w) =

SNn (w).

It is important that, appropriate choices of the double sequence {An,k} in
equation (1.3) give many well known polynomials such as Laguerre, Jacobi and
Bessel polynomials (see [3]). Here, we will recall them and add further new partic-
ular cases as the following remarks:
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Remark 1.1. ([3; p.147] see also [6]) Choosing Aq,n = (−α − q)n (q, n ∈ N0) in Eq.
(1.3), we get

S1
n,q

(
−1

w

)
=

n!

(−w)n
L(α+q)
n (w), (1.4)

where L
(α)
n (w) denotes the associated Laguerre polynomials defined by [10; p.42]

L(α)
n (w) =

(−w)n

n!
2F0

(
−n,−α− n;−;

−1

w

)
(1.5)

and pFq is the generalized hypergeometric function defined by [10; p.42]:

pFq(α1, . . . , αp;β1, . . . , βq; z) =

∞∑
n=0

(α1)n . . . (αp)n
(β1)n . . . (βq)n

zn

n!
, (1.6)

where p, q ∈ N0 and for p = q = 1 reduces to the confluent hypergeometric function

1F1.

Remark 1.2. ([3; p.146]) Choosing Aq,n =
(α+β+1)2q(−β−q)n

(α+β+1)q(−α−β−2q)n (q, n ∈ N0) in Eq.

(1.3), we get

S1
n,q

(
2

1 + w

)
= n!(α+ β + q + n+ 1)q

(
2

1 + w

)n
P (α+q,β+q)
n (w), (1.7)

where P
(α,β)
n (w) denotes the classical Jacobi polynomials defined by [8; p.255]

P (α,β)
n (w) =

(
α+ β + 2n

n

)(
1 + w

2

)n
2F1

(
−n,−β − n;−α− β − 2n;

2

1 + w

)
.

(1.8)

Remark 1.3. ([3; p.148]) Choosing Aq,n = (−α − q)n (q, n ∈ N0) in Eq. (1.3), we
get

S1
n,q

(
−w
β

)
= yn(w, 1− α− q − 2n, β) (β 6= 0), (1.9)

where yn(w,α, β) denotes the Bessel polynomials defined by [10; p.75]

yn(w,α, β) = 2F0

(
−n, α+ n− 1;−;

−w
β

)
. (1.10)

Now, we add the following new particular cases as remarks:

Remark 1.4. Choosing Aq,n =
2q(ν)q(

1
2−ν−q)n

(1−2ν−2q)n (q, n ∈ N0) in Eq. (1.3), we get

S1
n,q

(
2

1− w

)
=
n!2q(ν)q
(w − 1)n

Cν+qn (w), (1.11)

where Cνn(w) denotes the classical Gegenbauer polynomials defined by [8; p.279]

Cνn(w) =
22n(ν)n
n!

(
w − 1

2

)n
2F1

(
−n, 1

2
− ν − n; 1− 2ν − 2n;

2

1− w

)
. (1.12)

Remark 1.5. Choosing Aq,n =
n!(p+1)q
(−p−q)n (q, n ∈ N0) in Eq. (1.3), we get

S1
n,q(w) = n!(p+ 1)q g

(p+q)
n (w), (1.13)
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where g
(p)
n (w) denotes the Cesaro polynomials defined by [10; p.449]

g(p)n (w) =

(
p+ n

n

)
2F1(−n, 1;−p− n;w). (1.14)

Remark 1.6. Choosing Aq,n =
(a)2q

(a)q(a+q)n
(q, n ∈ N0) in Eq. (1.3), we get

S1
n,q(w) = n!(a+ q + 2n)q Rn(a+ q, w), (1.15)

where Rn(a,w) denotes the Shively’s pseudo Laguerre polynomials defined by [8;
p.298]

Rn(a,w) =
(a)2n
n!(a)n

1F1(−n; a+ n;w). (1.16)

Next, we recall that the 2-variable Laguerre polynomials (2VLP) Ln(x, y) are
defined by the series definition (see[1,2])

Ln(x, y) = n!

n∑
k=0

(−1)k xk yn−k

(r!)2 (n− k)!
(1.17)

and specified by the following generating functions:

exp(yt)C0(xt) =

∞∑
n=0

Ln(x, y)
tn

n!
, (1.18)

or, equivalently

1

(1− yt)
exp

( −xt
1− yt

)
=

∞∑
n=0

Ln(x, y)tn
(
|yt| < 1

)
, (1.19)

where C0(x) denotes the 0th order Tricomi function. The nth order Tricomi func-
tions Cn(x) are defined by [10]

Cn(x) =

∞∑
k=0

(−1)k xk

k! (n+ k)!
. (1.20)

Also, we note that the 2VLP Ln(x, y) satisfy the following generating function:

1

(1− yt)a 1F1

(
a; 1;

−xt
1− yt

)
=

∞∑
n=0

(a)n Ln(x, y)
tn

n!

(
|yt| < 1

)
, (1.21)

which for a = 1 reduces to Eq. (1.19).

The 2VLP Ln(x, y) are linked to the classical Laguerre polynomials Ln(x) by
the relations

Ln(x, y) = yn Ln

(
x

y

)
, (1.22)

Ln(x, 1) = Ln(x), (1.23)

where Ln(x) are defined by [8]

Ln(x) =

n∑
k=0

(−1)k n!xk

(k!)2 (n− k)!
. (1.24)

The aim of this paper is to derive some families of bilateral and mixed mul-
tilateral generating relations involving the 2VLP Ln(x, y) and the ESP SNn,q(w) by
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using series rearrangement techniques. Also, the above mentioned remarks will be
used to obtain some illustrative bilateral and trilateral generating functions involv-
ing the 2VLP Ln(x, y) and many classical polynomials in terms of the confluent
hypergeometric function.

2. BILATERAL GENERATING RELATIONS

We prove the following results:

Theorem 2.1. The following family of bilateral generating relation involving the
2VLP Ln(x, y) and the ESP SNn,q(w) holds true:

∞∑
q,n=0

Lq+n(x, y) SNn,q(w)
tq

q!

un

n!
=

∞∑
q,n=0

Lq+Nn(x, y) Aq+Nn,n
(t+ u)q

q!

(
w(−u)N

)n
n!

.

(2.1)

Proof. Denoting the l.h.s. of Eq. (2.1) by ∆1 and using definition (1.3), we have

∆1 =

∞∑
q,n=0

Lq+n(x, y)

[ n
N ]∑
k=0

(−1)Nk

k!(n−Nk)!
Aq+n,k w

k t
q

q!
un. (2.2)

Replacing n by n+Nk in the above equation and using the lemma [10; p.101]

∞∑
n=0

[ n
m ]∑
k=0

A(k, n) =

∞∑
n=0

∞∑
k=0

A(k, n+mk), (2.3)

in the resultant equation, we find

∆1 =

∞∑
q,n,k=0

Lq+n+Nk(x, y)
(−1)Nk

k!
Aq+n+Nk,k w

k t
q

q!

un+Nk

n!
. (2.4)

Again, replacing q by q−n in the r.h.s. of Eq. (2.4) and using the lemma [10;
p.100]

∞∑
n=0

∞∑
k=0

A(k, n) =

∞∑
n=0

n∑
k=0

A(k, n− k), (2.5)

in the resultant equation, we get

∆1 =

∞∑
q,k=0

Lq+Nk(x, y)Aq+Nk,k
tq

q!

(
w(−u)N

)k
k!

q∑
n=0

(−q)n
n!

(
−u
t

)n
, (2.6)

which on using the binomial expansion [10]

(1− x)−λ =

∞∑
n=0

(λ)n
xn

n!
, (2.7)

in the r.h.s., yields the r.h.s. of Eq. (2.1), then the proof of Theorem (2.1) is
completed.

Remark 2.1. Taking u = −t in assertion (2.1) of Theorem 2.1, we deduce the
following consequence of Theorem 2.1.
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Corollary 2.1. The following family of bilateral generating relation involving the
2VLP Ln(x, y) and the ESP SNn,q(w) holds true:

∞∑
q,n=0

Lq+n(x, y) SNn,q(w)
tq

q!

(−t)n

n!
=

∞∑
n=0

LNn(x, y) ANn,n

(
wtN

)n
n!

. (2.8)

Remark 2.2. Taking t = 0 in assertion (2.1) of Theorem 2.1 and using the relation
SNn,0(w) = SNn (w), we deduce the following consequence of Theorem 2.1.

Corollary 2.2. The following family of bilateral generating relation involving the
2VLP Ln(x, y) and the SP SNn (w) holds true:

∞∑
n=0

Ln(x, y) SNn (w)
un

n!
=

∞∑
q,n=0

Lq+Nn(x, y) Aq+Nn,n
uq

q!

(
w(−u)N

)n
n!

. (2.9)

In the next section, Corollaries 2.1 and 2.2 will be exploited to get families of
mixed multilateral generating relations involving the 2VLP Ln(x, y), ESP SNn,q(w)

and SP SNn (w) with the help of the method considered in [10,5,7].

3. MULTILATERAL GENERATING RELATIONS

First, we prove the following theorem by using Corollary 2.1:

Theorem 3.1. Corresponding to an identically non-vanishing function Ωµ(ξ1, . . . , ξl)
of complex variables ξ1, . . . , ξl (l ∈ N) and of complex order µ, let

Λµ,ψ(ξ1, . . . , ξl; η) :=

∞∑
k=0

ak Ωµ+ψk(ξ1, . . . , ξl)η
k, (ak 6= 0, ψ ∈ C). (3.1)

Then we have, for n, p ∈ N,

∞∑
q,n=0

[ qp ]∑
k=0

ak Lq+n−pk(x, y)SNn,q−pk(w) Ωµ+ψk(ξ1, . . . , ξl) η
k (−1)ntn+q−pk

(q − pk)!n!

= Λµ,ψ(ξ1, . . . , ξl; η)

∞∑
n=0

LNn(x, y) ANn,n

(
wtN

)n
n!

. (3.2)

provided that each member of assertion (3.2) exists.

Proof. Denoting the l.h.s. of Eq. (3.2) by ∆2 and using relation (2.3) , we find

∆2 =

∞∑
k=0

ak Ωµ+ψk(ξ1, . . . , ξl)η
k
∞∑

q,n=0

Lq+n(x, y) SNn,q(w)
tq

q!

(−t)n

n!
. (3.3)

Using Eqs. (3.1) and (2.8) in the r.h.s. of Eq. (3.3), we get the r.h.s. of Eq.
(3.2), then the proof of Theorem 3.1 is completed.

Next, proceeding on the same lines of proof of Theorem 3.1 and using Corollary
2.2, we get the following result:
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Theorem 3.2. Corresponding to an identically non-vanishing function Ωµ(ξ1, . . . , ξl)
of complex variables ξ1, . . . , ξl (l ∈ N) and of complex order µ, let

Λµ,ψ(ξ1, . . . , ξl; η) :=

∞∑
k=0

ak Ωµ+ψk(ξ1, . . . , ξl)η
k, (ak 6= 0, ψ ∈ C),

Θµ,ψ
n,p (x, y, z, w; ξ1, . . . , ξl; τ) =

[np ]∑
k=0

ak Ln−pk(x, y) SNn−pk(w) Ωµ+ψk(ξ1, . . . , ξl)
τk

(n− pk)!
,

(3.4)
where n, p ∈ N. Then, we have

∞∑
n=0

Θµ,ψ
n,p

(
x, y, z, w; ξ1, . . . , ξl;

η

tp

)
tn

= Λµ,ψ(ξ1, . . . , ξl; η)

∞∑
q,n=0

Lq+Nn(x, y) Aq+Nn,n
tq

q!

(
w(−t)N

)n
n!

. (3.5)

provided that each member of assertion (3.5) exists.

Notice that, for every suitable choice of the coefficients ak (k ∈ N0), if the
multivariable function Ωµ+ψk(ξ1, . . . , ξl), (l ∈ N), is expressed in terms of simpler
function of one and more variables, the assertions of Theorems 3.1 and 3.2 can
be applied in order to derive various families of multilateral generating relations
involving the 2VLP Ln(x, y) and the ESP SNn,q(w).

For example, if we set l = 1, ξ1 = v, ψ = 1, Ωµ+k(v) = yj(v, µ + k, β) and

ak =
(
µ+j+k−2

k

)
, (k, j ∈ N0, µ ∈ C) in assertion (3.2) of Theorem 3.1 and making

use of the following generating relation [4; p.270]:
∞∑
n=0

(
µ+ j + n− 2

k

)
yj(x, µ+ n, β) tn = (1− t)1−µ−j yj

(
x

1− t
, µ, β

)
, (3.6)

we readily obtain the following mixed trilateral generating function:

∞∑
q,n=0

[ qp ]∑
k=0

(
µ+ j + k − 2

k

)
Lq+n−pk(x, y)SNn,q−pk(w) yj(v, µ+k, β)

(−1)nηk

(q − pk)!

tn+q−pk

n!

= (1− η)1−µ−j yj

(
v

1− η
, µ, β

) ∞∑
n=0

LNn(x, y)ANn,n

(
wtN

)n
n!

. (3.7)

In the next section, we derive some bilateral and trilateral generating func-
tions for the 2VLP Ln(x, y) in terms of the confluent hypergeometric function as
applications of the results derived in Sections 2 and 3 with the help of generating
function (1.21) and the remarks introduced in Section 1.
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4. APPLICATIONS

First, the following bilateral generating functions are obtained as applications
of Corollary 2.1:

I. Taking N = 1 and {Aq,n}∞q,n=0 as in Remark 1.1 and using relation (1.4) in

Eq. (2.8), we get

∞∑
q,n=0

Lq+n(x, y) L(α+q)
n (w)

tq

q!

(
t

w

)n
=

∞∑
n=0

(α+ 1)n Ln(x, y)

(
t
w

)n
n!

, (4.1)

which on using relation (1.21) in the r.h.s. gives

∞∑
n,q=0

Lq+n(x, y) L(α+q)
n (w)

tq

q!

(
t

w

)n
=

(
w

w − yt

)α+1

1F1

(
α+ 1; 1;

−xt
w − yt

)
.

(4.2)

II. Taking N = 1 and {Aq,n}∞q,n=0 as in Remark 1.2 and using relation (1.7) in Eq.

(2.8), we get

∞∑
q,n=0

(α+ β + q + n+ 1)q Lq+n(x, y) P (α+q,β+q)
n (w)

tq

q!

(
−2t

1 + w

)n

=

∞∑
n=0

(β + 1)n Ln(x, y)

(
2t

1+w

)n
n!

, (4.3)

which on using relation (1.21) in the r.h.s. gives

∞∑
q,n=0

(α+β+q+n+1)q Lq+n(x, y) P (α+q,β+q)
n (w)

tq

q!

(
−2t

1 + w

)n

=

(
1 + w

1 + w − 2yt

)β+1

1F1

(
β + 1; 1;

−2xt

1 + w − 2yt

)
. (4.4)

III. Taking N = 1 and {Aq,n}∞q,n=0 as in Remark 1.3 and using relation (1.9) in

Eq. (2.8), we get

∞∑
q,n=0

Lq+n(x, y) yn(w, 1− α− q − 2n, β)
tq

q!

(−t)n

n!
=

∞∑
n=0

(α+ 1)n Ln(x, y)

(
wt
β

)n
n!

,

(4.5)
which on using relation (1.21) in the r.h.s. gives

∞∑
q,n=0

Lq+n(x, y) yn(w, 1−αq−2n, β)
tq

q!

(−t)n

n!
=

(
β

β − ywt

)α+1

1F1

(
α+1; 1;

−xwt
β − ywt

)
.

(4.6)

IV. Taking N = 1 and {Aq,n}∞q,n=0 as in Remark 1.4 and using relation (1.11) in
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Eq. (2.8), we get

∞∑
q,n=0

(ν)q Lq+n(x, y) Cν+qn (w)
2tq

q!

(
t

1− w

)n
=

∞∑
n=0

(2ν)n Ln(x, y)

(
t

1−w

)n
n!

, (4.7)

which on using relation (1.21) in the r.h.s. gives

∞∑
q,n=0

(ν)q Lq+n(x, y) Cν+qn (w)
2tq

q!

(
t

1− w

)n
=

(
1− w

1− w − yt

)2ν

1F1

(
2ν; 1;

−xt
1− w − yt

)
.

(4.8)

V. Taking N = 1 and {Aq,n}∞q,n=0 as in Remark 1.5 and using relation (1.13) in

Eq. (2.8), we get

∞∑
q,n=0

(p+ 1)q Lq+n(x, y) g(p+q)n (w)
tq

q!
(−t)n =

∞∑
n=0

Ln(x, y) (−wt)n, (4.9)

which on using relation (1.19) in the r.h.s. gives

∞∑
q,n=0

(p+ 1)q Lq+n(x, y) g(p+q)n (w)
tq

q!
(−t)n =

1

1 + ywt
exp

( xwt

1 + ywt

)
. (4.10)

VI. Taking N = 1 and {Aq,n}∞q,n=0 as in Remark 1.6 and using relation (1.15) in

Eq. (2.8), we get

∞∑
q,n=0

(a+ q + 2n)q Lq+n(x, y) Rn(a+ q, w)
tq

q!
(−t)n =

∞∑
n=0

Ln(x, y)
(wt)n

n!
, (4.11)

which on using relation (1.18) in the r.h.s. gives

∞∑
q,n=0

(a+ q + 2n)q Lq+n(x, y) Rn(a+ q, w)
tq

q!
(−t)n = exp(ywt) C0(xwt). (4.12)

Next, the following trilateral generating function is obtained as applications
of result (3.7):

VII. Taking N = 1 and {Aq,n}∞q,n=0 as in Remark 1.1 and using relation (1.4)

in Eq. (3.7), we get

∞∑
q,n=0

[ qp ]∑
k=0

(
µ+ j + k − 2

k

)
Lq+n−pk(x, y) L(α+q−pk)

n (w) yj(v, µ+k, β)
tq−pkηk

(q − pk)!

(
t

w

)n

= (1− η)1−µ−j yj

(
v

1− η
, µ, β

) ∞∑
n=0

(α+ 1)n Ln(x, y)

(
t
w

)n
n!

, (4.13)

which on using relation (1.21) in the r.h.s. gives

∞∑
q,n=0

[ qp ]∑
k=0

(
µ+ j + k − 2

k

)
Lq+n−pk(x, y) L(α+q−pk)

n (w) yj(v, µ+k, β)
tq−pkηk

(q − pk)!

(
t

w

)n
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= (1− η)1−µ−j
(

w

w − yt

)α+1

yj

(
v

1− η
, µ, β

)
1F1

(
α+ 1; 1;

−xt
w − yt

)
. (4.14)

Similarly other trilateral generating functions can be obtained as applications
of result (3.7) with the help of Remarks 1.2–1.6 and relation (1.21).

Finally, it is worthy to note that, by taking y = 1 and using relation (1.23) the
results obtained in this section give many bilateral and trilateral generating func-
tions for the classical Laguerre polynomials Ln(x) associated with other classical
polynomials.
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