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WEAK SOLUTIONS VIA LAGRANGE MULTIPLIERS FOR

CONTACT MODELS WITH NORMAL COMPLIANCE

ANDALUZIA CRISTINA MATEI

Abstract. We consider a 3D elastostatic frictional contact problem with

normal compliance, which consists of a systems of partial differential equa-
tions associated with a displacement boundary condition, a traction boundary

condition and a frictional contact boundary condition. The frictional con-
tact is modeled by means of a normal compliance condition and a version of

Coulomb’s law of dry friction. After we state the problem and the hypothe-

ses, we deliver a variational formulation as a mixed variational problem with
solution-dependent Lagrange multipliers set. Next, we prove the existence and

the boundedness of the weak solutions.

1. Introduction

The present work focuses on a 3D elastostatic frictional contact problem with
normal compliance. A normal compliance condition was firstly proposed in [11].

Then, the contact with normal compliance was involved in many models, see e.g.
the papers [2, 7, 8, 9, 18].

The model we discuss herein consists of a system of partial differential equations
associated with a displacement boundary condition, a traction boundary condition
and a frictional contact boundary condition. The frictional contact is modeled
by means of a normal compliance condition and a version of Coulomb’s law of
dry friction. This model was already analyzed in the frame of quasivariational
inequalities,

a(u, v − u) + j(u, v)− j(u, u) ≥ (f, v − u)X ;

for details see [19] and the references therein. The novelty in the present paper
consists in the variational approach we adopt; herein, we propose a mixed varia-
tional formulation in a form of a generalized saddle point problem with solution
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dependent Lagrange multipliers set Λ = Λ(u),

a(u, v) + b(v, λ) = (f, v)X for all v ∈ X,
b(u, µ− λ) ≤ 0 for all µ ∈ Λ(u);

Let us refer to [3, 4] for basic elements on the saddle point theory. For recent
papers related to mixed variational formulations in contact mechanics see e.g. [6,
13, 14, 15].

The mixed variational formulations are related to modern numerical techniques
in order to approximate the weak solutions of contact models and this motivates
the research on this direction. Referring to numerical techniques for approximating
weak solutions of contact problems via saddle point technique, we send the reader
to, e.g., [5, 20, 21].

The main goal of the present paper is to prove the existence and the boundedness
of the weak solutions of the considered model, via Lagrange multipliers technique.
The results we obtain rely on the abstract results in [12] which, for the convenience
of the reader, will be recalled below, in Section 2.

The problem we analyze in the present paper can be viewed as a new application
to the abstract results in [12]. A first application was delivered in the antiplane
framework, see [12]. A second application was presented in the conference paper
[17], for a 3D bilateral contact model with slip-dependent friction (see also [16] for
an extended and improved version of the conference paper [17]).

The structure of the paper is as follows. In Section 2 we present abstract auxiliary
results. In Section 3 we state the problem and we fix the hypotheses. Then, in
Section 4 we prove the existence and the boundedness of the weak solutions of the
frictional contact model with normal compliance.

2. Abstract auxiliary results

Let us consider the following abstract mixed variational problem.

Problem 1. Given f ∈ X, f 6= 0X , find (u, λ) ∈ X × Y such that λ ∈ Λ(u) ⊂ Y
and

a(u, v) + b(v, λ) = (f, v)X for all v ∈ X,(2.1)

b(u, µ− λ) ≤ 0 for all µ ∈ Λ(u).(2.2)

We made the following assumptions.

Assumption 1. (X, (·, ·)X , ‖ · ‖X) and (Y, (·, ·)Y , ‖ · ‖Y ) are two Hilbert spaces.

Assumption 2. a(·, ·) : X ×X → R is a symmetric bilinear form such that
(i1) there exists Ma > 0 : |a(u, v)| ≤Ma‖u‖X‖v‖X for all u, v ∈ X,
(i2) there exists ma > 0 : a(v, v) ≥ ma ‖v‖2X for all v ∈ X.

Assumption 3. b(·, ·) : X × Y → R is a bilinear form such that
(j1) there exists Mb > 0 : |b(v, µ)| ≤Mb‖v‖X‖µ‖Y for all v ∈ X, µ ∈ Y,

(j2) there exists α > 0 : inf
µ∈Y,µ 6=0Y

sup
v∈X,v 6=0X

b(v, µ)

‖v‖X‖µ‖Y
≥ α.

Assumption 4. For each ϕ ∈ X, Λ(ϕ) is a closed convex subset of Y such that
0Y ∈ Λ(ϕ).
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Assumption 5. Let (ηn)n ⊂ X and (un)n ⊂ X be two weakly convergent sequences,
ηn ⇀ η in X and un ⇀ u in X, as n→∞.

(k1) For each µ ∈ Λ(η), there exists a sequence (µn)n ⊂ Y such that µn ∈ Λ(ηn) and
lim infn→∞ b(un, µn − µ) ≥ 0.
(k2) For each subsequence (Λ(ηn′))n′ of the sequence (Λ(ηn))n, if (µn′)n′ ⊂ Y such that
µn′ ∈ Λ(ηn′) and µn′ ⇀ µ in Y as n′ →∞, then µ ∈ Λ(η).

Theorem 2.1. If Assumptions 1-5 hold true, then Problem 1 has a solution. In
addition, if (u, λ) ∈ X × Λ(u) is a solution of Problem 1, then

(u, λ) ∈ K1 ×
(
Λ(u) ∩K2),

where

K1 = {v ∈ X | ‖v‖X ≤
1

ma
‖f‖X};

K2 = {µ ∈ Y | ‖µ‖Y ≤
ma +Ma

αma
‖f‖X},

ma, α and Ma being the constants in Assumptions 2-3.

For the proof of this theorem we refer to [12].

3. The model and hypotheses

3.1. The statement of the problem. We consider the following 3D frictional
contact model with normal compliance.

Problem 2. Find : Ω→ R3 and : Ω→ S3 such that

Div() +0 () = 0 in Ω,(3.1)

() = E(()) in Ω,(3.2)

() = on Γ1,(3.3)

() =2 () on Γ2,(3.4)

−σν() = pν(uν()− ga) on Γ3,(3.5)

‖τ ()‖ ≤ pτ (, uν()− ga),(3.6)

τ () = −pτ (, uν()− ga)
τ ()

‖τ ()‖
if τ () 6= on Γ3.

Herein Ω is a bounded domain in R3, Γ1, Γ2, Γ3 is a partition of the boundary
∂Ω := Γ, Ω = Ω∪Γ, 0 : Ω→ R denotes the density of the volume forces, 2 : Γ2 → R
represents the density of the tractions, = () denotes the infinitesimal strain tensor

(εi j = ( ∂ui

∂xj
+

∂uj

∂xi
) for all i, j ∈ {1, 2, 3}) and E denotes the elastic operator. Here

and everywhere below ‖·‖ denotes the Euclidean norm on R3 or S3. Finally, uν = ·,
τ = −uν , σν = ()·, τ = −σν , where ” · ” denotes the inner product of two vectors
and is the unit outward normal vector.

Problem 2 has the following structure: (3.1) represents the equilibrium equation,
(3.2) represents a constitutive law for linearly elastic materials, (3.3) represents the
displacements boundary condition, (3.4) represents the traction boundary condition
and (3.5)-(3.6) models the frictional contact with normal compliance, the friction
law in (3.6) being a version of the Coulomb law of dry friction, where pτ is a given
nonnegative function. In the normal compliance contact condition (3.5) pν is a
nonnegative prescribed function which vanishes for negative argument and ga > 0
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denotes the gap. When uν < ga there is no contact and the normal pressure
vanishes. When there is contact then uν − ga is positive and represents a measure
of the interpenetration of the asperities. Then, condition (3.5) shows that the
foundation exerts a pressure on the body which depends on the penetration.

3.2. Assumptions. In order to weakly solve Problem 2 we make the following
assumptions.

Assumption 6. E = (Eijls) : Ω× S3 → S3,

• Eijls = Eijsl = Elsij ∈ L∞(Ω),
• There exists mE > 0 such that Eijlsεijεls ≥ mE ‖‖2, ∈ S3, a.e. in Ω.

Assumption 7. 0 ∈ L2(Ω)3, 2 ∈ L2(Γ2)3.

Assumption 8. pν : Γ3 × R+ → R+;

• there exists Lν > 0 : |pν(, r1)−pν(, r2)| ≤ Lν |r1−r2| r1, r2 ∈ R+, a.e. ∈
Γ3;
• the mapping 7→ pν(, r) is Lebesgue measurable on Γ3, for all r ∈ R+;
• pν(, r) = 0 for all r ≤ 0 a.e. ∈ Γ3.

Assumption 9. pτ : Γ3 × R+ → R+;

• there exists Lτ > 0 : |pτ (, r1)−pτ (, r2)| ≤ Lτ |r1−r2| r1, r2 ∈ R+, a.e. ∈
Γ3;
• the mapping 7→ pτ (, r) is Lebesgue measurable on Γ3, for all r ∈ R+;
• pτ (, r) = 0 for all r ≤ 0 a.e. ∈ Γ3.

3.3. Weak formulation. Let us introduce the following functional space.

(3.7) V = {∈ H1(Ω)3 | = 0 a.e. on Γ1}.
This is a Hilbert space endowed with the following inner product

(, )V =

∫
Ω

(()) : (()) dx,

where ” : ” denotes the inner product of two tensors.
Everywhere in this paper, for each ∈ V, we denote wν = · and τ = −wν a.e. on

Γ, where denotes the Sobolev trace operator for vectors.
Define ∈ V using Riesz’s representation theorem,

(3.8) (, )V =

∫
Ω

0() · () dx+

∫
Γ2

2() · () dΓ for all v ∈ V.

Let be a sufficiently regular solution of Problem 2. By a Green formula we get

(3.9) a(, ) = (, )V +

∫
Γ3

() · () dΓ for all ∈ V

where

(3.10) a(·, ·) : V × V → R a(, ) =

∫
Ω

E(()) : (()) dx.

Let us introduce the spaces

S = {|Γ3
∈ V };(3.11)

D = S′.(3.12)

For each ∈ S, we denote ζν = · and τ = −ζν a.e. on Γ3.
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Notice that |Γ3
denotes the restriction of the trace of the element ∈ V to Γ3.

Thus, S ⊂ H1/2(Γ3;R3) where H1/2(Γ3;R3) is the space of the restrictions on Γ3

of traces on Γ of functions of H1(Ω)3. On S we consider the Sobolev-Slobodeckii
norm

‖‖S =
(∫

Γ3

∫
Γ3

‖()− ()‖2

‖ − ‖3
dsx dsy

)1/2

;

see e.g. [1, 10].
For each ∈ V we define

Λ() = {∈ D | 〈, |Γ3
〉 ≤(3.13) ∫

Γ3

(pν(, ϕν()− ga)|vν()|+ pτ (, ϕν()− ga)‖τ ()‖)dΓ ∈ V };

here and below 〈·, ·〉 denotes the duality pairing between D and S.
Let us define a Lagrange multiplier ∈ S,

(3.14) 〈, 〉 = −
∫

Γ3

() · () dΓ.

Thus, for all ∈ V,
〈, |Γ3〉 = −

∫
Γ3

(σν()vν() +τ () ·τ ())dΓ.

By (3.14) and (3.13) we deduce that ∈ Λ().
We also define

(3.15) b : V ×D → R b(, ) = 〈, |Γ3
〉.

Let us rewrite (3.9) as

a(, ) = (, )V − 〈, |Γ3
〉 for all ∈ V.

By the definition of the form b(·, ·), we obtain

(3.16) a(, ) + b(, ) = (, )V for all ∈ V.
On the other hand, the normal compliance condition (3.5) leads us to the identity∫

Γ3

σν()uν() dΓ = −
∫

Γ3

pν(, uν()− ga)|uν()| dΓ

while the friction law (3.6) leads us to the identity∫
Γ3

τ () ·τ () dΓ = −
∫

Γ3

pτ (, uν()− ga)‖τ ()‖ dΓ.

Thus,

(3.17) b(, ) =

∫
Γ3

(pν(, uν()− ga)|uν(x)|+ pτ (, uν()− ga)‖τ ()‖)dΓ.

By (3.13) with = we are led to

(3.18) b(, ) ≤
∫

Γ3

(pν(, uν()− ga)|uν()|+ pτ (, uν()− ga)‖τ ()‖)dΓ for all ∈ Λ().

Subtract now (3.17) from (3.18) to obtain the inequality

(3.19) b(,−) ≤ 0 for all ∈ Λ().

Therefore, Problem 2 has the following weak formulation.

Problem 3. Find ∈ V and ∈ Λ() ⊂ S such that (3.16) and (3.19) hold true.
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Each solution of Problem 3 is called weak solution of Problem 2.

3.4. Existence and boundedness results.

Theorem 3.1 (An existence result). If Assumptions 6 -9 hold true, then Problem
2 has a weak solution.

Proof. As the spaces V and D, see (3.7) and (3.12) are real Hilbert spaces, then
Assumption 1 is fulfilled with X = V and Y = D.

The form a(·, ·) defined in (3.10) verifies Assumption 2 with

(3.20) Ma = ‖E‖∞ and ma = mE ,

where

‖E‖∞ = max
0≤i,j,k,l≤d

‖Eijkl‖L∞(Ω).

Let us prove (j1) in Assumption 3. We have

|b(, )| ≤ ‖‖D‖‖HΓ
.

We recall that HΓ = { ∈ V } and the Sobolev trace operator : H1(Ω)3 → HΓ is
a linear and continuous operator. Since ‖ · ‖V and ‖ · ‖H1(Ω)3 are equivalent norms,
we deduce that there exists Mb > 0 such that (j1) holds true.

We also recall that there exists a linear and continuous operator Z such that

Z : HΓ → H1(Ω)3 (Z()) = for all ∈ HΓ.

The operator Z is called the right inverse of the operator . Obviously,

(Z()) = for all ∈ V.

For every ∈ V, we denote by ∗ an element of V such that =∗ a.e. on Γ3 and
∗ = 0 a.e. on Γ2. Therefore, ‖|Γ3‖S = ‖∗‖HΓ .

Since, for each ∗ ∈ V, Z(∗) has the same trace as ∗, we deduce that for each
∗ ∈ V, Z(∗) ∈ V.

Let us prove now (j2) in Assumption 3.

‖‖D = sup
|Γ3
∈S, |Γ3

6=0S

〈, |Γ3
〉

‖|Γ3
‖S

= sup
|Γ3∈S, |Γ3 6=0S

〈,∗ |Γ3
〉

‖∗‖HΓ

≤ c sup
|Γ3∈S, |Γ3 6=0S

b(Z(∗), )

‖Z(∗)‖V

≤ c sup
∈V, 6=V

b(, )

‖‖V
,

where c > 0. We can take

(3.21) α =
1

c
.

Obviously, 0D ∈ Λ(). Also, Λ() is a closed convex subset of the space D. Hence,
Assumption 4 is fulfilled.

Let us verify Assumption 5. To start, let (n)n ⊂ V and (n)n ⊂ V be two weakly
convergent sequences, n ⇀ in V and n ⇀ in V, as n→∞. Let us take ∈ Λ().
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In order to check (k1) in Assumption 5, we define (n)n as follows: for each n ≥ 1,

〈n, 〉 =

∫
Γ3

pν(, ηn ν()− ga) sgnun ν() ζν() dΓ

+

∫
Γ3

pτ (, ηn ν()− ga)(n τ ()) ·τ () dΓ

−
∫

Γ3

pν(, ην()− ga)|un ν()| dΓ

−
∫

Γ3

pτ (, ην()− ga)‖n τ ()‖ dΓ

+〈, n|Γ3
〉, ∈ S,

where

() =

{
‖‖ if 6=;

if =,

and, as usually,

sgn(r) =

 1 if r > 0;
0 if r = 0;
−1 if r < 0.

Taking into account (3.13), we deduce that, for each positive integer n, we have

n ∈ Λ(n).
Since n ⇀ in V and n ⇀ in V as n→∞, we deduce that

n τ ()→τ () a.e. on Γ3 as n→∞,

un ν()→ uν() a.e. on Γ3 as n→∞,

pν(, ηn ν()− ga)→ pν(, ην()− ga) a.e. on Γ3 as n→∞
and

pτ (, ηn ν()− ga)→ pτ (, ην()− ga) a.e. on Γ3 as n→∞.
Setting =n |Γ3

we can write

〈n−,n |Γ3
〉 =

∫
Γ3

(pν(, ηn ν()− ga)− pν(, ην()− ga))|un ν()| dΓ

+

∫
Γ3

(pτ (, ηn ν()− ga)− pτ (, ην()− ga))‖τ n()‖ dΓ.

Hence, passing to the limit as n→∞, we get

lim inf
n→∞

b(n,n−) = lim
n→∞

∫
Γ3

(pν(, ηn ν()− ga)− pν(, ην()− ga))|un ν()| dΓ

+ lim
n→∞

∫
Γ3

(pτ (, ηn ν()− ga)− pτ (, ην()− ga))‖n τ ()‖)dΓ

= 0.

Using again the properties of the trace operator and the assumptions on the
friction bound we deduce that (k2) in Assumption 5 is also verified.

We apply now Theorem 2.1. �
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Let us introduce the notation:

K1 = {∈ V | ‖‖V ≤
1

ma
‖‖V };(3.22)

K2 = {∈ D | ‖‖D ≤
ma +Ma

αma
‖‖V }.(3.23)

Theorem 3.2 (A boundedness result). If (, ) is a weak solution of Problem 2, then

(, ) ∈ K1 ×
(
Λ() ∩K2)

where K1 and K2 are given by (3.22)-(3.23), V given by (3.7), D given by (3.12),
given by (3.8), ma and Ma being the constants in (3.20) and α being the constant
in (3.21).

The proof is a straightforward consequence of Theorem 2.1.
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