
Konuralp Journal of Mathematics
Volume 4 No. 2 pp. 230–246 (2016) c©KJM

COMPARATIVE GROWTH ESTIMATES OF DIFFERENTIAL

MONOMIALS DEPENDING UPON THEIR RELATIVE ORDERS,

RELATIVE TYPE AND RELATIVE WEAK TYPE

SANJIB KUMAR DATTA AND TANMAY BISWAS

Abstract. In this paper the comparative growth properties of composition of

entire and meromorphic functions on the basis of their relative orders (relative
lower orders), relative types and relative weak types of differential monomials

generated by entire and meromorphic functions have been investigated.

1. Introduction, Definitions and Notations

Let f be an entire function defined in the open complex plane C. The maximum
modulus function relating to entire f is defined as Mf (r) = max {|f (z)| : |z| = r}.
If f is non-constant then it has the following property:
Property (A) ([2]) : A non-constant entire function f is said have the Property

(A) if for any σ > 1 and for all sufficiently large values of r, [Mf (r)]
2 ≤ Mf (rσ)

holds. For examples of functions with or without the Property (A), one may see
[2].

When f is meromorphic, Mf (r) can not be defined as f is not analytic. In this
situation one may define another function Tf (r) known as Nevanlinna’s Character-
istic function of f, playing the same role as Mf (r) in the following manner:

Tf (r) = Nf (r) +mf (r) .

Given two meromorphic functions f and g the ratio
Tf (r)
Tg(r) as r → ∞ is called

the growth of f with respect to g in terms of their Nevanlinna’s Characteristic
functions.

When f is entire function, the Nevanlinna’s Characteristic function Tf (r) of f
is defined as

Tf (r) = mf (r) .
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We called the function Nf (r, a)

(
−
Nf (r, a)

)
as counting function of a-points

(distinct a-points) of f . In many occasions Nf (r,∞) and
−
Nf (r,∞) are denoted by

Nf (r) and
−
Nf (r) respectively. We put

Nf (r, a) =

r∫
0

nf (t, a)− nf (0, a)

t
dt+

−
nf (0, a) log r ,

where we denote by nf (r, a)
(
−
nf (r, a)

)
the number of a-points (distinct a-points)

of f in |z| ≤ r and an ∞ -point is a pole of f . Also we denote by nf |=1(r, a) ,the
number of simple zeros of f − a in |z| ≤ r. Accordingly, Nf |=1(r, a) is defined in
terms of nf |=1(r, a) in the usual way and we set

δ1(a; f) = 1− lim sup
r→∞

N(r, a; f |= 1)

Tf (r)
{cf. [17]} ,

the deficiency of ‘a’ corresponding to the simple a- points of f i,e. simple zeros of
f − a. In this connection Yang [16] proved that there exists at most a denumerable
number of complex numbers a ∈ C ∪ {∞} for which

δ1(a; f) > 0 and
∑

a∈C∪{∞}

δ1(a; f) ≤ 4.

On the other hand, m
(
r, 1
f−a

)
is denoted by mf (r, a) and we mean mf (r,∞)

by mf (r) , which is called the proximity function of f . We also put

mf (r) =
1

2π

2π∫
0

log+
∣∣f (reiθ)∣∣ dθ, where

log+ x = max (log x, 0) for all x > 0 .

Further we denote Θ(∞; f) as

Θ(∞; f) = 1− lim sup
r→∞

Nf (r)

Tf (r)
.

However, a meromorphic function b = b (z) is called small with respect to f if

Tb (r) = Sf (r) where Sf (r) = o {Tf (r)} i.e.,
Sf (r)
Tf (r) → 0 as r → ∞. Moreover for

any transcendental meromorphic function f , we call P [f ] = bfn0(f (1))n1 ...(f (k))nk ,

to be a differential monomial generated by it where
k∑
i=0

ni ≥ 1 ( all ni | i = 0, 1, ..., k

are non-negative integers) and the meromorphic function b is small with respect to

f. In this connection the numbers γP [f ] =
k∑
i=0

ni and ΓP [f ] =
k∑
i=0

(i+ 1)ni are called

the degree and weight of P [f ] respectively {cf. [5]}.
If f is a non-constant entire function then Tf (r) is rigorously increasing and

continuous function of r and its inverse T−1
f : (Tf (0) ,∞) → (0,∞) exist where

lim
s→∞

T−1
f (s) =∞. Also the ratio

Tf (r)
Tg(r) as r →∞ is known as growth of f with re-

spect to g in terms of the Nevanlinna’s Characteristic functions of the meromorphic
functions f and g. Further in case of meromorphic functions, the growth markers
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such as order and lower order which are traditional in complex analysis are defined
in terms of their growth with respect to the exp z function in the following way:

ρf = lim sup
r→∞

log Tf (r)

log Texp z (r)
= lim sup

r→∞

log Tf (r)

log
(
r
π

) = lim sup
r→∞

log Tf (r)

log (r) +O(1)(
λf = lim inf

r→∞

log Tf (r)

log Texp z (r)
= lim inf

r→∞

log Tf (r)

log
(
r
π

) = lim inf
r→∞

log Tf (r)

log (r) +O(1)

)
,

and the growth of functions is said to be regular if their lower order coincides with
their order.

In this connection the following two definitions are also well known:

Definition 1.1. The type σf and lower type σf of a meromorphic function f are
defined as

σf = lim sup
r→∞

Tf (r)

rρf
and σf = lim inf

r→∞

Tf (r)

rρf
, 0 < ρf <∞ .

If f is entire then

σf = lim sup
r→∞

logMf (r)

rρf
and σf = lim inf

r→∞

logMf (r)

rρf
, 0 < ρf <∞ .

Definition 1.2. [7] The weak type τf and the growth indicator τf of a meromorphic
function f of finite positive lower order λf are defined by

τf = lim sup
r→∞

Tf (r)

rλf
and τf = lim inf

r→∞

Tf (r)

rλf
, 0 < λf <∞ .

When f is entire then

τf = lim sup
r→∞

logMf (r)

rλf
and τf = lim inf

r→∞

logMf (r)

rλf
, 0 < λf <∞ .

However, extending the thought of relative order of entire functions as initiated
by Bernal {[1], [2]} , Lahiri and Banerjee [13] introduced the definition of relative
order of a meromorphic function f with respect to another entire function g, sym-
bolized by ρg (f) to avoid comparing growth just with exp z as follows:

ρg (f) = inf {µ > 0 : Tf (r) < Tg (rµ) for all sufficiently large r}

= lim sup
r→∞

log T−1
g Tf (r)

log r
.

The definition coincides with the classical one if g (z) = exp z {cf. [13] }.
Similarly, one can define the relative lower order of a meromorphic function f

with respect to an entire function g denoted by λg (f) as follows :

λg (f) = lim inf
r→∞

log T−1
g Tf (r)

log r
.

To compare the relative growth of two entire functions having same non zero
finite relative order with respect to another entire function, Roy [14] introduced
the notion of relative type of two entire functions in the following way:
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Definition 1.3. [14] Let f and g be any two entire functions such that 0 < ρg (f) <
∞. Then the relative type σg (f) of f with respect to g is defined as :

σg (f)

= inf
{
k > 0 : Mf (r) < Mg

(
krρg(f)

)
for all sufficiently large values of r

}
= lim sup

r→∞

M−1
g Mf (r)

rρg(f)
.

Likewise, one can define the relative lower type of an entire function f with
respect to an entire function g denoted by σg (f) as follows :

σg (f) = lim inf
r→∞

M−1
g Mf (r)

rρg(f)
, 0 < ρg (f) <∞ .

Analogously, to determine the relative growth of two entire functions having
same non zero finite relative lower order with respect to another entire function,
Datta and Biswas [8] introduced the definition of relative weak type of an entire
function f with respect to another entire function g of finite positive relative lower
order λg (f) in the following way:

Definition 1.4. [8] The relative weak type τg (f) of an entire function f with
respect to another entire function g having finite positive relative lower order λg (f)
is defined as:

τg (f) = lim inf
r→∞

M−1
g Mf (r)

rλg(f)
.

Also one may define the growth indicator τg (f) of an entire function f with respect
to an entire function g in the following way :

τg (f) = lim sup
r→∞

M−1
g Mf (r)

rλg(f)
, 0 < λg (f) <∞ .

In the case of meromorphic functions, it therefore seems reasonable to define
suitably the relative type and relative weak type of a meromorphic function with
respect to an entire function to determine the relative growth of two meromorphic
functions having same non zero finite relative order or relative lower order with
respect to an entire function. Datta and Biswas also [8] gave such definitions of
relative type and relative weak type of a meromorphic function f with respect to an
entire function g which are as follows:

Definition 1.5. [8] The relative type σg (f) of a meromorphic function f with
respect to an entire function g are defined as

σg (f) = lim sup
r→∞

T−1
g Tf (r)

rρg(f)
where 0 < ρg (f) <∞.

Similarly, one can define the lower relative type σg (f) in the following way:

σg (f) = lim inf
r→∞

T−1
g Tf (r)

rρg(f)
where 0 < ρg (f) <∞.

Definition 1.6. [8] The relative weak type τg (f) of a meromorphic function f
with respect to an entire function g with finite positive relative lower order λg (f)
is defined by

τg (f) = lim inf
r→∞

T−1
g Tf (r)

rλg(f)
.
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In a like manner, one can define the growth indicator τg (f) of a meromorphic
function f with respect to an entire function g with finite positive relative lower
order λg (f) as

τg (f) = lim sup
r→∞

T−1
g Tf (r)

rλg(f)
.

Considering g = exp z one may easily verify that Definition 1.3 , Definition 1.4,
Definition 1.5 and Definition 1.6 coincide with the classical definitions of type (lower
type) and weak type of entire are meromorphic functions respectively.

For entire and meromorphic functions, the notion of their growth indicators
such as order, type and weak type are classical in complex analysis and during
the past decades, several researchers have already been continuing their studies in
the area of comparative growth properties of composite entire and meromorphic
functions in different directions using the same. But at that time, the concept of
relative order and consequently relative type as well as relative weak type of entire
and meromorphic functions with respect to another entire function was mostly
unknown to complex analysists and they are not aware of the technical advantages
of using the relative growth indicators of the functions. In this paper we wish
to prove some newly developed results based on the growth properties of relative
order, relative type and relative weak type of differential monomials generated by
entire and meromorphic functions. We do not explain the standard definitions and
notations in the theory of entire and meromorphic functions as those are available
in [11] and [15].

2. Lemmas

In this section we present some lemmas which will be needed in the sequel.

Lemma 2.1. [3] Let f be meromorphic and g be entire then for all sufficiently large
values of r,

Tf◦g (r) 6 {1 + o(1)} Tg (r)

logMg (r)
Tf (Mg (r)) .

Lemma 2.2. [4] Let f be meromorphic and g be entire and suppose that 0 < µ <
ρg ≤ ∞. Then for a sequence of values of r tending to infinity,

Tf◦g(r) ≥ Tf (exp (rµ)) .

Lemma 2.3. [12] Let f be meromorphic and g be entire such that 0 < ρg <∞ and
0 < λf . Then for a sequence of values of r tending to infinity,

Tf◦g(r) > Tg (exp (rµ)) ,

where 0 < µ < ρg .

Lemma 2.4. [6] Let f be a meromorphic function and g be an entire function such
that λg < µ <∞ and 0 < λf ≤ ρf <∞. Then for a sequence of values of r tending
to infinity,

Tf◦g(r) < Tf (exp (rµ)) .

Lemma 2.5. [6] Let f be a meromorphic function of finite order and g be an entire
function such that 0 < λg < µ <∞. Then for a sequence of values of r tending to
infinity,

Tf◦g(r) < Tg (exp (rµ)) .
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Lemma 2.6. [9] Let f be an entire function which satisfy the Property (A), β > 0,
δ > 1 and α > 2. Then

βTf (r) < Tf
(
αrδ
)
.

Lemma 2.7. [10] Let f be a transcendental meromorphic function of finite order
or of non-zero lower order and

∑
a∈C∪{∞}

δ1(a; f) = 4. Also let g be a transcendental

entire function of regular growth having non zero finite order and
∑

a∈C∪{∞}
δ1(a; g) =

4. Then the relative order and relative lower order of P [f ] with respect to P [g] are
same as those of f with respect to g.

Lemma 2.8. [10] If f be a transcendental meromorphic function of finite order
or of non-zero lower order and

∑
a∈C∪{∞}

δ1(a; f) = 4 and g be a transcendental

entire function of regular growth having non zero finite type and
∑

a∈C∪{∞}
δ1(a; g) =

4. Then the relative type and relative lower type of P [f ] with respect to P [g] are(
ΓP [f]−(ΓP [f]−γP [f])Θ(∞;f)

ΓP [g]−(ΓP [g]−γP [g])Θ(∞;g)

) 1
ρg

times that of f with respect to g if ρg (f) is positive

finite.

Lemma 2.9. [10] Let f be a transcendental meromorphic function of finite order
or of non-zero lower order and

∑
a∈C∪{∞}

δ1(a; f) = 4 and g be a transcendental en-

tire function of regular growth having non zero finite type and
∑

a∈C∪{∞}
δ1(a; g) = 4.

Then τP [g] (P [f ]) and τP [g] (P [f ]) are(
ΓP [f]−(ΓP [f]−γP [f])Θ(∞;f)

ΓP [g]−(ΓP [g]−γP [g])Θ(∞;g)

) 1
ρg

times that of f with respect to g if λg (f) is positive

finite i.e.,

τP [g] (P [f ]) =

(
ΓP [f ] − (ΓP [f ] − γP [f ])Θ(∞; f)

ΓP [g] − (ΓP [g] − γP [g])Θ(∞; g)

) 1
ρg

.τg (f) and

τP [g] (P [f ]) =

(
ΓP [f ] − (ΓP [f ] − γP [f ])Θ(∞; f)

ΓP [g] − (ΓP [g] − γP [g])Θ(∞; g)

) 1
ρg

.
−
τg (f) .

3. Main Results

In this section we present the main results of the paper.

Theorem 3.1. Let f be a transcendental meromorphic function of finite order or of
non-zero lower order with

∑
a∈C∪{∞}

δ1(a; f) = 4, g be entire and h a transcendental

entire function of regular growth having non zero finite order with
∑

a∈C∪{∞}
δ1(a;h) =

4, 0 < ρh (f) < ∞, ρh (f) = ρg, σg < ∞ and 0 < σh (f) < ∞. Also let h satisfy
the Property (A). Then for any δ > 1,

lim inf
r→∞

log T−1
h Tf◦g (r)

T−1
M [h]TM [f ] (r)

≤
(
δ · ρh (f) · σg

σh (f)

)(
ΓP [h] − (ΓP [h] − γP [h])Θ(∞;h)

ΓP [f ] − (ΓP [f ] − γP [f ])Θ(∞; f)

) 1
ρh

.
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Proof. From (3.9) , we get for all sufficiently large values of r that

(3.1) log T−1
h Tf◦g (r) 6 δ (ρh (f) + ε) logMg (r) +O(1) .

Using Definition 1.1, we obtain from (3.1) for all sufficiently large values of r that

(3.2) log T−1
h Tf◦g (r) 6 δ (ρh (f) + ε) (σg + ε) · rρg +O(1) .

Now in view of condition (ii) , we obtain from (3.2) for all sufficiently large values
of r that

(3.3) log T−1
h Tf◦g (r) 6 δ (ρh (f) + ε) (σg + ε) · rρh(f) +O(1) .

Again in view of Definition 1.5, we get for a sequence of values of r tending to
infinity that

T−1
M [h]TM [f ] (r) ≥

(
σM [h] (M [f ])− ε

)
rρM[h](M [f ]) .

Therefore in view of Lemma 2.7 and Lemma 2.8, we obtain for a sequence of values
of r tending to infinity that

T−1
M [h]TM [f ] (r)

≥

(
σh (f)

(
ΓP [f ] − (ΓP [f ] − γP [f ])Θ(∞; f)

ΓP [h] − (ΓP [h] − γP [h])Θ(∞;h)

) 1
ρh

− ε

)
rρh(f) .(3.4)

Therefore from (3.3) and (3.4) , it follows for a sequence of values of r tending to
infinity that

log T−1
h Tf◦g (r)

T−1
M [h]TM [f ] (r)

≤ δ (ρh (f) + ε) (σg + ε) · rρh(f) +O(1)(
σh (f)

(
ΓP [f]−(ΓP [f]−γP [f])Θ(∞;f)

ΓP [h]−(ΓP [h]−γP [h])Θ(∞;h)

) 1
ρh − ε

)
rρh(f)

.

Since ε (> 0) is arbitrary, it follows from above that

lim inf
r→∞

log T−1
h Tf◦g (r)

T−1
M [h]TM [f ] (r)

≤
(
δ · ρh (f) · σg

σh (f)

)(
ΓP [h] − (ΓP [h] − γP [h])Θ(∞;h)

ΓP [f ] − (ΓP [f ] − γP [f ])Θ(∞; f)

) 1
ρh

.

Hence the theorem follows. �

Using the notion of lower type and relative lower type, we may state the following
theorem without its proof as it can be carried out in the line of Theorem 3.1 :

Theorem 3.2. Let f be a transcendental meromorphic function of finite order or of
non-zero lower order with

∑
a∈C∪{∞}

δ1(a; f) = 4, g be entire and h a transcendental

entire function of regular growth having non zero finite order with
∑

a∈C∪{∞}
δ1(a;h) =

4, 0 < ρh (f) < ∞, ρh (f) = ρg, σg < ∞ and 0 < σh (f) < ∞. Also let h satisfies
the Property (A). Then for any δ > 1,

lim inf
r→∞

log T−1
h Tf◦g (r)

T−1
M [h]TM [f ] (r)

≤ δ · ρh (f) · σg
σh (f)

(
ΓP [h] − (ΓP [h] − γP [h])Θ(∞;h)

ΓP [f ] − (ΓP [f ] − γP [f ])Θ(∞; f)

) 1
ρh

.

Similarly using the notion of type and relative lower type, one may state the
following two theorems without their proofs because those can also be carried out
in the line of Theorem 3.1 :
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Theorem 3.3. Let f be a transcendental meromorphic function of finite order or of
non-zero lower order with

∑
a∈C∪{∞}

δ1(a; f) = 4, g be entire and h a transcendental

entire function of regular growth having non zero finite order with
∑

a∈C∪{∞}
δ1(a;h) =

4, 0 < λh (f) ≤ ρh (f) < ∞, ρh (f) = ρg, σg < ∞ and 0 < σh (f) < ∞. Also let h
satisfies the Property (A). Then for any δ > 1,

lim inf
r→∞

log T−1
h Tf◦g (r)

T−1
M [h]TM [f ] (r)

≤ δ · λh (f) · σg
σh (f)

(
ΓP [h] − (ΓP [h] − γP [h])Θ(∞;h)

ΓP [f ] − (ΓP [f ] − γP [f ])Θ(∞; f)

) 1
ρh

.

Theorem 3.4. Let f be a transcendental meromorphic function of finite order or of
non-zero lower order with

∑
a∈C∪{∞}

δ1(a; f) = 4, g be entire and h a transcendental

entire function of regular growth having non zero finite order with
∑

a∈C∪{∞}
δ1(a;h) =

4, 0 < ρh (f) < ∞, ρh (f) = ρg, σg < ∞ and 0 < σh (f) < ∞. Also let h satisfies
the Property (A). Then for any δ > 1,

lim sup
r→∞

log T−1
h Tf◦g (r)

T−1
M [h]TM [f ] (r)

≤ δ · ρh (f) · σg
σh (f)

(
ΓP [h] − (ΓP [h] − γP [h])Θ(∞;h)

ΓP [f ] − (ΓP [f ] − γP [f ])Θ(∞; f)

) 1
ρh

.

Similarly, using the concept of weak type and relative weak type, we may state
next four theorems without their proofs as those can be carried out with the help of
Lemma 2.9 and in the line of Theorem 3.1, Theorem 3.2, Theorem 3.3 and Theorem
3.4 respectively.

Theorem 3.5. Let f be a transcendental meromorphic function of finite order or of
non-zero lower order with

∑
a∈C∪{∞}

δ1(a; f) = 4, g be entire and h a transcendental

entire function of regular growth having non zero finite order with
∑

a∈C∪{∞}
δ1(a;h) =

4, 0 < λh (f) ≤ ρh (f) <∞, λh (f) = λg, τg <∞ and 0 < τh (f) <∞. Also let h
satisfies the Property (A). Then for any δ > 1,

lim inf
r→∞

log T−1
h Tf◦g (r)

T−1
M [h]TM [f ] (r)

≤ δ · ρh (f) · τg
τh (f)

(
ΓP [h] − (ΓP [h] − γP [h])Θ(∞;h)

ΓP [f ] − (ΓP [f ] − γP [f ])Θ(∞; f)

) 1
ρh

.

Theorem 3.6. Let f be a transcendental meromorphic function of finite order or of
non-zero lower order with

∑
a∈C∪{∞}

δ1(a; f) = 4, g be entire and h a transcendental

entire function of regular growth having non zero finite order with
∑

a∈C∪{∞}
δ1(a;h) =

4, 0 < λh (f) ≤ ρh (f) < ∞, λh (f) = λg, τg < ∞ and 0 < τh (f) < ∞. Also let h
satisfies the Property (A). Then for any δ > 1,

lim inf
r→∞

log T−1
h Tf◦g (r)

T−1
M [h]TM [f ] (r)

≤ δ · ρh (f) · τg
τh (f)

(
ΓP [h] − (ΓP [h] − γP [h])Θ(∞;h)

ΓP [f ] − (ΓP [f ] − γP [f ])Θ(∞; f)

) 1
ρh

.

Theorem 3.7. Let f be a transcendental meromorphic function of finite order or of
non-zero lower order with

∑
a∈C∪{∞}

δ1(a; f) = 4, g be entire and h a transcendental

entire function of regular growth having non zero finite order with
∑

a∈C∪{∞}
δ1(a;h) =
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4, 0 < λh (f) < ∞, λh (f) = λg, τg < ∞ and 0 < τh (f) < ∞. Also let h satisfies
the Property (A). Then for any δ > 1,

lim inf
r→∞

log T−1
h Tf◦g (r)

T−1
M [h]TM [f ] (r)

≤ δ · λh (f) · τg
τh (f)

(
ΓP [h] − (ΓP [h] − γP [h])Θ(∞;h)

ΓP [f ] − (ΓP [f ] − γP [f ])Θ(∞; f)

) 1
ρh

.

Theorem 3.8. Let f be a transcendental meromorphic function of finite order or of
non-zero lower order with

∑
a∈C∪{∞}

δ1(a; f) = 4, g be entire and h a transcendental

entire function of regular growth having non zero finite order with
∑

a∈C∪{∞}
δ1(a;h) =

4, 0 < λh (f) ≤ ρh (f) < ∞, λh (f) = λg, τg < ∞ and 0 < τh (f) < ∞. Also let h
satisfies the Property (A). Then for any δ > 1,

lim sup
r→∞

log T−1
h Tf◦g (r)

T−1
M [h]TM [f ] (r)

≤ δ · ρh (f) · τg
τh (f)

(
ΓP [h] − (ΓP [h] − γP [h])Θ(∞;h)

ΓP [f ] − (ΓP [f ] − γP [f ])Θ(∞; f)

) 1
ρh

.

Theorem 3.9. Let f be a transcendental meromorphic function of finite order or of
non-zero lower order with

∑
a∈C∪{∞}

δ1(a; f) = 4, g be entire and h a transcendental

entire function of regular growth having non zero finite order with
∑

a∈C∪{∞}
δ1(a;h) =

4, 0 < λh (f) ≤ ρh (f) < ρg ≤ ∞ and σh (f) <∞. Then

lim sup
r→∞

log T−1
h Tf◦g(r)

T−1
M [h]TM [f ] (r)

≥ λh (f)

σh (f)

(
ΓP [h] − (ΓP [h] − γP [h])Θ(∞;h)

ΓP [f ] − (ΓP [f ] − γP [f ])Θ(∞; f)

) 1
ρh

.

Proof. Since ρh (f) < ρg and T−1
h (r) is a increasing function of r, we get from

Lemma 2.2 for a sequence of values of r tending to infinity that

log T−1
h Tf◦g(r) ≥ log T−1

h Tf (exp (rµ))

i.e., log T−1
h Tf◦g(r ≥ (λh (f)− ε) · rµ

i.e., log T−1
h Tf◦g(r) ≥ (λh (f)− ε) · rρh(f) .(3.5)

Again in view of Definition 1.5, we get for all sufficiently large values of r that

T−1
M [h]TM [f ] (r) ≤

(
σM [h] (M [f ]) + ε

)
rρM[h](M [f ]) .

Therefore in view of Lemma 2.7 and Lemma 2.8, we obtain for a sequence of values
of r tending to infinity that

T−1
M [h]TM [f ] (r)

≤

(
σh (f)

(
ΓP [f ] − (ΓP [f ] − γP [f ])Θ(∞; f)

ΓP [h] − (ΓP [h] − γP [h])Θ(∞;h)

) 1
ρh

+ ε

)
rρh(f) .(3.6)

Now from (3.5) and (3.6) , it follows for a sequence of values of r tending to infinity
that

log T−1
h Tf◦g(r)

T−1
M [h]TM [f ] (r)

≥ (λh (f)− ε) rρh(f)(
σh (f)

(
ΓP [f]−(ΓP [f]−γP [f])Θ(∞;f)

ΓP [h]−(ΓP [h]−γP [h])Θ(∞;h)

) 1
ρh + ε

)
rρh(f)

.
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Since ε (> 0) is arbitrary, it follows from above that

lim sup
r→∞

log T−1
h Tf◦g(r)

T−1
M [h]TM [f ] (r)

≥ λh (f)

σh (f)

(
ΓP [h] − (ΓP [h] − γP [h])Θ(∞;h)

ΓP [f ] − (ΓP [f ] − γP [f ])Θ(∞; f)

) 1
ρh

.

Thus the theorem follows. �

In the line of Theorem 3.9, the following theorem can be proved and therefore
its proof is omitted:

Theorem 3.10. Let f be a meromorphic function, g a transcendental entire func-
tion of finite order or of non-zero lower order with

∑
a∈C∪{∞}

δ1(a; g) = 4 and h a

transcendental entire function of regular growth having non zero finite order with∑
a∈C∪{∞}

δ1(a;h) = 4, 0 < λh (f) , 0 < ρh (g) < ρg ≤ ∞ and σh (g) <∞. Then

lim sup
r→∞

log T−1
h Tf◦g(r)

T−1
M [h]TM [g] (r)

≥ λh (f)

σh (g)

(
ΓP [h] − (ΓP [h] − γP [h])Θ(∞;h)

ΓP [g] − (ΓP [g] − γP [g])Θ(∞; g)

) 1
ρh

.

The following two theorems can also be proved in the line of Theorem 3.9 and
Theorem 3.10 respectively and with help of Lemma 2.3. Hence their proofs are
omitted.

Theorem 3.11. Let f be a transcendental meromorphic function of finite or-
der or of non-zero lower order with

∑
a∈C∪{∞}

δ1(a; f) = 4, g be entire and h a

transcendental entire function of regular growth having non zero finite order with∑
a∈C∪{∞}

δ1(a;h) = 4, 0 < λh (g) , 0 < λf , 0 < ρh (f) < ρg < ∞ and σh (f) < ∞.

Then

lim sup
r→∞

log T−1
h Tf◦g(r)

T−1
M [h]TM [f ] (r)

≥ λh (g)

σh (f)

(
ΓP [h] − (ΓP [h] − γP [h])Θ(∞;h)

ΓP [f ] − (ΓP [f ] − γP [f ])Θ(∞; f)

) 1
ρh

.

Theorem 3.12. Let f be a meromorphic function, g a transcendental entire func-
tion of finite order or of non-zero lower order with

∑
a∈C∪{∞}

δ1(a; g) = 4 and h a

transcendental entire function of regular growth having non zero finite order with∑
a∈C∪{∞}

δ1(a;h) = 4, 0 < λh (g) , 0 < λf , 0 < ρh (g) < ρg < ∞ and σh (g) < ∞.

Then

lim sup
r→∞

log T−1
h Tf◦g(r)

T−1
M [h]TM [g] (r)

≥ λh (g)

σh (g)

(
ΓP [h] − (ΓP [h] − γP [h])Θ(∞;h)

ΓP [g] − (ΓP [g] − γP [g])Θ(∞; g)

) 1
ρh

.

Now we state the following four theorems without their proofs as those can be
carried out with the help of Lemma 2.9 and in the line of Theorem 3.9, Theorem
3.10, Theorem 3.11 and Theorem 3.12 and with the help of Definition 1.6:

Theorem 3.13. Let f be a transcendental meromorphic function of finite or-
der or of non-zero lower order with

∑
a∈C∪{∞}

δ1(a; f) = 4, g be entire and h a
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transcendental entire function of regular growth having non zero finite order with∑
a∈C∪{∞}

δ1(a;h) = 4, 0 < λh (f) < ρg ≤ ∞ and τh (f) <∞. Then

lim sup
r→∞

log T−1
h Tf◦g(r)

T−1
M [h]TM [f ] (r)

≥ λh (f)

τh (f)

(
ΓP [h] − (ΓP [h] − γP [h])Θ(∞;h)

ΓP [f ] − (ΓP [f ] − γP [f ])Θ(∞; f)

) 1
ρh

.

Theorem 3.14. Let f be a meromorphic function, g a transcendental entire func-
tion of finite order or of non-zero lower order with

∑
a∈C∪{∞}

δ1(a; g) = 4 and h a

transcendental entire function of regular growth having non zero finite order with∑
a∈C∪{∞}

δ1(a;h) = 4, 0 < λh (f) , 0 < λh (g) < ρg ≤ ∞ and τh (g) <∞. Then

lim sup
r→∞

log T−1
h Tf◦g(r)

T−1
M [h]TM [g] (r)

≥ λh (f)

τh (g)

(
ΓP [h] − (ΓP [h] − γP [h])Θ(∞;h)

ΓP [g] − (ΓP [g] − γP [g])Θ(∞; g)

) 1
ρh

.

Theorem 3.15. Let f be a transcendental meromorphic function of finite or-
der or of non-zero lower order with

∑
a∈C∪{∞}

δ1(a; f) = 4, g be entire and h a

transcendental entire function of regular growth having non zero finite order with∑
a∈C∪{∞}

δ1(a;h) = 4, 0 < λh (g) < ρg <∞, 0 < λf and τh (f) <∞. Then

lim sup
r→∞

log T−1
h Tf◦g(r)

T−1
M [h]TM [f ] (r)

≥ λh (g)

τh (f)

(
ΓP [h] − (ΓP [h] − γP [h])Θ(∞;h)

ΓP [f ] − (ΓP [f ] − γP [f ])Θ(∞; f)

) 1
ρh

.

Theorem 3.16. Let f be a meromorphic function, g a transcendental entire func-
tion of finite order or of non-zero lower order with

∑
a∈C∪{∞}

δ1(a; g) = 4 and h a

transcendental entire function of regular growth having non zero finite order with∑
a∈C∪{∞}

δ1(a;h) = 4, 0 < λh (g) < ρg <∞, 0 < λf and τh (g) <∞. Then

lim sup
r→∞

log T−1
h Tf◦g(r)

T−1
M [h]TM [g] (r)

≥ λh (g)

τh (g)

(
ΓP [h] − (ΓP [h] − γP [h])Θ(∞;h)

ΓP [g] − (ΓP [g] − γP [g])Θ(∞; g)

) 1
ρh

.

Theorem 3.17. Let f be a transcendental meromorphic function of non zero finite
order and lower order with

∑
a∈C∪{∞}

δ1(a; f) = 4, g be entire and h a transcendental

entire function of regular growth having non zero finite order with
∑

a∈C∪{∞}
δ1(a;h) =

4, 0 < λg < ρh (f) <∞ and σh (f) > 0. Then

lim inf
r→∞

log T−1
h Tf◦g(r)

T−1
M [h]TM [f ] (r)

≤ ρh (f)

σh (f)

(
ΓP [h] − (ΓP [h] − γP [h])Θ(∞;h)

ΓP [f ] − (ΓP [f ] − γP [f ])Θ(∞; f)

) 1
ρh

.

Proof. As λg < ρh (f) and T−1
h (r) is a increasing function of r, it follows from

Lemma 2.4 for a sequence of values of r tending to infinity that

log T−1
h Tf◦g(r) < log T−1

h Tf (exp (rµ))

i.e., log T−1
h Tf◦g(r < (ρh (f) + ε) · rµ

i.e., log T−1
h Tf◦g(r) < (ρh (f) + ε) · rρh(f) .(3.7)
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Further in view of Definition 1.5, we obtain for all sufficiently large values of r that

T−1
M [h]TM [f ] (r) ≥

(
σM [h] (M [f ])− ε

)
rρM[h](M [f ]) .

Therefore in view of Lemma 2.7 and Lemma 2.8, we get from above that
(3.8)

T−1
M [h]TM [f ] (r) ≥

(
σh (f)

(
ΓP [f ] − (ΓP [f ] − γP [f ])Θ(∞; f)

ΓP [h] − (ΓP [h] − γP [h])Θ(∞;h)

) 1
ρh

− ε

)
rρh(f) .

Since ε (> 0) is arbitrary, therefore from (3.7) and (3.8) we have for a sequence of
values of r tending to infinity that

log T−1
h Tf◦g(r)

T−1
M [h]TM [f ] (r)

≤ (ρh (f) + ε) · rρh(f)(
σh (f)

(
ΓP [f]−(ΓP [f]−γP [f])Θ(∞;f)

ΓP [h]−(ΓP [h]−γP [h])Θ(∞;h)

) 1
ρh − ε

)
rρh(f)

i.e., lim inf
r→∞

log T−1
h Tf◦g(r)

T−1
M [h]TM [f ] (r)

≤ ρh (f)

σh (f)

(
ΓP [h] − (ΓP [h] − γP [h])Θ(∞;h)

ΓP [f ] − (ΓP [f ] − γP [f ])Θ(∞; f)

) 1
ρh

.

Hence the theorem is established. �

In the line of Theorem 3.17, the following theorem can be proved and therefore
its proof is omitted:

Theorem 3.18. Let f be a meromorphic function with non zero finite order and
lower order, g a transcendental entire function of finite order or of non-zero lower
order with

∑
a∈C∪{∞}

δ1(a; g) = 4 and h a transcendental entire function of regular

growth having non zero finite order with
∑

a∈C∪{∞}
δ1(a;h) = 4, ρh (f) < ∞, 0 <

λg < ρh (g) <∞ and σh (g) > 0. Then

lim inf
r→∞

log T−1
h Tf◦g(r)

T−1
M [h]TM [g] (r)

≤ ρh (f)

σh (g)

(
ΓP [h] − (ΓP [h] − γP [h])Θ(∞;h)

ΓP [g] − (ΓP [g] − γP [g])Θ(∞; g)

) 1
ρh

.

Moreover, the following two theorems can also be deduced in the line of Theorem
3.9 and Theorem 3.10 respectively and with help of Lemma 2.5 and therefore their
proofs are omitted.

Theorem 3.19. Let f be a transcendental meromorphic function of finite or-
der or of non zero lower order with

∑
a∈C∪{∞}

δ1(a; f) = 4, g be entire and h a

transcendental entire function of regular growth having non zero finite order with∑
a∈C∪{∞}

δ1(a;h) = 4, ρh (g) <∞, 0 < λg < ρh (f) <∞ and σh (f) > 0. Then

lim inf
r→∞

log T−1
h Tf◦g(r)

T−1
M [h]TM [f ] (r)

≤ ρh (g)

σh (f)

(
ΓP [h] − (ΓP [h] − γP [h])Θ(∞;h)

ΓP [f ] − (ΓP [f ] − γP [f ])Θ(∞; f)

) 1
ρh

.

Theorem 3.20. Let f be a meromorphic function with finite order, g a transcen-
dental entire function of finite order or of non-zero lower order with

∑
a∈C∪{∞}

δ1(a; g) =
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4 and h a transcendental entire function of regular growth having non zero finite
order with

∑
a∈C∪{∞}

δ1(a;h) = 4, 0 < λg < ρh (g) <∞ and σh (g) > 0. Then

lim inf
r→∞

log T−1
h Tf◦g(r)

T−1
M [h]TM [g] (r)

≤ ρh (g)

σh (g)

(
ΓP [h] − (ΓP [h] − γP [h])Θ(∞;h)

ΓP [g] − (ΓP [g] − γP [g])Θ(∞; g)

) 1
ρh

.

Finally we state the following four theorems without their proofs as those can be
carried out in view of Lemma 2.9 and in the line of Theorem 3.17, Theorem 3.18,
Theorem 3.19 and Theorem 3.20 using the concept of relative weak type:

Theorem 3.21. Let f be a transcendental meromorphic function of non zero finite
order and lower order with

∑
a∈C∪{∞}

δ1(a; f) = 4, g be entire and h a transcendental

entire function of regular growth having non zero finite order with
∑

a∈C∪{∞}
δ1(a;h) =

4 0 < λg < λh (f) ≤ ρh (f) <∞ and τh (f) > 0. Then

lim inf
r→∞

log T−1
h Tf◦g(r)

T−1
M [h]TM [f ] (r)

≤ ρh (f)

τh (f)

(
ΓP [h] − (ΓP [h] − γP [h])Θ(∞;h)

ΓP [f ] − (ΓP [f ] − γP [f ])Θ(∞; f)

) 1
ρh

.

Theorem 3.22. Let f be a meromorphic function with non zero finite order and
lower order, g a transcendental entire function of finite order or of non-zero lower
order with

∑
a∈C∪{∞}

δ1(a; g) = 4 and h a transcendental entire function of regular

growth having non zero finite order with
∑

a∈C∪{∞}
δ1(a;h) = 4, ρh (f) < ∞, 0 <

λg < λh (g) <∞ and τh (g) > 0. Then

lim inf
r→∞

log T−1
h Tf◦g(r)

T−1
M [h]TM [g] (r)

≤ ρh (f)

τh (g)

(
ΓP [h] − (ΓP [h] − γP [h])Θ(∞;h)

ΓP [g] − (ΓP [g] − γP [g])Θ(∞; g)

) 1
ρh

.

Theorem 3.23. Let f be a transcendental meromorphic function of finite or-
der or of non zero lower order with

∑
a∈C∪{∞}

δ1(a; f) = 4, g be entire and h a

transcendental entire function of regular growth having non zero finite order with∑
a∈C∪{∞}

δ1(a;h) = 4, ρh (g) <∞, 0 < λg < λh (f) <∞ and τh (f) > 0. Then

lim inf
r→∞

log T−1
h Tf◦g(r)

T−1
M [h]TM [f ] (r)

≤ ρh (g)

τh (f)

(
ΓP [h] − (ΓP [h] − γP [h])Θ(∞;h)

ΓP [f ] − (ΓP [f ] − γP [f ])Θ(∞; f)

) 1
ρh

.

Theorem 3.24. Let f be a meromorphic function with finite order, g a transcen-
dental entire function of finite order or of non-zero lower order with

∑
a∈C∪{∞}

δ1(a; g) =

4 and h a transcendental entire function of regular growth having non zero finite
order with

∑
a∈C∪{∞}

δ1(a;h) = 4, 0 < λg < λh (f) ≤ ρh (g) < ∞ and τh (g) > 0.

Then

lim inf
r→∞

log T−1
h Tf◦g(r)

T−1
M [h]TM [g] (r)

≤ ρh (g)

τh (g)

(
ΓP [h] − (ΓP [h] − γP [h])Θ(∞;h)

ΓP [g] − (ΓP [g] − γP [g])Θ(∞; g)

) 1
ρh

.
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Theorem 3.25. Let f be a transcendental meromorphic function of finite or-
der or of non-zero lower order with

∑
a∈C∪{∞}

δ1(a; f) = 4, g be entire and h a

transcendental entire function of regular growth having non zero finite order with∑
a∈C∪{∞}

δ1(a;h) = 4, 0 < λh (f) ≤ ρh (f) < ∞ and σg < ∞. Also h satisfy the

Property (A). Then for any δ > 1,

lim sup
r→∞

log T−1
h Tf◦g (r)

log T−1
M [h]TM [f ] (exp rρg )

≤ δ · σg · ρh (f)

λh (f)
.

Proof. Let us suppose that α > 2.
Since T−1

h (r) is an increasing function r, it follows from Lemma 2.1, Lemma 2.6
and the inequality Tg (r) ≤ logMg (r) {cf. [11]} for all sufficiently large values of r
that

T−1
h Tf◦g (r) 6 T−1

h [{1 + o(1)}Tf (Mg (r))]

i.e., T−1
h Tf◦g (r) 6 α

[
T−1
h Tf (Mg (r))

]δ
i.e., log T−1

h Tf◦g (r) 6 δ log T−1
h Tf (Mg (r)) +O(1)(3.9)

i.e.,
log T−1

h Tf◦g (r)

log T−1
M [h]TM [f ] (exp rρg )

≤
δ log T−1

h Tf (Mg (r)) +O(1)

log T−1
M [h]TM [f ] (exp rρg )

=
δ log T−1

h Tf (Mg (r)) +O(1)

logMg (r)
·

logMg (r)

rρg
· log exp rρg

log T−1
M [h]TM [f ] (exp rρg )

(3.10)

i.e., lim sup
r→∞

log T−1
h Tf◦g (r)

log T−1
M [h]TM [f ] (exp rρg )

≤ lim sup
r→∞

δ log T−1
h Tf (Mg (r)) +O(1)

logMg (r)
· lim sup
r→∞

logMg (r)

rρg
·

lim sup
r→∞

log exp rρg

log T−1
M [h]TM [f ] (exp rρg )

i.e., lim sup
r→∞

log T−1
h Tf◦g (r)

log T−1
M [h]TM [f ] (exp rρg )

≤ δ · ρh (f) · σg ·
1

λM [h] (M [f ])
.

Therefore in view of Lemma 2.7, we obtain from above that

lim sup
r→∞

log T−1
h Tf◦g (r)

log T−1
M [h]TM [f ] (exp rρg )

≤ δ · σg · ρh (f)

λh (f)
.

Thus the theorem is established. �

In the line of Theorem 3.25 the following theorem can be proved :

Theorem 3.26. Let f be a meromorphic function, g a transcendental entire func-
tion of finite order or of non-zero lower order with

∑
a∈C∪{∞}

δ1(a; g) = 4 and h a

transcendental entire function of regular growth having non zero finite order with
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a∈C∪{∞}

δ1(a;h) = 4, λh (g) > 0, ρh (f) < ∞, σg < ∞ and also h satisfy the

Property (A). Then for any δ > 1,

lim sup
r→∞

log T−1
h Tf◦g (r)

log T−1
M [h]TM [g] (exp rρg )

≤ δ · σg · ρh (f)

λh (g)
.

Using the notion of lower type, we may state the following two theorems without
their proofs because those can be carried out in the line of Theorem 3.25 and
Theorem 3.26 respectively.

Theorem 3.27. Let f be a transcendental meromorphic function of finite or-
der or of non-zero lower order with

∑
a∈C∪{∞}

δ1(a; f) = 4, g be entire and h a

transcendental entire function of regular growth having non zero finite order with∑
a∈C∪{∞}

δ1(a;h) = 4, 0 < λh (f) ≤ ρh (f) < ∞, σg < ∞ and also h satisfy the

Property (A). Then for any δ > 1,

lim inf
r→∞

log T−1
h Tf◦g (r)

log T−1
M [h]TM [f ] (exp rρg )

≤ δ · σg · ρh (f)

λh (f)
.

Theorem 3.28. Let f be a meromorphic function, g a transcendental entire func-
tion of finite order or of non-zero lower order with

∑
a∈C∪{∞}

δ1(a; g) = 4 and h a

transcendental entire function of regular growth having non zero finite order with∑
a∈C∪{∞}

δ1(a;h) = 4, λh (g) > 0, ρh (f) < ∞, σg < ∞ and also h satisfy the

Property (A). Then for any δ > 1,

lim inf
r→∞

log T−1
h Tf◦g (r)

log T−1
M [h]TM [g] (exp rρg )

≤ δ · σg · ρh (f)

λh (g)
.

Using the concept of the growth indicators τg and τg of an entire function g,
we may state the subsequent four theorems without their proofs since those can be
carried out in the line of Theorem 3.25, Theorem 3.26, Theorem 3.27 and Theorem
3.28 respectively.

Theorem 3.29. Let f be a transcendental meromorphic function of finite or-
der or of non-zero lower order with

∑
a∈C∪{∞}

δ1(a; f) = 4, g be entire and h a

transcendental entire function of regular growth having non zero finite order with∑
a∈C∪{∞}

δ1(a;h) = 4, 0 < λh (f) ≤ ρh (f) < ∞, τg < ∞ and also h satisfy the

Property (A). Then for any δ > 1,

lim sup
r→∞

log T−1
h Tf◦g (r)

log T−1
M [h]TM [f ] (exp rλg )

≤ δ · τg · ρh (f)

λh (f)
.

Theorem 3.30. Let f be a meromorphic function, g a transcendental entire func-
tion of finite order or of non-zero lower order with

∑
a∈C∪{∞}

δ1(a; g) = 4 and h a

transcendental entire function of regular growth having non zero finite order with∑
a∈C∪{∞}

δ1(a;h) = 4, λh (g) > 0, ρh (f) < ∞, τg < ∞ and also h satisfy the
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Property (A). Then for any δ > 1,

lim sup
r→∞

log T−1
h Tf◦g (r)

log T−1
M [h]TM [g] (exp rλg )

≤ δ · τg · ρh (f)

λh (g)
.

Theorem 3.31. Let f be a transcendental meromorphic function of finite or-
der or of non-zero lower order with

∑
a∈C∪{∞}

δ1(a; f) = 4, g be entire and h a

transcendental entire function of regular growth having non zero finite order with∑
a∈C∪{∞}

δ1(a;h) = 4, 0 < λh (f) ≤ ρh (f) < ∞, τg < ∞ and also h satisfy the

Property (A). Then for any δ > 1,

lim inf
r→∞

log T−1
h Tf◦g (r)

log T−1
M [h]TM [f ] (exp rλg )

≤ δ · τg · ρh (f)

λh (f)
.

Theorem 3.32. Let f be a meromorphic function, g a transcendental entire func-
tion of finite order or of non-zero lower order with

∑
a∈C∪{∞}

δ1(a; g) = 4 and h a

transcendental entire function of regular growth having non zero finite order with∑
a∈C∪{∞}

δ1(a;h) = 4, λh (g) > 0, ρh (f) < ∞, τg < ∞ and also h satisfy the

Property (A). Then for any δ > 1,

lim inf
r→∞

log T−1
h Tf◦g (r)

log T−1
M [h]TM [g] (exp rλg )

≤ δ · τg · ρh (f)

λh (g)
.
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