Konuralp Journal of Mathematics
Volume 4 No. 2 Pp. 299-307 (2016) ©KJM

THE CHARACTERIZATIONS OF SPACELIKE CURVES IN R_{1}^{4}

M. AYKUT AKGUN, A. IHSAN SIVRIDAG, AND EROL KILIC

Abstract

In this paper, we study the geometry of position vectors of a spacelike curve in the Minkowski 4-space. We give some characterizations for spacelike curves to lie on some subspaces of R_{1}^{4}.

1. Introduction

The Frenet frames for spacelike, timelike and null curves have been studied and developed by several authors [5], [3], [11], [1] and [2]. A. Fernandez, A. Gimenez and P. Lucas introduced a Frenet frame with curvature functions for a null curve in a Lorentzian manifold and studied null helices in Lorentzian space forms [2]. C. Coken and U. Ciftci studied null curves in the 4 -dimensional Minkowski space R_{1}^{4} , and give some results for psoudospherical null curves and Bertrand null curves.
K. Ilarslan and O. Boyacioglu studied position vectors of a timelike and a null helice in R_{1}^{3} [5]. K. Ilarslan and E. Nesovic gave some characterizations for null curves in R_{1}^{4} and they obtained some relations between null normal curves and null osculating curves as well as between null rectifying curves and null osculating curves [6].
K. Ilarslan studied spacelike normal curves in Minkowski space E_{1}^{3} and gave some characterizations of spacelike normal curves with spacelike, timelike and null principal normal [6]. K. Ilarsalan, E. Nesovic and M. Petrovic-Torgasev characterized non-null and null rectifying curves, lying fully in the Minkowski 3-space [7].
A. T. Ali and M. Onder characterize rectifying spacelike curves in terms of their curvature functions in Minkowski spacetime [3]. M. Onder, H. Kocayigit and M. Kazaz gave some characterizations for spacelike helices in Minkowski spacetime and found the differential equations characterizing the spacelike helices in Minkowski 4 -space [11].
M. A. Akgun and A. I. Sivridag studied null Cartan curves in Minkowski 4-space and give some theorems for null Cartan curves to lie on some subspaces of R_{1}^{4} [13].
M. A. Akgun and A. I. Sivridag studied spacelike and timelike curves to lie on some subspaces of R_{1}^{4} and give some theorems in [14] and [15].

[^0]This paper organized following: In section 2 we give some basic knowledge related with curves in Minkowski space-time. Section 3 is the original part of this paper. In this section we investigate the conditions for spacelike curves to lie on some subspaces of R_{1}^{4} and we give some characterizations and theorems for these curves.

2. Preliminaries

Let R_{1}^{4} denote Minkowski space together with a flat Lorentz metric \langle,$\rangle of sig-$ nature $(-,+,+,+)$. A vector X is said to be timelike if $\langle X, X\rangle<0$, spacelike if $\langle X, X\rangle>0$ or $X=0$ and null(lightlike) if $\langle X, X\rangle=0$ and $X \neq 0$. The norm of a vector $X \in R_{1}^{4}$ is denoted by $\|X\|$ and defined by $\|X\|=\sqrt{|\langle X, X\rangle|}$.

A curve α in R_{1}^{4} is called a null curve if $\left\langle\alpha^{\prime}(s), \alpha^{\prime}(s)\right\rangle=0$ and $\alpha^{\prime}(s) \neq 0$, timelike curve if $\left\langle\alpha^{\prime}(s), \alpha^{\prime}(s)\right\rangle<0$ and spacelike curve if $\left\langle\alpha^{\prime}(s), \alpha^{\prime}(s)\right\rangle>0$ for all $s \in R$.

Let α be a spacelike curve in R_{1}^{4} with the Frenet frame $\left\{T, N, B_{1}, B_{2}\right\}$ and let N be null vector and B_{1} be null vector. In this case there exists only one Frenet frame $\left\{T, N, B_{1}, B_{2}\right\}$ for which $\alpha(s)$ is a spacelike curve with Frenet equations

$$
\begin{aligned}
\nabla_{T} T & =k_{1} N \\
\nabla_{T} N & =k_{2} B_{2} \\
\nabla_{T} B_{1} & =-k_{1} T+k_{3} B_{2} \\
\nabla_{T} B_{2} & =-k_{3} N-k_{2} B_{1}
\end{aligned}
$$

where T, N, B_{1} and B_{2} are mutually orthogonal vectors satisfying the equations

$$
\begin{equation*}
\left\langle B_{1}, B_{1}\right\rangle=\langle N, N\rangle=0, \quad\langle T, T\rangle=\left\langle B_{2}, B_{2}\right\rangle=1, \quad\left\langle N, B_{1}\right\rangle=1 \tag{12}
\end{equation*}
$$

3. The Characterizations of Spacelike Curves in R_{1}^{4}

In this section we will investigate some characterizations of spacelike curves to lie on some subspaces of R_{1}^{4}.

Let α be a spacelike curve in R_{1}^{4} with the Frenet frame $\left\{T, N, B_{1}, B_{2}\right\}$. Then, the subspaces of R_{1}^{4} spanned by $\{T, N\},\left\{T, B_{1}\right\},\left\{T, B_{2}\right\},\left\{N, B_{1}\right\},\left\{N, B_{2}\right\},\left\{B_{1}, B_{2}\right\}$, $\left\{T, N, B_{1}\right\},\left\{T, N, B_{2}\right\},\left\{T, B_{1}, B_{2}\right\}$ and $\left\{N, B_{1}, B_{2}\right\}$.

Case 1) First we will investigate the conditions under which the spacelike curve α lies on the subspace spanned by $\{T, N\}$. In this case we can write

$$
\begin{equation*}
\alpha(s)=\lambda(s) T+\mu(s) N \tag{3.1}
\end{equation*}
$$

for some differentiable functions λ and μ of s , which is the arc-length parameter of $\alpha(s)$. Differentiating (3.1) with respect to s and by using the Frenet equations we find that

$$
\alpha^{\prime}(s)=\lambda^{\prime}(s) T+\left(\lambda(s) k_{1}(s)+\mu^{\prime}(s)\right) N+\mu(s) k_{2}(s) B_{2}
$$

where $\alpha^{\prime}=T$. Since $\left\{T, N, B_{1}, B_{2}\right\}$ is a Frenet frame we have the following equations.

$$
\left\{\begin{array}{c}
\lambda^{\prime}(s)=1 \\
\lambda(s) k_{1}(s)+\mu^{\prime}(s)=0 \\
\mu(s) k_{2}(s)=0
\end{array}\right.
$$

If $\mu(s)=0$ we find $k_{1}(s)=0$ and $\lambda(s)=s+c$. So we have

$$
\alpha(s)=(s+c) T
$$

If $k_{2}(s)=0$,then we find $\mu(s)=-\int(s+c) k_{1}(s) d s$. So we have

$$
\alpha(s)=(s+c) T-\left(\int(s+c) k_{1}(s) d s\right) N .
$$

Thus we have the following theorem.
Theorem 3.1. A spacelike curve α in R_{1}^{4} lies on the subspace spanned by $\{T, N\}$ if and only if it is in the form

$$
\alpha(s)=(s+c) T
$$

where $k_{1}(s)=0$ or

$$
\alpha(s)=(s+c) T-\left(\int(s+c) k_{1}(s) d s\right) N
$$

where $k_{2}(s)=0$
Case 2) We will investigate the conditions under which the spacelike curve α lies on the subspace spanned by $\left\{T, B_{1}\right\}$. In this case we can write

$$
\begin{equation*}
\alpha(s)=\lambda(s) T+\mu(s) B_{1} \tag{3.2}
\end{equation*}
$$

for some differentiable functions λ and μ. Differentiating (3.2) with respect to s and by using the Frenet equations we find that

$$
\alpha^{\prime}(s)=\left(\lambda^{\prime}(s)-\mu(s) k_{1}(s)\right) T+\lambda(s) k_{1}(s) N+\mu^{\prime}(s) B_{1}+\mu(s) k_{3}(s) B_{2}
$$

Since $\left\{T, N, B_{1}, B_{2}\right\}$ is a Frenet frame we have the following equations.

$$
\left\{\begin{array}{c}
\lambda^{\prime}(s)-\mu(s) k_{1}(s)=1 \\
\lambda(s) k_{1}(s)=0 \\
\mu(s) k_{3}(s)=0 \\
\mu^{\prime}(s)=0
\end{array}\right.
$$

From the equation $\lambda(s) k_{1}(s)=0$, if $\lambda(s)=0$ then we can write $\mu(s)=-\frac{1}{k_{1}(s)}=$ cons. and $k_{3}(s)=0$. So we have

$$
\alpha(s)=-\frac{1}{k_{1}(s)} B_{1} .
$$

If $k_{1}(s)=0$ and $\mu(s)=0$ we find $\lambda(s)=s+c$. So we have

$$
\alpha(s)=(s+c) T
$$

If $k_{1}(s)=k_{3}(s)=0$ then we find $\mu(s)=c_{2}$ and $\lambda(s)=s+c_{1}$. So we have

$$
\alpha(s)=\left(s+c_{1}\right) T+c_{2} B_{1} .
$$

Thus we have the following theorem.
Theorem 3.2. A spacelike curve α in R_{1}^{4} lies on the subspace spanned by $\left\{T, B_{1}\right\}$ if and only if it is in the form

$$
\alpha(s)=-\frac{1}{k_{1}(s)} B_{1}
$$

where $k_{3}(s)=0$ or

$$
\alpha(s)=(s+c) T
$$

where $k_{1}(s)=0$ or

$$
\alpha(s)=\left(s+c_{1}\right) T+c_{2} B_{1}
$$

where $k_{1}(s)=k_{3}(s)=0$ and c, c_{1} and c_{2} are constants.
Case 3) We will investigate the conditions under which the spacelike curve α lies on the subspace spanned by $\left\{T, B_{2}\right\}$. In this case we can write

$$
\begin{equation*}
\alpha(s)=\lambda(s) T+\mu(s) B_{2} \tag{3.3}
\end{equation*}
$$

for some differentiable functions λ and μ of the parameter s. Differentiating (3.3) with respect to s and by using the Frenet equations we find that

$$
\alpha^{\prime}(s)=\lambda^{\prime}(s) T+\left(\lambda(s) k_{1}(s)-\mu(s) k_{3}(s)\right) N-\mu(s) k_{2}(s) B_{1}+\mu^{\prime}(s) B_{2}
$$

Since $\left\{T, N, B_{1}, B_{2}\right\}$ is a Frenet frame we have the following equations.

$$
\left\{\begin{array}{c}
\lambda^{\prime}(s)=1 \tag{3.4}\\
\lambda(s) k_{1}(s)-\mu(s) k_{3}(s)=0 \\
\mu(s) k_{2}(s)=0 \\
\mu^{\prime}(s)=0
\end{array}\right.
$$

From (3.4) if $\mu(s)=0$ then we find $\lambda(s)=s+c$ and $k_{1}(s)=0$. So we have

$$
\alpha(s)=(s+c) T
$$

If $k_{2}(s)=0$ then we find $\lambda(s)=s+c_{1}$ and $\mu(s)=c_{2}$. So we have

$$
\alpha(s)=\left(s+c_{1}\right) T+c_{2} B_{2} .
$$

Thus we have the following theorem.
Theorem 3.3. A spacelike curve α in R_{1}^{4} lies on the subspace spanned by $\left\{T, B_{2}\right\}$ if and only if it is in the form

$$
\alpha(s)=(s+c) T
$$

where $k_{1}(s)=0$ or

$$
\alpha(s)=\left(s+c_{1}\right) T+c_{2} B_{2} .
$$

where $k_{2}(s)=0$ and the curvature functions satisfy the equation $\frac{k_{1}(s)}{k_{3}(s)}=\frac{c_{2}}{s+c_{1}}$.
Case 4) We will investigate the conditions under which the spacelike curve α lies on the subspace spanned by $\left\{N, B_{1}\right\}$. In this case we can write

$$
\begin{equation*}
\alpha(s)=\lambda(s) N+\mu(s) B_{1} \tag{3.5}
\end{equation*}
$$

for some differentiable functions λ and μ of the parameter s. Differentiating (3.5) with respect to s and by using the Frenet equations we find that

$$
\alpha^{\prime}(s)=-\mu(s) k_{1}(s) T+\lambda^{\prime}(s) N+\mu^{\prime}(s) B_{1}+\left(\lambda(s) k_{2}(s)+\mu(s) k_{3}(s)\right) B_{2} .
$$

Since $\left\{T, N, B_{1}, B_{2}\right\}$ is a Frenet frame we have the following equations.

$$
\left\{\begin{array}{c}
-\mu(s) k_{1}(s)=1 \tag{3.6}\\
\lambda^{\prime}(s)=0 \\
\mu^{\prime}(s)=0 \\
\lambda(s) k_{2}(s)+\mu(s) k_{3}(s)=0
\end{array}\right.
$$

From (3.6) we can write $\lambda(s)=c_{1}$ and $\mu(s)=-\frac{1}{k_{1}(s)}=c_{2}$. . So we have

$$
\alpha(s)=c_{1} N-\frac{1}{k_{1}(s)} B_{1}
$$

Thus we have the following theorem.

Theorem 3.4. A spacelike curve α in R_{1}^{4} lies on the subspace spanned by $\left\{N, B_{1}\right\}$ if and only if it is in the form

$$
\alpha(s)=c_{1} N-\frac{1}{k_{1}(s)} B_{1}
$$

where c_{1}, c_{2} are constants and the curvature functions satisfy the equation $c_{1} k_{2}(s)+$ $c_{2} k_{3}(s)=0$.

Case 5) We will investigate the conditions under which the spacelike curve α lies on the subspace spanned by $\left\{N, B_{2}\right\}$. In this case we can write

$$
\begin{equation*}
\alpha(s)=\lambda(s) N+\mu(s) B_{2} \tag{3.7}
\end{equation*}
$$

for some differentiable functions λ and μ of the parameter s. Differentiating (3.7) with respect to s and by using the Frenet equations we find that
$(3.8) \alpha^{\prime}(s)=\left(\lambda^{\prime}(s)-\mu(s) k_{3}(s)\right) N-\mu(s) k_{2}(s) B_{1}+\left(\lambda(s) k_{2}(s)+\mu^{\prime}(s)\right) B_{2}$.
Since $\alpha(s)$ is a spacelike curve from (3.8) there is a contradiction. Thus we have the following theorem.
Theorem 3.5. A spacelike curve α in R_{1}^{4} does not lie on the subspace spanned by $\left\{N, B_{2}\right\}$.

Case 6) We will investigate the conditions under which the spacelike curve α lies on the subspace spanned by $\left\{B_{1}, B_{2}\right\}$. In this case we can write

$$
\begin{equation*}
\alpha(s)=\lambda(s) B_{1}+\mu(s) B_{2} \tag{3.9}
\end{equation*}
$$

for some differentiable functions λ and μ of the parameter s. Differentiating (3.9) with respect to s and by using the Frenet equations we find that
$\alpha^{\prime}(s)=-\lambda(s) k_{1}(s) T-\mu(s) k_{3}(s) N+\left(\lambda^{\prime}(s)-\mu(s) k_{2}(s)\right) B_{1}+\left(\lambda(s) k_{3}(s)+\mu^{\prime}(s)\right) B_{2}$.
Since $\left\{T, N, B_{1}, B_{2}\right\}$ is a Frenet frame we have the following equations.

$$
\left\{\begin{array}{c}
-\lambda(s) k_{1}(s)=1 \tag{3.10}\\
\mu(s) k_{3}(s)=0 \\
\lambda^{\prime}(s)-\mu(s) k_{2}(s)=0 \\
\lambda(s) k_{3}(s)+\mu^{\prime}(s)=0
\end{array}\right.
$$

From (3.10) if $\mu(s)=0$ then we can write $\lambda(s)=-\frac{1}{k_{1}(s)}$. So we have

$$
\alpha(s)=-\frac{1}{k_{1}(s)} B_{1} .
$$

If $k_{3}(s)=0$ we find $\mu(s)=\frac{k_{1}^{\prime}(s)}{k_{1}^{2}(s) k_{2}(s)}=$ cons. So we have

$$
\alpha(s)=\left(-\frac{1}{k_{1}(s)}\right) B_{1}+\left(\frac{k_{1}^{\prime}(s)}{k_{1}^{2}(s) k_{2}(s)}\right) B_{2} .
$$

Theorem 3.6. A spacelike curve α in R_{1}^{4} lies on the subspace spanned by $\left\{B_{1}, B_{2}\right\}$ if and only if it is in the form of

$$
\alpha(s)=-\frac{1}{k_{1}(s)} B_{1}
$$

or

$$
\alpha(s)=\left(-\frac{1}{k_{1}(s)}\right) B_{1}+\left(\frac{k_{1}^{\prime}(s)}{k_{1}^{2}(s) k_{2}(s)}\right) B_{2}
$$

where $k_{3}(s)=0$.
Case 7) We will investigate the conditions under which the spacelike curve α lies on the subspace spanned by $\left\{T, N, B_{1}\right\}$. In this case we can write

$$
\begin{equation*}
\alpha(s)=\lambda(s) T+\mu(s) N+\gamma(s) B_{1} \tag{3.11}
\end{equation*}
$$

for some differentiable functions λ, μ and γ of the parameter s. Differentiating (3.11) with respect to s and by using the Frenet equations we find that

$$
\begin{gathered}
\alpha^{\prime}(s)=\left(\lambda^{\prime}(s)-\gamma(s) k_{1}(s)\right) T+\left(\lambda(s) k_{1}(s)+\mu^{\prime}(s)\right) N+\gamma^{\prime}(s) B_{1} \\
+\left(\mu(s) k_{2}(s)+\gamma(s) k_{3}(s)\right) B_{2}
\end{gathered}
$$

Since $\left\{T, N, B_{1}, B_{2}\right\}$ is a Frenet frame we have the following equations.

$$
\left\{\begin{array}{c}
\lambda^{\prime}(s)-\gamma(s) k_{1}(s)=1 \tag{3.12}\\
\lambda(s) k_{1}(s)+\mu^{\prime}(s)=0 \\
\gamma^{\prime}(s)=0 \\
\mu(s) k_{2}(s)+\gamma(s) k_{3}(s)=0
\end{array}\right.
$$

From (3.12) we can write $\gamma(s)=c_{1}$. If we use the equation $\mu(s) k_{2}(s)+\gamma(s) k_{3}(s)=0$ we find $\mu(s)=-c_{1} \frac{k_{3}(s)}{k_{2}(s)}$. From the equation $\lambda(s) k_{1}(s)+\mu^{\prime}(s)=0$ we obtain $\lambda(s)=c_{1} \frac{k_{3}^{\prime}(s) k_{2}(s)-k_{3}(s) k_{2}^{\prime}(s)}{k_{2}^{2}(s) k_{1}(s)}$. So we have

$$
\alpha(s)=\left(c_{1} \frac{k_{3}^{\prime}(s) k_{2}(s)-k_{3}(s) k_{2}^{\prime}(s)}{k_{2}^{2}(s) k_{1}(s)}\right) T-\left(c_{1} \frac{k_{3}(s)}{k_{2}(s)}\right) N+c_{1} B_{1}
$$

Thus we have the following theorem.
Theorem 3.7. A spacelike curve α in R_{1}^{4} lies on the subspace spanned by $\left\{T, N, B_{1}\right\}$ if and only if it is in the form

$$
\alpha(s)=\left(c_{1} \frac{k_{3}^{\prime}(s) k_{2}(s)-k_{3}(s) k_{2}^{\prime}(s)}{k_{2}^{2}(s) k_{1}(s)}\right) T-\left(c_{1} \frac{k_{3}(s)}{k_{2}(s)}\right) N+c_{1} B_{1} .
$$

where c_{1} is a constant.
Case 8) We will investigate the conditions under which the spacelike curve α lies on the subspace spanned by $\left\{T, N, B_{2}\right\}$. In this case we can write

$$
\begin{equation*}
\alpha(s)=\lambda(s) T+\mu(s) N+\gamma(s) B_{2} \tag{3.13}
\end{equation*}
$$

for some differentiable functions λ, μ and γ of the parameter s. Differentiating (3.13) with respect to s and by using the Frenet equations we find that

$$
\begin{gathered}
\alpha^{\prime}(s)=\lambda^{\prime}(s) T+\left(\lambda(s) k_{1}(s)+\mu^{\prime}(s)-\gamma(s) k_{3}(s)\right) N+\gamma(s) k_{2}(s) B_{1} \\
+\left(\gamma^{\prime}(s)+\mu(s) k_{2}(s)\right) B_{2}
\end{gathered}
$$

Since $\left\{T, N, B_{1}, B_{2}\right\}$ is a Frenet frame we have the following equations:

$$
\left\{\begin{array}{c}
\lambda^{\prime}(s)=1 \tag{3.14}\\
\lambda(s) k_{1}(s)+\mu^{\prime}(s)-\gamma(s) k_{3}(s)=0 \\
\gamma(s) k_{2}=0 \\
\gamma^{\prime}(s)+\mu(s) k_{2}(s)=0
\end{array}\right.
$$

From (3.14) we find $\lambda(s)=s+c$. If $\gamma(s)=0$ we can write the equations

$$
\begin{align*}
\mu(s) k_{2}(s) & =0 \tag{3.15}\\
\lambda(s) k_{1}(s)+\mu^{\prime}(s) & =0
\end{align*}
$$

From (3.15) if $\mu(s)=0$ then we can write $\lambda(s)=s+c_{1}$ and $k_{1}(s)=0$. So we have

$$
\alpha(s)=\left(s+c_{1}\right) T
$$

If $k_{2}(s)=0$ then we can write

$$
\mu(s)=-\int\left(s+c_{1}\right) k_{1}(s) d s+c_{2}
$$

So we have

$$
\alpha(s)=\left(s+c_{1}\right) T+\left(-\int\left(s+c_{1}\right) k_{1}(s) d s+c_{2}\right) N
$$

From (3.14) if $k_{2}(s)=0$ then we can write $\gamma(s)=c_{2}$ and $\mu(s)=c_{2} \int k_{3}(s) d s-$ $\int k_{1}(s)\left(s+c_{1}\right) d s+c$. So we have

$$
\alpha(s)=\left(s+c_{1}\right) T+\left(c_{2} \int k_{3}(s) d s-\int k_{1}(s)\left(s+c_{1}\right) d s+c\right) N+c_{2} B_{2} .
$$

Thus we have the following theorem.
Theorem 3.8. A spacelike curve α in R_{1}^{4} lies on the subspace spanned by $\left\{T, N, B_{2}\right\}$ if and only if it is in the form

$$
\alpha(s)=\left(s+c_{1}\right) T
$$

where $k_{1}(s)=0$ or

$$
\alpha(s)=\left(s+c_{1}\right) T+\left(-\int\left(s+c_{1}\right) k_{1}(s) d s+c_{2}\right) N
$$

where $k_{2}(s)=0$ or

$$
\alpha(s)=\left(s+c_{1}\right) T+\left(c_{2} \int k_{3}(s) d s-\int k_{1}(s)\left(s+c_{1}\right) d s+c\right) N+c_{2} B_{2}
$$

where $k_{2}(s)=0$.
Case 9) We will investigate the conditions under which the spacelike curve α lies on the subspace spanned by $\left\{T, B_{1}, B_{2}\right\}$. In this case we can write

$$
\begin{equation*}
\alpha(s)=\lambda(s) T+\mu(s) B_{1}+\gamma(s) B_{2} \tag{3.16}
\end{equation*}
$$

for some differentiable functions λ, μ and γ of the parameter s. Differentiating (3.16) with respect to s and by using the Frenet equations we find that

$$
\begin{aligned}
\alpha^{\prime}(s) & =\left(\lambda^{\prime}(s)-\mu(s) k_{1}(s)\right) T+\left(\lambda(s) k_{1}(s)-\gamma(s) k_{3}(s)\right) N+\left(\mu^{\prime}(s)-\gamma(s) k_{2}(s)\right) B_{1} \\
& +\left(\mu(s) k_{3}(s)+\gamma^{\prime}(s)\right) B_{2} .
\end{aligned}
$$

Since $\left\{T, N, B_{1}, B_{2}\right\}$ is a Frenet frame we have the following equations.

$$
\left\{\begin{array}{c}
\lambda^{\prime}(s)-\mu(s) k_{1}(s)=1 \tag{3.17}\\
\lambda(s) k_{1}(s)-\gamma(s) k_{3}(s)=0 \\
\mu^{\prime}(s)-\gamma(s) k_{2}(s)=0 \\
\mu(s) k_{3}(s)+\gamma^{\prime}(s)=0
\end{array}\right.
$$

From the equation $\lambda^{\prime}(s)-\mu(s) k_{1}(s)=1$ we can write $\frac{d \lambda(s)}{d s}+\frac{k_{1}(s)}{k_{3}(s)} \gamma^{\prime}(s)=1$. From the last equation we have

$$
\begin{equation*}
\frac{d}{d s}\left(\frac{k_{3}(s)}{k_{1}(s)} \gamma(s)\right)+\frac{k_{1}(s)}{k_{3}(s)} \frac{d \gamma(s)}{d s}=1 \tag{3.18}
\end{equation*}
$$

By using exchange variable $t=\int_{0}^{s} \frac{k_{3}(s)}{k_{1}(s)} d s$ in (3.18) we have

$$
\begin{equation*}
2 \frac{d \gamma(s)}{d s}=1 \tag{3.19}
\end{equation*}
$$

The solution of (3.19) is $\gamma(s)=\frac{t}{2}+c$. Replacing variable $t=\int \frac{k_{3}(s)}{k_{1}(s)} d s$ in the last equation we find

$$
\begin{equation*}
\gamma(s)=\frac{1}{2} \int_{0}^{s} \frac{k_{3}(s)}{k_{1}(s)} d s+c \tag{3.20}
\end{equation*}
$$

If we use (3.20) in (3.17) we find $\mu(s)=-\frac{1}{2 k_{1}(s)}$ and

$$
\lambda(s)=\frac{k_{3}(s)}{k_{1}(s)}\left(\frac{1}{2} \int_{0}^{s} \frac{k_{3}(s)}{k_{1}(s)} d s+c\right)
$$

So we have

$$
\alpha(s)=\left(\frac{k_{3}(s)}{k_{1}(s)}\left(\frac{1}{2} \int_{0}^{s} \frac{k_{3}(s)}{k_{1}(s)} d s+c\right)\right) T-\left(\frac{1}{2 k_{1}(s)}\right) B_{1}+\left(\frac{1}{2} \int_{0}^{s} \frac{k_{3}(s)}{k_{1}(s)} d s+c\right) B_{2}
$$

Thus we have the following theorem.
Theorem 3.9. A spacelike curve α in R_{1}^{4} lies on the subspace spanned by $\left\{T, B_{1}, B_{2}\right\}$ if and only if it is in the form

$$
\alpha(s)=\left(\frac{k_{3}(s)}{k_{1}(s)}\left(\frac{1}{2} \int_{0}^{s} \frac{k_{3}(s)}{k_{1}(s)} d s+c\right)\right) T-\left(\frac{1}{2 k_{1}(s)}\right) B_{1}+\left(\frac{1}{2} \int_{0}^{s} \frac{k_{3}(s)}{k_{1}(s)} d s+c\right) B_{2}
$$

Case 10) We will investigate the conditions under which the spacelike curve α lies on the subspace spanned by $\left\{N, B_{1}, B_{2}\right\}$. In this case we can write

$$
\begin{equation*}
\alpha(s)=\lambda(s) N+\mu(s) B_{1}+\gamma(s) B_{2} \tag{3.21}
\end{equation*}
$$

for some differentiable functions λ, μ and γ of the parameter s. Differentiating (3.21) with respect to s and by using the Frenet equations we find that

$$
\begin{aligned}
\alpha^{\prime}(s) & =-\mu(s) k_{1}(s) T+\left(\lambda^{\prime}(s)-\gamma(s) k_{3}(s)\right) N+\left(\mu^{\prime}(s)-\gamma(s) k_{2}(s)\right) B_{1} \\
& +\left(\lambda(s) k_{2}(s)+\mu(s) k_{3}(s)+\gamma^{\prime}(s)\right) B_{2}
\end{aligned}
$$

Since $\left\{T, N, B_{1}, B_{2}\right\}$ is a Frenet frame we have the following equations.

$$
\left\{\begin{array}{c}
-\mu(s) k_{1}(s)=1 \tag{3.22}\\
\lambda^{\prime}(s)-\gamma(s) k_{3}(s)=0 \\
\mu^{\prime}(s)-\gamma(s) k_{2}(s)=0 \\
\lambda(s) k_{2}(s)+\mu(s) k_{3}(s)+\gamma^{\prime}(s)=0
\end{array}\right.
$$

From (3.22) we can write $\mu(s)=-\frac{1}{k_{1}(s)}$. From the equation $\gamma(s)=\frac{k_{1}^{\prime}(s)}{k_{1}^{2}(s) k_{2}(s)}$ and from the equation $\lambda(s) k_{2}(s)+\mu(s) k_{3}(s)+\gamma^{\prime}(s)=0$ we obtain

$$
\lambda(s)=\frac{k_{3}(s)}{k_{1}(s) k_{2}(s)}-\frac{k_{1}^{\prime \prime}(s) k_{1}(s) k_{2}(s)-k_{1}^{\prime}(s)\left(2 k_{1}^{\prime}(s) k_{2}(s)+k_{1}(s) k_{2}^{\prime}(s)\right)}{\left(k_{1}(s) k_{2}(s)\right)^{3}}
$$

So we have

$$
\begin{aligned}
\alpha(s) & =\left(\frac{k_{3}(s)}{k_{1}(s) k_{2}(s)}-\frac{k_{1}^{\prime \prime}(s) k_{1}(s) k_{2}(s)-k_{1}^{\prime}(s)\left(2 k_{1}^{\prime}(s) k_{2}(s)+k_{1}(s) k_{2}^{\prime}(s)\right)}{\left(k_{1}(s) k_{2}(s)\right)^{3}}\right) N \\
& -\left(\frac{1}{k_{1}(s)}\right) B_{1}+\left(\frac{k_{1}^{\prime}(s)}{k_{1}^{2}(s) k_{2}(s)}\right) B_{2}
\end{aligned}
$$

Thus we have the following theorem.

Theorem 3.10. A spacelike curve α in R_{1}^{4} lies on the subspace spanned by $\left\{N, B_{1}, B_{2}\right\}$ if and only if it is in the form

$$
\begin{aligned}
& \alpha(s)=\left(\frac{k_{3}(s)}{k_{1}(s) k_{2}(s)}-\frac{k_{1}^{\prime \prime}(s) k_{1}(s) k_{2}(s)-k_{1}^{\prime}(s)\left(2 k_{1}^{\prime}(s) k_{2}(s)+k_{1}(s) k_{2}^{\prime}(s)\right)}{\left(k_{1}(s) k_{2}(s)\right)^{3}}\right) N \\
&-\left(\frac{1}{k_{1}(s)}\right) B_{1}+\left(\frac{k_{1}^{\prime}(s)}{k_{1}^{2}(s) k_{2}(s)}\right) B_{2} \\
& \quad \text { REFERENCES }
\end{aligned}
$$

[1] A.C. Coken, and U. Ciftci, On the Cartan Curvatures of a Null Curve in Minkowski Spacetime, Geometriae Dedicate 114 (2005), 71-78.
[2] A. Fernandez, A. Gimenez, and P. Lucas, Null helices in Lorentzian space forms, Int. J. Mod. Phys. A. 16 (2001), 4845-4863.
[3] A. T. Ali, M. Onder, Some Characterizations of Rectifying Spacelike Curves in the Minkowski Space-Time, Global J of Sciences Frontier Research Math, Vol 12, Is 1, 2012 2249-4626
[4] C. Camci, K. Ilarslan, L. Kula, H.H. Hacisalihoglu, Harmonic Curvatures and Generalized Helices in E^{n}, Chaos,Solitions and Fractals 40 (2009), 2590-2596.
[5] K. Ilarslan, and O. Boyacioglu, Position vectors of a timelike and a null helix in Minkowski 3-space, Chaos,Solitions and Fractals (2008), 1383-1389.
[6] K. Ilarslan, Spacelike Normal Curves in Minkowski E_{1}^{3}, Turk. J. Math 29(2005), 53-63
[7] K. Ilarslan, E. Nesovic, M. Petrovic-Torgasev, Some Characterizations of Rectifying Curves in Minkowski 3-space, Novi Sad J Math 2003, 33(2), 23-32
[8] K. Ilarslan, E. Nesovic, Spacelike and timelike normal curves, , Publications de l'Institut Mathmatique (Beograd) Nouvelle serie, tome 85(99) (2009) 111-118.
[9] K. Ilarslan, E. Nesovic, Some characterizations of rectifying curves in the Euclidean space E^{4}., Turkish J. Math. 32 (2008), no. 1, 21-30
[10] K. Ilarslan, and E. Nesovic, Some characterizations of null osculating curves in the Minkowski space-time, Proceedings of the Estonian Academy of Sciences, 61, I (2012), 1-8.
[11] M. Onder, H. Kocayigit and M. Kazaz, Spacelike Helices in Minkowski 4-space, Ann. Univ. Ferrera 2010, 56, 335-343
[12] S. KELES, S. Y. PERKTAS and E. KILIC, Biharmonic Curves in LP-Sasakian Manifolds, Bulletin of the Malasyian Mathematical Society, (2) 33(2), 2010, 325-344
[13] M. A. Akgun, A. I. Sivridag, On The Null Cartan Curves of R_{1}^{4}, Global Journal of Mathematics, Vol. 1 No.1,2015,41-50
[14] M. A. Akgun, A. I. Sivridag, On The Characterizations of Timelike Curves in R_{1}^{4}, Global Journal of Mathematics, Vol. 2 No.2,2015,116-127
[15] M. A. Akgun, A. I. Sivridag, Some Characterizations of a Spacelike Curve in R_{1}^{4}, Pure Mathematical Sciences, Hikari Ltd., Vol. 4 No.1-4,2015,43-55

Inonu University, Science and Art Faculty, Department of Mathematics, MalatyaTURKEY

E-mail address: maakgun@hotmail.com
Inonu University, Science and Art Faculty, Department of Mathematics, MalatyaTURKEY

Inonu University, Science and Art Faculty, Department of Mathematics, MalatyaTURKEY

[^0]: 2000 Mathematics Subject Classification. 53A35, 53B30.
 Key words and phrases. Spacelike curve, Frenet frame, Minkowski spacetime.

