
Hacettepe Journal of Mathematics and Statistics
Volume 46 (6) (2017), 1113 – 1137

The Lindley family of distributions: properties and
applications

Selen Cakmakyapan∗† and Gamze Ozel‡

Abstract

In this paper, we propose a new class of distributions called the Lindley
generator with one extra parameter to generate many continuous dis-
tributions. The new distribution contains several distributions as sub-
models, such as Lindley-Exponential, Lindley-Weibull, and Lindley-
Lomax. Some mathematical properties of the new generator, including
ordinary moments, quantile and generating functions, limiting behav-
iors, some entropy measures and order statistics, which hold for any
baseline model, are presented. Then, we discuss the maximum likeli-
hood method to estimate model parameters. The importance of the
new generator is illustrated by means of three real data sets. Applica-
tions show that the new family of distributions can provide a better fit
than several existing lifetime models.
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1. Introduction
Statistical distributions are very useful in describing and predicting real world phenom-

ena. Numerous classical distributions have been extensively used over the past decades
for modeling data in several areas. Recent developments focus on definition of the new
families of distributions that extend well-known distributions and at the same time pro-
vide great flexibility in modelling data. Hence, several classes of distributions have been
introduced by adding one or more parameters to generate new distributions in the statis-
tical literature. The well-known generators are Marshall-Olkin generated family (MO-G)
by Marshall and Olkin [1], beta-G by Eugene et al. [2], Kumaraswamy-G (Kw-G) by
Cordeiro and de Castro [3], McDonald-G (Mc-G) by Alexander et al. [4], transformed-
transformer (T-X) family by Alzaatreh et al. [5], exponentiated T-X by Alzaghal et al.
[6], Weibull-G by Bourguignon et al. [7], exponentiated half-logistic by Cordeiro et al.
[8], Lomax-G by Cordeiro et al. [9], Zografos-Balakrishnan-G by Nadarajah et al. [10].

The Lindley distribution was introduced by Lindley [11] to analyze failure time data,
especially in applications modeling stress-strength reliability. The motivation of the
Lindley distribution arises from its ability to model failure time data with increasing,
decreasing, unimodal and bathtub shaped hazard rates. The Lindley distribution be-
longs to an exponential family and it can be written as a mixture of exponential and
gamma distributions. The distribution represents a good alternative to the exponential
failure time distributions that suffer from not exhibiting unimodal and bathtub shaped
failure rates [12]. The properties and inferential procedure for the Lindley distribution
were studied by Ghitany et al. [13, 14]. It is shown that the Lindley distribution is bet-
ter than the exponential distribution when hazard rate is unimodal or bathtub shaped.
Mazucheli and Achcar [15] also proposed the Lindley distribution as a possible alternative
to exponential and Weibull distributions.

The probability density function (pdf) of a Lindley random variable X, with scale
parameter θ is given by

h(x; θ) =
θ2

1 + θ
(1 + x) exp (−θx)(1.1)

and the corresponding cumulative distribution function (cdf) of X is

H(x; θ) = 1− 1 + θ + θx

1 + θ
exp(−θx)(1.2)

The Lindley distribution does not provide enough flexibility for analyzing different
types of lifetime data because of having only one parameter. To increase the flexibility
for modelling purposes it will be useful to consider further alternatives of this distribution.
Therefore, the aim of this study is to introduce a new family of distributions using the
Lindley generator. The term generator means that we have a different distribution F for
each baseline distribution G. Based on the transformer (T-X) generator of Alzaatreh et
al. [5], we propose a new wider class of continuous distributions called Lindley-G family
by integrating the Lindley density function having cdf given by

FLindley−G(x; θ, ξ) =

∫ − log[1−G(x;ξ)]

0

θ2

1 + θ
(1 + t) exp(−θt)dt

= 1−
[
1− θ

θ + 1
[log (1−G(x; ξ))]

]
[1−G(x; ξ)]θ(1.3)

where G(x;ξ) is a baseline cdf which depends on a (rx1) parameter vector ξ. The family
pdf reduces to
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fLindley−G(x; θ, ξ) = g(x; ξ) [1− log (1−G(x; ξ))] [1−G(x; ξ)]θ−1 θ2

θ + 1
(1.4)

where g(x; ξ) is the baseline pdf. Henceforth, let G be a continuous baseline distribution.
For each G distribution, we define the Lindley-G distribution with one extra parameter
θ defined by the pdf in (1.4). A random variable X with pdf (1.4) is denoted by X ∼
Lindley −G(θ, ξ).

We obtain the survival function corresponding to (1.3) as

SLindley−G(x; θ, ξ) = 1− F (x; θ, ξ)

=

[
1− θ

θ + 1
log [1−G(x; ξ)]

]
[1−G(x; ξ)] .(1.5)

Then, the hazard rate function (hrf) of X is given by

τLindley−G(x; θ, ξ) =
f(x; θ, ξ)

S(x; θ, ξ)

= θ2
g(x; ξ) [1− log (1−G(x; ξ))]

[θ + 1− θ [log (1−G(x; ξ))]] [1−G(x; ξ)]
.(1.6)

The rest of the paper is organized as follows. In Section 2, we present three new
generated distributions in the proposed family. We discuss the distributional properties
of the proposed family, including quantile function, limiting behaviors, moments and
generated functions in Section 3. Section 4 is devoted to the Renyi and Shannon entropies,
reliability function and order statistics. Maximum likelihood estimation of the model
parameters and the observed information matrix are presented in Section 5. In Section
6, applications to three real data sets are presented to illustrate the potentially of the
new family. Conclusion is given in Section 7.

2. Special Lindley-G distributions
The pdf in (1.4) allows greater flexibility of its tails and can be widely applied in

many areas of statistics. Here, we present and study some special cases of this family
because it extends several widely known distributions in the literature. The pdf is the
most tractable when the cdf G(x; ξ) and the pdf g(x; ξ) have closed-forms.

2.1. Lindley-Weibull distribution. Consider the Weibull distribution with density
and distribution functions given by g(x; a, b) = a

b

(
x
b

)a−1
exp

[
−
(
x
b

)a] and G(x; a, b) =

1−exp
[
−
(
x
b

)a] , respectively. Then, the Lindley-Weibull (LW) density function is given
by

f(x; θ, a, b) =
aθ2

b(θ + 1)

(x
b

)a−1 [
1 +

(x
b

)a]
exp

[
−
(x
b

)a
θ
]

(2.1)

where a is the shape parameter and b is the scale parameter. A random variable X with
pdf (2.2) is denoted by X ∼ LW (θ, a, b). For a = 1, it becomes the Lindley-Exponential
(LE) distribution.

The corresponding cumulative density and hazard rate functions are, for x ≥ 0, a > 0,
b > 0, θ > 0, respectively, given by

F (x; θ, a, b) = 1−
[
1 +

θ

θ + 1

(x
b

)a]
exp

[
−
(x
b

)a
θ
]
,(2.2)
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τ(x; θ, a, b) =
aθ2xa−1

ba(θ + 1) + θxa

[
1 +

(x
b

)a]
.(2.3)

Figure 1 displays plots for the probability density, cumulative distribution, survival
and hazard rate functions of the LW distribution for several parameter values. Figure
1 indicates that the pdf of LW has various shapes. Both unimodal and monotonically
decreasing shape appear possible. Monotonically decreasing shapes appear when a is
small. Figure 1 also shows that the hrf of LW can have very flexible shapes, such as
increasing, decreasing, upside-down bathtub.
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Figure 1. Probability density, cumulative density, hazard rate and
survival functions of the LW distribution for some arbitrary parameters

2.2. Lindley-Lomax distribution. Let X be a continuous random variable having a
Lomax distribution with shape parameter α > 0 and scale parameter σ > 0. Then, the
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pdf and cdf of the Lomax distribution are, for x ≥ 0, σ > 0, α > 0, respectively, given by

g(x;α, σ) =
α

σ

(
1 +

x

σ

)−(α+1)

(2.4)

G(x;α, σ) = 1−
(
1 +

x

σ

)−α
(2.5)

Note that standard Lomax distribution is obtained for σ = 1. Then, the cdf of
Lindley-Lomax (LL) by inserting (2.5) in (1.3) for x ≥ 0, σ > 0, α > 0, θ > 0 as

F (x; θ, α, σ) = 1−
[
1 +

θα

(θ + 1)
log
(
1 +

x

σ

)](
1 +

x

σ

)−αθ
(2.6)

f(x; θ, α, σ) =
θ2α

(θ + 1)σ

[
1 + α log

(
1 +

x

σ

)](
1 +

x

σ

)−(αθ+1)

(2.7)

where θ, α are scale and α is shape parameters. A random variable X with pdf (2.7)
is denoted by X ∼ LL(θ, α, σ). Note that the Lindley standard Lomax distribution is
the special case of (2.7) for σ = 1.

The hrf of LL distribution is given by

τ(x;σ, α, θ) =
θ2α

[
1 + α log

(
1 + x

σ

)][
(θ + 1 + θα) log

(
1 + x

σ

)]
(σ + x)

(2.8)

Plots for the probability density, cumulative density, hazard rate and survival functions
of the LL distribution for several parameter values are displayed in Figure 2. The LL
distribution given by (2.7) is much more flexible than the Lindley distribution and can
allow for greater flexibility of the tails.

The pdf of the LL has unimodal and monotonically decreasing shapes. Figure 2 also
shows that the LL distribution has decreasing hrf for small values of α and upside down
bathtub hrf for the large values of α and θ.

3. Statistical properties
In this section, we study the distributional properties of the Lindley-G. In particular, if

X ∼ Lindley−G(θ, ξ), then the shapes of the pdf, quantile function, moments, skewness,
kurtosis are derived and studied in detail.

3.1. Useful expansions. Despite the fact that the cdf and pdf of Lindley-G require
mathematical functions that are widely available in modern statistical packages, fre-
quently analytical and numerical derivations take advantage of power series for the pdf.
We use the following expansion of Gradshteyn and Ryzhik [16] for a power series raised
to any positive integer n. (

∞∑
i=0

aiu
i

)n
=

∞∑
i=0

cn,iu
i(3.1)

where cn,i,i = 1, 2, ..., for cn,0 = an0 , are easily obtained from the recurrence equation

cin = (ia0)
−1

i∑
m=1

[m(n+ 1)− i] amcn,i−m

In this study, we also consider the following expansions:
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Figure 2. Probability density, cumulative density, hazard rate and
survival functions of the LL distribution for some arbitrary parameters.

(1− z)t =
∞∑
i=0

(−1)i
(
t
i

)
zi, |z| < 1,(3.2)

log(1− z) = −
∞∑
i=0

zi+1

i+ 1
, |z| < 1,(3.3)

log(1 + z) = −
∞∑
i=0

(−1)i+1zi+1

i+ 1
, |z| < 1.(3.4)

The mathematical relation given above will be useful to obtain moments and entropy
function of the Lindley-G family.
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3.2. Other representations. We now state some useful expansions for the pdf of
Lindley-G family. If X ∼ Lindley − G(θ, ξ), we obtain a double-mixture form of the
Lindley-G family using expansions in (3.2) and (3.3) as

fLindley−G(x; θ, ξ) =
θ2

θ + 1
g(x; ξ)

∞∑
k=0

wkG
k(x; ξ)(3.5)

+
θ2

θ + 1
g(x; ξ)

∞∑
k,j=0

wkwjG
k+j+1(x; ξ)

where the coefficient is given by wk = (−1)k
(
θ − 1
k

)
.

Exponentiated-G (Exp-G) distribution is a very popular distribution family and have
been studied by many authors in recent years, see Mudhokar et al. [17]-[19] for exponen-
tiated Weibull, Gupta et al. [20] for exponentiated Pareto, Gupta and Kundu [21]-[23]
for generalized exponential distributions and Nadarajah and Gupta [24] for exponential
gamma distribution. Kumaraswamy-G (Kw-G) is another popular distribution family
and also can be expressed as the Exp-G distribution. The various new distributions have
been defined as a member of Kw-G family. Among these, Cordeiro et al. [25] investi-
gated Kumaraswamy Gumbel distribution. Pascoa et al. [26] and Paranáıba et al. [27]
studied Kumaraswamy generalized gamma and Kumaraswamy Burr XII distributions,
respectively. Further, Nadarajah et al. [28] studied several mathematical properties of
Kw-G and Lemonte et al. [29] defined exponentiated Kumaraswamy distribution and its
log-transform.

For an arbitrary baseline cdf G(x), a random variable is said to have the Exp-G
distribution with parameter a > 0, say X ∼ Exp−G(a, ξ), if its pdf is given by

hExp−G(x, a, ξ) = ag(x, ξ)Ga−1(x, ξ)(3.6)

Cordeiro and de Castro [3] introduced the Kw-G distribution with the pdf fKw−G(x)
given by

fKw−G(x, a, ξ) = agb(x, ξ)Ga−1(x, ξ) [1−Ga(x, ξ)]b−1(3.7)

Nadarajah et al. [30] was expressed (3.7) in the form of the Exp-G distribution as

fKw−G(x, a, ξ) = a−1
∞∑
k=0

zk
k + 1

hExp−G (x, a(k + 1), ξ)(3.8)

where zk = (−1)kab
(
b− 1
k

)
and hExp−G(x, a(k+1), ξ) is the pdf of the Exp−G(x, a(k+

1), ξ) distribution.
The pdf of the Lindley-G family can be derived using the concept of exponential and

Kumaraswamy distributions. By this way, we can use the statistical properties of Exp-G
and Kw-G distributions.

Using some series expansion, we obtain the pdf of Lindley-G family as a combination
of Exp-G distribution which is given by
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fLindley−G(x; θ, ξ) =
θ2

θ + 1

∞∑
k=0

hExp−G (x; (k + 1), ξ)wk
k + 1

+
θ2

θ + 1

∞∑
k,j=0

hExp−G (x; (k + j + 2), ξ)wkwj
k + j + 2

(3.9)

We also obtain the expression for the pdf of Lindley-G as a linear combination of
Kw-G density function as

fLindley−G(x; θ, ξ) =
θ2

θ + 1
fKw−G(1, θ, ω)

+
θ2

θ + 1

∞∑
j=0

wjfKw−G

(
j + 1

k + 1
+ 1, θ, ω

)(
j + 1

k + 1
+ 1

)−1

(3.10)

3.3. Limiting behaviors. We seek to investigate the behavior of the probability den-
sity, cumulative density, survival and hazard rate functions as x→ 0 and as x→∞.

Proposition 1. The limiting behaviors of (1.3), (1.4), (1.5) and (1.6) as x → 0 are
given by

fLindley−G (x; θ, ξ)− θ2

θ + 1
g (x; ξ) as x→ 0,

FLindley−G (x; θ, ξ)− 0 as x→ 0,

SLindley−G (x; θ, ξ)− 1 as x→ 0,

τLindley−G (x; θ, ξ)− θ2

θ + 1
g (x; ξ) as x→ 0.

Note that the asymptotes of (1.3), (1.4), (1.5) and (1.6) as x→∞ behave like Lindley
distribution.

3.4. Shapes. The shapes of the pdf in (1.4) can be described analytically. The critical
points of the pdf are the roots of (3.11)

g
′
(x)

g(x)
[1− log (1−G(x))] +

g(x)

G(x)
= (θ − 1)

g(x)

(1−G(x))
.(3.11)

If is a root of (3.11), then it corresponds to a local maximum, a local minimum or a point
of inflexion depending on whether λ(x0) < 0, λ(x0) > 0 or λ(x0) = 0, where

λ(x0) =
g
′′
(x) [1− log (1−G(x))]

g(x)
+

g
′
(x)

(1−G(x))
−

[
g
′
(x)
]2

[1− log (1−G(x))]

g2(x)
(3.12)

+
g
′
(x)

G(x)
− g2(x)

G2(x)
− (θ − 1)

[
g
′
(x)

(1−G(x))
+

g2(x)

(1−G(x))2

]
.
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3.5. Quantile function. Quantile functions are in widespread use in general statistics
and often find representations in terms of lookup tables for key percentiles. Let X denote
a Lindley-G random variable. The quantile function, Q(u), 0 < u < 1, for the T-X family
of distributions is computed by using the formula of Alzaatreh et al. [5] as

Q(u) = F−1 [1− exp
(
−H−1(u)

)]
,(3.13)

H−1(u) = −θ + 1 +W [(u− 1)(θ + 1) exp(−(θ + 1))]

θ
(3.14)

where H−1(u) is the inverse of the Lindley distribution function and W (.) is Lambert
function.

We can also use (3.14) for simulating the Lindley-G random variable. Let U be a
uniform variable on the unit interval (0, 1). Thus, by means of the inverse transformation
method, we also consider the random variable X given by X = F−1[1− exp(−H−1(u))].
In particular, the median of the Lindley-G distribution can be written as X = F−1[1−
exp(−H−1(0.5))].

Skewness measures the degree of the long tail and kurtosis is a measure of the degree
of tail heaviness. For the Lindley-G family, Bowley’s skewness can be computed by using
quantile function in (3.7) as

S =
Q(3/4)− 2Q(1/2) +Q(1/4)

Q(3/4)−Q(1/4)
(3.15)

K =
Q(7/8)−Q(5/8) +Q(3/8)−Q(1/8)

Q(6/8)−Q(2/8)
(3.16)

where Q(.) represents the quantile function. When the distribution is symmetric, S = 0
and when the distribution is right (or left) skewed, S > 0 (or S < 0). As K increases,
the tail of the distribution becomes heavier. These measures are less sensitive to outliers
and they exist even for distributions without moments.

We present skewness and kurtosis of the LW and LL distributions for various values
of parameters in Table 1. Table 1 reveals that for fixed b and θ, the kurtosis initially
decreases and thereafter increases in Case 1. Besides, the skewness decreases for fixed b
and θ in Case 1 when a increases While a is from 0.5 to 1 or a is greater than 4, the LW
distribution has positive kurtosis so it is called as leptokurtic distribution. For a = 2.5
or a = 4, we obtain negative kurtosis and platykurtic distribution. Table 1 also reveals
that the skewness increases when b increases for fixed a and θ in Case 2. The kurtosis
does not vary for b > 2.5 in Case 2 for fixed a and θ. It can be concluded that the
parameter b does not effect on the kurtosis in Case 2. Note that we have leptokurtic
and left skewed distribution in Case 2. Especially, the kurtosis is almost zero for and the
distribution is called as mesokurtic. For fixed a and b, the skewness and kurtosis decrease
when θ increases in Case 3. The LW distribution has more rounded peak and thinner
tails while θ increases. In Case 4, the kurtosis decreases and the skewness increases when
α increases for fixed σ and θ. The parameter σ does not effect on the kurtosis and while
σ increases, the skewness decreases in Case 5. It can be noticed from Table 1 that the
kurtosis decreases as θ increases. While θ increases, the effect on the kurtosis of the
change in θ parameter decreases. Conversely, the effect on the skewness of the change
in θ parameter decreases. Table 1 indicates that the LL distribution is right skewed and
leptokurtic for all selected values of the parameters.
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Table 1. Kurtosis and skewness of the LW and LL distributions for
various values of parameters.

LW Distribution LL Distribution
a b θ K S α σ θ K S

C
as
e
1

0.5 5 10 78.62528 181.4882

C
as
e
4

0.5 5 10 87.62863 0.40513
0.8 5 10 12.146 15.82786 0.8 5 10 20.65822 2.07005
1 5 10 5.73755 6.18065 1 5 10 15.1531 4.40341
2.5 5 10 -0.16491 0.36431 2.5 5 10 8.186753 8.4547
4 5 10 -0.25576 -0.12587 4 5 10 7.140732 3.64231
10 5 10 0.58162 -3.37595 10 5 10 6.255138 5.98153
20 5 10 1.28433 -22.4142 20 5 10 5.98975 48644.42

C
as
e
2

10 0.5 5 0.00686 -2733.558

C
as
e
5

10 0.5 5 6.411015 595912.6
10 0.8 5 0.60125 -686.1663 10 0.8 5 6.407388 145478
10 1 5 0.61113 -351.3172 10 1 5 6.407437 74484.5
10 2.5 5 0.61058 -22.4843 10 2.5 5 6.407439 4767.008
10 4 5 0.61058 -5.48933 10 4 5 6.407439 1163.82
10 10 5 0.61058 -0.35132 10 10 5 6.407439 74.4845
10 20 5 0.61058 -0.04391 10 20 5 6.407439 9.31056

C
as
e
3

5 10 0.5 0.2732 -0.01896

C
as
e
6

5 10 0.5 * *
5 10 0.8 0.14226 -0.02122 5 10 0.8 * *
5 10 1 0.08343 -0.02226 5 10 1 80.94593 0.01918
5 10 2.5 -0.07289 -0.02817 5 10 2.5 10.66335 0.71234
5 10 4 -0.10265 -0.03374 5 10 4 8.97689 3.95326
5 10 10 -0.11825 -0.05397 5 10 10 6.829499 90.4188
5 10 20 -0.1196 -0.08121 5 10 20 6.430927 843.1556

*The integral is probably divergent
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Figures 3 and 4 are given to show which parameters lead to a particular properties of
the distributions. Figure 3 shows that kurtosis and skewness decrease and an exponential
decay shapes occurs when increases for fixed other parameters (Case 1). On the other
hand, exponential growths occur for kurtosis and skewness as increases (Case 2). If
increases while other parameters are fixed (Case 3), kurtosis has an exponential decay
shape, whereas skewness increases almost linearly. The shape changes for the LL pdf
can be seen in Figure 4. The increase of parameter causes an exponential decay on
kurtosis. Skewness is effected slightly by the increase of parameter to a point, then
skewness increases almost linearly (Case 4). When increases for fixed other parameters
(Case 5), kurtosis and skewness decrease. The increase of parameter in Case 6 causes
decreasing kurtosis but increasing skewness.

3.6. Moments. Some of the most important characteristics of a distribution can be
studied through moments. Let G(x; ξ) = u and G−1(x; ξ) = Q(u) = x, then the nth
moment µ

′
n = E(xn), n = 1, 2, ..., can be obtained as

µ
′
n = E(Xn) =

∫ ∞
0

xn
g(x; ξ)

1−G(x; ξ)
h(− log [1−G(x; ξ)])dx

=
θ2

θ + 1

∫ 1

0

Qn(u)(1− u)θ−1 [1− log (1− u)] du

=
θ2

θ + 1

∫ 1

0

Qn(u)

[
∞∑
k=0

(−1)k
(
θ − 1

k

)
uk
][

1 + u

∞∑
i=0

ui

i+ 1

]

=
θ2

θ + 1

{
∞∑
i=0

(−1)k
(
θ − 1

k

)∫ 1

0

Qn(u)ukdu

}

+
θ2

θ + 1

{
∞∑
k=0

∞∑
i=0

(−1)k

i+ 1

(
θ − 1

k

)∫ 1

0

Qn(u)uk+i+1du

}

=
θ2

θ + 1

{
∞∑
i=0

(−1)k
(
θ − 1

k

)
I(n, k) +

∞∑
k=0

∞∑
i=0

(−1)k

i+ 1

(
θ − 1

k

)
I(n, k + i+ 1)

}
(3.17)

where I(n, k) =
∫ 1

0
Qn(u)ukdu . Further, the central moments (µn) and cumulants

(κn) of the X can be obtained, respectively, as

µn =

r∑
k=0

(−1)k
(
n

k

)
µ
′
1

k
µ
′
n−k and κn = µn

′
−

r∑
k=0

(−1)k
(
n

k

)
µ
′
1

k
µ
′
n−k(3.18)

where κ1 = µ
′
1, κ2 = µ

′
2 − µ

′
1

2
, and κ3 = µ

′
3 − 3µ

′
2µ
′
1 + 2µ

′
1

3
, etc. The skewness

γ1 = κ3/κ
3/2
2 and kurtosis γ2 = κ4/κ

2
2 can also been computed from the second, third

and fourth cumulants.
First four ordinary moments of the LW and LL distributions for various values of

parameters presented in Tables 2 and 3, respectively.

3.7. Moment generating function. The moment generating function (mgf) is widely
used as an alternative way to analytical results compared with working directly with the
pdf and cdf. Let G(x; ξ) = u and G(x; ξ)−1 = Q(u) = x, then we give a formula for the
mgf M(t) = E(etX) of X as
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Table 2. First four moments of the LW distribution for various values
of a, b and θ.

a b θ µ
′
1 µ

′
2 µ

′
3 µ

′
4

0.5 5 10 0.118182 0.081818 0.139091 0.435273
5 5 10 2.949293 9.151767 29.58539 98.96873
20 5 10 4.357902 19.06387 83.69372 368.6616
10 0.5 5 0.411711 0.171913 0.007268 0.003107
10 5 5 4.117108 17.19131 72.68229 310.7231
10 20 5 16.46843 275.0609 4651.666 79545.11
5 10 0.5 11.95325 148.2952 1896.042 24865.04
5 10 5 6.876524 49.71569 374.2077 2912.798
5 10 20 5.091351 27.27943 152.3065 880.1200

Table 3. First four moments of the LL distribution for various values
of α, σ and θ.

α σ θ µ
′
1 µ

′
2 µ

′
3 µ

′
4

0.5 5 10 1.392045 5.271464 46.63826 1216.856
5 5 10 0.111507 0.025244 0.000871 0.00408

20 5 10 0.027421 0.001501 0.000123 0.000014
10 0.5 5 0.011939 0.000286 0.00001 0.000005
10 5 5 0.119395 0.028565 0.010319 0.005021
10 20 5 0.477579 0.457034 0.60436 1.285388
5 10 1 4.0625 40.97222 927.0833 62083.33
5 10 5 0.489005 0.490859 0.762927 1.639918
5 10 20 0.105869 0.022607 0.007305 0.003176

µ
′
n = E(etX) =

∫ ∞
0

etX
g(x; ξ)

1−G(x; ξ)
h(− log [1−G(x; ξ)])(3.19)

=
θ2

θ + 1

∫ ∞
0

etQ(u)(1− u)θ−1 [1− log(1− u)] du

=
θ2

θ + 1

∫ ∞
0

etQ(u)

[
∞∑
k=0

(−1)k
(
θ − 1

k

)
uk
][

1 + u

∞∑
i=0

ui

i+ 1

]

=
θ2

θ + 1

{
∞∑
k=0

(−1)k
(
θ − 1

k

)
Ie(t, k) +

∞∑
k=0

∞∑
i=0

(−1)k

i+ 1

(
θ − 1

k

)
Ie(t, k + i+ 1)

}

where Ie(t, k) =
∫∞
0
etQ(u)uk

4. Other measures
4.1. Entropies. The entropy of a random variable X with density function f(x) is a
measure of variation of the uncertainty. Two popular entropy measures are the Renyi
and Shannon entropies [31],[32]. Here, we derive expressions for the Renyi and Shannon
entropies when X is a Lindley-G random variable. The Renyi entropy of a random
variable with pdf f(x) is defined as
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IR(γ) =
1

1− γ log

∫ ∞
0

fγ(x)dx,(4.1)

for γ > 0 and γ 6= 1. Using the power series in (3.1) and also the generalized binomial
expansions in (3.2) and (3.3), we obtain

∫ ∞
0

fγLindley−G(x; θ, ξ)dx =

∫ ∞
0

θ2γ

(θ + 1)γ
[1− log (1−G(x; ξ))]γ

× [1−G(x; ξ)]γθ−γ gγ(x; ξ)dx

=
γθ2γ

(θ + 1)γ
Dj,k,iIi,k

where Dr,k,j,i =
∑γ
r=0

∑∞
k=0

∑k
j=0

∑∞
i=0

(
γ
r

)(
k−r
k

)(
k
j

)(
γθ−γ
i

) (−1)j+k+irpj.k
r−j ,

Ii,k =
∫∞
0
Gi+k+γ(x)gγ(x)dx and pj,k = k−1∑k

m=1 [k −m(j + 1)] (−1)m+1/(m+1)pj,k−m
for k = 1, 2, ..., pj,0=1. Then, the Renyi entropy of the Lindley-G distribution is given by

IR(γ) =
1

1− γ log

[
γθ2γ

(θ + 1)γ
Dj,k,iIi,k

]
(4.2)

The Shannon entropy of a random variable X is defined by E[− log f(X)]. It is the
special case of Renyi entropy when γ > 1. Using the pdf of Lindley-G family, we obtain
− log fLindley−G(x; θ, ξ) = − log [1− log (1−G(x; ξ))]−(θ−1) log (1−G(x; ξ))− log θ2+
log θ2 + log(θ + 1)− log (g(x; ξ)) and for the Lindley-G family direct calculation yields

E [− log fLindley−G(X; θ, ξ)] = −
∞∑
i=0

∞∑
k=0

(−1)i+1

i+ 1
ci+1,kE

[
Gk+i(X; ξ)

]
(4.3)

+ (θ − 1)

∞∑
k=0

1

k + 1
E
[
Gk+1(X; ξ)

]
− log θ2 + log (θ + 1)− E [log (g(X; ξ))]

where ci+1,k = (ka0)
−1∑k

m=1 [m(i+ 2)− k] amci+1,k−m and ak = (k + 1)−1.

4.2. Reliability. In the context of reliability, the stress-strength model describes the life
of a component which has a random strength X1 that is subjected to a random stress X2.
The component fails at the instant that the stress applied to it exceeds the strength, and
the component will function satisfactorily whenever X1 > X2 . Hence, R = Pr(X1 > X2)
is a measure of component reliability. Here, we obtain the reliability function R when
X1 ∼ Lindley−G(θ1, ξ) and X2 ∼ Lindley−G(θ1, ξ) are independent random variables.
Probabilities of this form have many applications especially in engineering concepts.

Let fi denote the pdf of Xi and Fi denote the cdf of Xi for i = 1, 2, then we obtain

f1(x)F2(x) =
θ21g(x;ξ)

θ1+1

{
[1−G(x; ξ)]θ1−1 − log [1−G(x; ξ)] [1−G(x; ξ)]θ1−1

}
− θ

2
1g(x;ξ)

θ1+1

{
[1−G(x; ξ)]θ1+θ2−2 −

(
θ2
θ2+1

− 1
)
log [1−G(x; ξ)]

× [1−G(x; ξ)]θ1+θ2−2

}
+

θ21
θ1+1

{
θ2
θ2+1

g(x; ξ) log [1−G(x; ξ)]2 [1−G(x; ξ)]θ1+θ2−2
}

(4.4)

From (4.4), the reliability function for the Lindley-G family is given by
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R =

∫ ∞
0

f1(x)F2(x)dx(4.5)

=
θ21

θ1 + 1

{
− 1

θ1
−
∞∑
i=0

∞∑
j=0

(−1)j+1

(ji+ j + 2)(i+ 1)

(
θ1 − 1

j

)}

− θ21
(θ1 + 1)2

{
−θ2 − θ1 − 1

θ1 + θ2 − 2

∞∑
i=0

∞∑
j=0

(−1)j+1

(ji+ j + 2)(i+ 1)

(
θ1 + θ2 − 2

j

)}

+
θ21

θ1 + 1

{
θ2

θ2 + 1

∞∑
i=0

∞∑
j=0

(−1)i
(
k

i

)
c2,j

i+ j + 3

}

where c2,j = (ja0)
−1∑j

m=1(3m− j)amc2,j−m and aj = (j + 1)−1.

4.3. Order statistics. Order statistics make their appearance in many areas of statis-
tical theory and practice. They enter in the problems of estimation and hypothesis tests
in a variety of ways. Therefore, we now discuss some properties of the order statistics
for the proposed class of distributions.

Let Xi:n denote the ith order statistic. Then, the pdf fi:n(x) of the ith order statistic
for a random sample X1, X2, ..., Xn from F (x) distribution is given by

fi:n(x) =
n!

(i− 1)!(n− i)!f(x)F (x)i−1 [1− F (x)]n−i(4.6)

=
n!

(i− 1)!(n− i)!

n−i∑
j=1

(
n− i
j

)
f(x)F j+i−1(x)

Using (3.2) and (3.3), the pdf of Xi:n for the Lindley-G family can be expressed as

fi:n(x) =
n!

(i− 1)!(n− i)!

n−i∑
j=0

(−1)j
(
n− i
j

)
(4.7)

×

(1 + ∞∑
k=1

Gk(x)

k

)(θ−1) θ−1∑
l=0

(−1)l
(
θ − 1

l

)
Gl(x)

θ2

θ + 1
g(x)


×
i+j−1∑
z=0

(−1)z
(
i+ j − 1

z

)

×

{[
θ∑

w=0

(−1)w
(
θ

w

)
Gw(x)

]z (
1 +

θ

θ + 1

∞∑
s=0

Gs+1(x)

s+ 1

)z}
where f(.) and F (.) are the probability density and cumulative density functions of the
Lindley-G distribution, respectively.

5. Maximum likelihood estimation
Several approaches for parameter point estimation have been proposed in the literature

but the maximum likelihood method is the most commonly employed. The maximum
likelihood estimates (MLEs) enjoy desirable properties and can be used for constructing
confidence intervals. Large sample theory for these estimates delivers simple approxima-
tions that work well infinite samples. Statisticians often seek to approximate quantities



1129

such as the density of a test statistic that depends on the sample size in order to ob-
tain better approximate distributions. The resulting approximation for the MLEs in
distribution theory is easily handled either analytically or numerically.

Let x1, x2, ..., xn be observed values from the Lindley-G distribution with parameters
θ and ξ. The likelihood function for (θ, ξ) is given by

L(θ; ξ) =

n∏
i=1

{
θ2

θ + 1
[1− log (1−G(xi; ξ))] (1−G(xi; ξ))

θ−1 g(xi; ξ)

}
.

The log-likelihood function of the parameters (θ, ξ) can be expressed as

logL = n [2 log θ − log(θ + 1)] +

n∑
i=1

log [1− log (1−G(xi; ξ))](5.1)

+ (θ − 1)
n∑
i=1

log [1−G(xi; ξ)] +
n∑
i=1

log [g(xi; ξ)]

The log-likelihood function can be maximized either directly by using SAS (PROC
NLMIXED) or Ox program (sub-routine MaxBFGS) [33] or by solving the nonlinear
likelihood equations obtained by differentiating (5.1). The first derivatives of logL with
respect to parameters θ and ξ are

∂ logL
∂θ

=
2n

θ
− n

θ + 1
+

n∑
i=1

log [1− F (xi; ξ)] ,

∂ logL
∂ξ

=

n∑
i=1

1

[1− log (1−G(xi; ξ))] [1−G(xi; ξ)]

∂G(xi; ξ)

∂ξ

−(θ − 1)

n∑
i=1

1

[1−G(xi; ξ)]

∂G(xi; ξ)

∂ξ
.

The MLEs of θ and ξ, say θ̂ and ξ̂ , are the simultaneous solutions of the equations
∂ logL
∂θ

= 0, ∂ logL
∂ξ

= 0. Maximization of (5.1) can be performed by using nlm, ade-
quacymodel or optimize in R statistical package. For interval estimation of (θ, ξ) and
hypothesis tests, we require the observed information matrix. The observed information
matrix for (θ, ξ) can be determined as

I =

[
I11 I12
I21 I22

]
where

I11 =
∂ logL

∂θ2
=
−2n
θ2

+
n

(θ + 1)2
,

I22 =
∂ logL

∂ξ2
=

n∑
i=1

log [1−G(xi; ξ)]

[1− log (1−G(xi; ξ))]
2 [1−G(xi; ξ)]

2

(
∂G(xi; ξ)

∂ξ

)

− (θ − 1)

n∑
i=1

[
1

[1−G(xi; ξ)2]

∂G(xi; ξ)

∂ξ
+
∂2G(xi; ξ)

∂ξ2

]

I12 =
∂2 logL

∂θ∂ξ
= −

n∑
i=1

1

[1− F (xi; ξ)]

∂F (xi; ξ)

∂ξ
.



1130

For large n, distribution of (θ − θ̂, ξ − ξ̂) can be approximated by a (r + 1) multivariate
normal distribution with zero means and variance-covariance matrix I−1. Some statistical
properties of (θ̂, ξ̂) can be derived based on this normal approximation.

6. Application
In this section, we analyze three real data sets to demonstrate the performance of the

LW and LL distributions in practice. We obtained the data sets from the Turkish State
Meteorological Service (http://www.mgm.gov.tr/en-us/forecast-5days.aspx). First, we
describe the data sets. Then, we fit some distributions to the data sets using MLE and
the aim is to compare proposed distributions with several kind of distributions.

The model selection is carried out using the Akaike information criterion (AIC), Con-
sistent Akaike information criteria (CAIC), Bayesian information criterion (BIC), and
Hannan-Quinn information criterion (HQIC) given by

AIC = −2 logL+ 2p,(6.1)

CAIC = −2 logL+
2pn

n− p− 1
,

BIC = −2 logL+ p logn,

HQIC = −2 logL+ 2p log(logn),

where p is the number of the model parameters and n is the sample size. The model
with minimum AIC (or CAIC, BIC, and HQIC) value is chosen as the best model to fit
the data.

Finally, we give the histograms of the data sets and plot the fitted density functions
to obtain a visual comparison of the adjustments of the models.

6.1. Particulate matter data. The considered first data set is corresponding to daily
atmospheric particulate matter (PM10) observations. PM10 is microscopic solid or liquid
matter suspended in the Earth’s atmosphere. PM10 is formed by the mixture of oil,
gasoline, and diesel fuel combustions. This pollutant is analyzed in this study because
it may indicate a much higher health risk despite its low representation when compared
to gas pollutants. It enters the body exclusively through the respiratory system and
its effects depend on whether or not it enters the respiratory tract, with the degree of
penetration depending on particle size [34]. Kocaeli is one of the most industrialized cities
of Turkey. Many industrial facilities in terms of air pollution, constitute a risk. Because
of Kocaeli’s location, which is on the junction of Turkey’s whole motorway transport,
increases the importance of this issue. Hence, the analysis of PM10 is important for
Kocaeli.

The daily PM10 values are measured and 683 observations are recorded for Kocaeli-
Dilovasi station. The period of the data set is between 2012 and 2015.

The descriptive statistics of the PM10 data is given in Table 3. Table 3 indicates that
the data has positive skewness and kurtosis. Note that the right tail is longer, the mass of
the distribution is concentrated on the left of the figure and it has a peaked distribution.

We fit the LW distribution to the data sets using MLE and compared the proposed
distribution with W (Weibull), L (Lomax), SL (Standard Lomax), E (Exponential) and
Lindley distributions. We present the results of AIC, CAIC, BIC, and HQIC statistics
for the models in Table 4. These results show that the LW distribution has the lowest
AIC, CAIC, BIC and HQIC values among all the fitted models, and so it could be chosen
as the best model.

We obtain the MLEs of the model parameters for PM10 data in Table 5.
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Table 4. Descriptive statistics of the PM10 data.

Mean 89.34261
Standard Deviation 44.81
Median 76
Trimmed Mean 82.74
Median Absolute Deviation 31.13
Minimum 23
Maximum 390
Range 367
Skewness 1.72478
Kurtosis 4.54262
Standard Error 1.71

Table 5. The measures AIC, CAIC, BIC, and HQIC for PM10 data.

Distribution AIC CAIC BIC HQIC
LW 6946.458 6946.493 6960.037 6951.713
W 7003.099 7003.116 7012.152 7006.602
Lindley 7130.332 7130.337 7134.858 7132.083
E 7504.726 7504.731 7509.252 7506.477
L 7506.757 7506.775 7515.81 7510.261
SL 9406.102 9406.108 9410.629 9407.854

Table 6. The MLEs of the models for PM10 data.

Distribution Estimated Parameters
LW(a, b, θ) (1.54074828, 6.53244086, 0.03192352)
W(a, b) (2.119833, 101.312713)
Lindley(θ) (0.02215732)
E(λ) (89.34252)
L(α, σ) (16164.71, 1444141.14)
SL(α) (0.2271563)

Finally, we obtain a density plot in Figure 5 to compare the fitted densities of the
models with the empirical histogram of the observed data. Figure 5 shows that the fitted
density for the LW distribution (the black one) is closer to the empirical histogram than
the fits of the other distributions.

6.2. Sulfur dioxide data. Sulfur dioxide (SO2) is known to be one of the combustion
end products of sulfur containing fossil fuels. The major health impact of SO2 include
effects on breathing, respiratory illness, weakness of lung defenses, increase in the effects
of existing respiratory and cardiovascular disease, and death [35]. Explanations of effects
of pressure, temperature, and wind speed on the samplers for SO2 has been reported
in many studies [36],[37]. In particular, cities with heavy industrial activities have high
levels of SO2 concentrations. With a population of over one million, Bursa is one of the
most crowded cities in Turkey and has heavy industry consisting of automotive, textile,
and food industries. Due to insufficient ventilation and high population and industrial
densities, Bursa has a potential for serious air pollution problems. Hence, the estimation
of SO2 measures is important for Bursa. For the second application, we consider a real
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Figure 5. Fitted densities of the distributions for the PM10 data.

data set corresponding to sulfur dioxide (SO2) measure in Bursa (in days). The recorded
652 observations are between 2012 and 2015. The descriptive statistics of the SO2 data is
given in Table 6. As seen in Table 6, the data is skewed to the right and positive kurtosis
indicates a peaked distribution.

Table 7. Descriptive statistics of SO2 data.

Mean 7.07
Standard Deviation 7
Median 4
Trimmed Mean 5.66
Median Absolute Deviation 2.97
Minimum 0
Maximum 48
Range 48
Skewness 2.09
Kurtosis 5.15
Standard Error 0.27

We fit the SO2 data with proposed LL and LSL (Lindley-Standard Lomax), EL (Ex-
tended Lomax), L (Lomax), SL (Standard Lomax), Lindley and E (Exponential) distri-
butions.

We obtained AIC, CAIC, BIC, and HQIC statistics to compare models in Table 7.
These results show that the LL distribution has the lowest AIC, CAIC, BIC and HQIC
values among all the fitted models, and so it could be chosen as the best model.

Here, for more discussion, we obtain the MLEs of parameters for SO2 data in Table
8.
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Table 8. The measures AIC, CAIC, BIC, and HQIC for SO2 data.

Distribution AIC CAIC BIC HQIC
LL 3775.281 3775.318 3788.721 3780.493
LSL 4064.214 4064.2324 4073.174 4067.689
EL 3791.675 3791.694 3800.635 3795.150
L 3859.221 3859.240 3868.182 3862.696
SL 4432.379 4432.385 4436.859 4434.116
Lindley 3858.727 3858.733 3863.207 3860.464
E 3857.110 3857.116 3861.590 3858.847

Table 9. The MLEs of the models for SO2 data.

Distribution Estimated Parameters
LL(α, σ, θ) (158.680729,10.673049,0.027630)
LSL(α, θ) (64.487807, 0.017045)
EL(α, λ) (50.051436, 2.245115)
L(α, σ) (163.9941, 1153.1473)
SL(α) (0.553628)
Lindley(θ) (0.2540985)
E(λ) (7.073619)

The histogram of SO2 data and plots of the fitted distributions are shown in Figure
6. We conclude from Figure 6 that the LL distribution yield the best fit and hence can
be adequate for the data.
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Figure 6. Fitted densities of the distributions for the SO2 data.

6.3. Ozone data. The serious air quality problems, specifically inverse health effects,
have been experienced in megacities of both developing and developed countries due to
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the exposure to high concentrations of ozone (O3). Istanbul is the center of industry,
economics, finance and culture in Turkey. It has a serious air pollution problem due
to domestic heating, industry and traffic. O3 is an important pollutant produced by a
series of complicated photochemical reactions in Istanbul. Therefore, the estimation of
O3 levels is vital for Istanbul.

The third data set represents 592 daily ozone (O3) measures from 2012 to 2015 in
Kadikoy, Istanbul.

Table 9 shows the descriptive statistics of the O3 data. Table 9 shows that the data
is skewed to the right and positive kurtosis indicates a peaked distribution.

Table 10. Descriptive statistics of O3 data.

Mean 13.72
Standard Deviation 11.59
Median 10
Trimmed Mean 11.97
Median Absolute Deviation 8.9
Minimum 0
Maximum 59
Range 59
Skewness 1.32
Kurtosis 1.41
Standard Error 0.48

The values of AIC, CAIC, BIC, and HQIC are presented in Table 10. Based on Table
10, we obtain that the LL model gives the lowest values for the AIC, CAIC, BIC, and
HQIC for O3 data.

Table 11. The measures AIC, CAIC, BIC, and HQIC for O3 data.

Distribution AIC CAIC BIC HQIC
LL 4252.959 4253.000 4266.110 4258.082
LSL 4671.969 4671.989 4680.736 4675.384
EL 4284.424 4284.444 4293.191 4287.839
L 4288.543 4288.564 4297.31 4291.958
SL 5032.572 5032.579 5036.956 5034.280
Lindley 4266.889 4266.896 4271.272 4268.596
E 4286.543 4286.550 4290.927 4288.251

It is clear that LL distribution provides the overall best fit and therefore could be
chosen as the more adequate model for explaining O3 data set. Table 11 lists the MLEs
of the parameters for O3 data.

Table 11 shows that the LL distribution can fit the current data better than other
models. Then, the histogram of O3 data and plots of the fitted distributions are shown
in Figure 7. We also conclude from Figure 7 that the fitted LL distribution yield the
best fits and hence can be adequate for the data.

7. Concluding remarks
The idea of generating new extended models from classic ones has been of great interest

among researchers in the past decade. In this paper, we introduce a new class of models
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Table 12. The MLEs of the models for O3 data.

Distribution Estimated Parameters
LL(α, σ, θ) (155.62618025, 36.53180222,0.04260437)
LSL(α, θ) (62.72699803, 0.01332717)
EL(α, λ) (123.785305, 2.022086)
L(α, σ) (4405680, 60469137)
SL(α) (0.4199579)
Lindley(θ) (0.1370131)
E(λ) (13.71791)

Fitted Densities of The Models 
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Figure 7. Fitted densities of the distributions for the O3 data.

called the "Lindley-G" family of distributions which can generate all classical continuous
distributions. For any parent continuous distribution G, we define corresponding Lindley-
G distribution. Hence, the new class extends several common distributions, such as
the Exponential, Weibull and Lomax distributions. We study some of statistical and
mathematical properties of the new generator, such as ordinary moments, cumulants,
generating and quantile functions, Shannon entropy, Renyi entropy, and order statistics.
We discuss maximum likelihood estimation and inference on the model parameters. Three
applications of the new family demonstrate its usefulness and potentiality to analysis of
real data.
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