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Abstract
In this paper, we study some properties of the Canberra index which is
based on Canberra distance function. Some features that required to
an inequality index are investigated. Also we present explicit expres-
sion for the Canberra curve in some important inequality distributions.
Further, we compare the Canberra curve with the traditional Lorenz
curve. A simulation study based on fitted distribution to real income
data is performed in order to investigate the asymptotic behavior of
the proposed sampling estimator. Finally, the superiority of this index
is illustrated by means of a real data set.
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1. Introduction
One of the important issues in income inequality indices is finding an appropriate

mathematical metric to measure disparity in population. There have been considerable
efforts in finding the appropriate measures among such a plethora of choices because it is
of fundamental importance to have particular properties for detection inequality in the
best way. It should be noted that the importance of finding suitable distance measures
cannot be overemphasized yet. A number of distance measures to exploit new inequality
indices have been proposed and extensively studied by Gini [6], Pietra [14], Bonferroni
[3], Mehran [13], Kakwani [9], Chakravarty [5] and Zenga [18, 19].

There are metrics which have not received much attention even though they satisfy the
usual properties required to an income inequality index. Such a metric is the Canberra
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distance. The Canberra metric, introduced by Lance and Williams [11] as a software
metric, is a weighted version of the classic L1 distance family (see Cha [4]) which naturally
extends to a metric on symmetric groups. The role of the Canberra distance as a stability
indicator for measuring income inequality was first described in Subramanian [17] as a
measure of disarray between the Lorenz curve and the equality line of ranked non-negative
incomes.

In this paper, we present some properties of the Canberra inequality index and related
curve which is based on the Canberra distance function. In this work, the discussed
measure is investigated for continuous models, but it can be also applied to discrete and
empirical distributions.

The article is organized as follows. Section 2 contains some preliminaries and the
basic tools which will be used in the next sections. In Section 3, we present a general
definition of Canberra index which is based on the Canberra distance function. Some
properties that are required to an inequality measure including determining the distribu-
tion, scale invariance and translation effect are investigated. An important application
of the Canberra curve is that it can be used to define curve ordering. This application
is discussed in Section 4. We present explicit expressions for the Canberra index and
corresponding curve with graphical representation in some important inequality distri-
butions in Section 5. In Section 6, we propose the Canberra sampling estimator. Section
7 performs a simulation study based on Singh Madalla, fitted distribution to income of
the US family for 2013 in order to investigate the asymptotic normal behavior of the
discussed estimator. Next, to show the sensivity of the Canberra curve for low income, a
real data set is presented in Section 8. Finally, conclusions are given in the last section.

2. Basis tools
The Lorenz curve is a graphical representation of the cumulative income distribution.

It was developed by Max O. Lorenz [12] for representing inequality in the wealth distri-
butions. The Lorenz curve can usually be represented by a function L(p), where p, the
cumulative portion of the population, is represented on the horizontal axis, and L(p), the
cumulative portion of the total wealth or income, is represented on the vertical axis. Let
L be the class of all non-negative continuous random variables with positive finite ex-
pectations (µ = E(X) > 0). For a random variable X in L with cumulative distribution
function (cdf) F , we define its inverse distribution function by

F−1(t) = inf{x : F (x) ≥ t }, t ∈ [0, 1].

According to Zenga [19], the Lorenz function corresponding to X is defined by

(2.1) L(p) =
1

E(X)

p∫
0

F−1(t)dt, p ∈ [0, 1].

The Lorenz function indicates the cumulative percentage of total income held by a cu-
mulative proportion p of the population. To visualize proportions (2.1), like Figure 1, we
plot the points (p, L(p)).

As the result of this, we obtain the curve L called the Lorenz curve. The curve L is
well defined on the entire interval [0, 1], with values L(0) = 0 and L(1) = 1. It can be
noted that the Lorenz curve is always below the diagonal

I(p) = p, p ∈ [0, 1].

The diagonal I, on the other hand, is also a Lorenz curve. Indeed, assuming that all
the incomes are equal. Thus the interpretation of I (the straight line) represents perfect
equality and any departure from this 45 ◦ line represents inequality.
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Figure 1. An example of Lorenz curve

Based on the discussion about Lorenz curve and line of equality, it now becomes
natural to measure the economic inequality by using some distance d(I, L) between the
egalitarian Lorenz curve (I) and the actual one L, then we can consider d(I, L) as a
measure of economic inequality in the population. The main idea behind the construction
of d(·, ·) is based on the fact that we are merely interested in measuring the distance
between I and L. This implies that we are really interested only in the functional D =
d(I, L) defined on the set of all Lorenz curves. It is natural to require the functional D
be such that

(1) D(L) ≥ 0,
(2) D(L) = 0 if L = I,
(3) D(L′) ≥ D(L′′) whenever Ln′ ≤ Ln′′.

According to what has been discussed above, inequality measures have been constructed
as distance functions. Some important indices in terms of distance measures have been
shown in Table 1.

Table 1. Income inequality indices based on distance functions

Inequality index d(p, L(p))

Pietra max
0≤p≤1

(p− L(p))

Gini 2
1∫
0

(p− L(p))dp

E-Gini 2[
1∫
0

(p− L(p))αdp]
1
α α ≥ 1

S-Gini v(v − 1)
1∫
0

(p− L(p))(1− p)v−2dp v ≥ 1

Bonferroni
1∫
0

(1− L(p)
p

)dp

Zenga
1∫
0

p−L(p)
p(1−L(p))

dp



1162

3. The Canberra index
In this section, we study the Canberra measure and related curve which are derived

based on Canberra distance function. Also some basic properties of this measure have
been investigated.

3.1. Definition of the Canberra index.

3.1. Definition. Let X be a random variable belonging to L class. The Canberra index
(C) based on Canberra distance is defined as

(3.1) C = d(p, L(p)) =

1∫
0

C(p)dp,

under the Canberra curve, defined by

(3.2) C(p) =
p− L(p)

p+ L(p)
, p ∈ (0, 1].

Since the Lorenz function, in terms of expectation of X, can be obtained as

(3.3) L(p) =
pE(X|X ≤ F−1(p))

E(X)
,

then the Canberra curve can be rewriten as

C(p) =
E(X)− E(X|X ≤ F−1(p))

E(X) + E(X|X ≤ F−1(p))
,

=
µ− µ(p)

µ+ µ(p)
,

where µ(p) is the partial mean of proportion p of the ordered income (poorest) population.
If all the recipients in the population have the same quantity, the Canberra curve coin-

cides with the line of perfect equality that joins the coordinate points (0, 1), (0, 0), (1, 0).
Also, the line of maximum inequality joins the coordinate points (0, 1), (1, 1), (1, 0). If
the random variable X tends to the situation of minimal inequality, the C(p) curve tends
to the function

Cm(p) = 0, p ∈ (0, 1),

while, if the random variable X tends to the situation of maximal inequality, the C(p)
curve tends to 1, for all p ∈ (0, 1), that is

CM (p) = 1, p ∈ (0, 1).

It is easy to see that lim
p→0+

C(p) depends on the random variable originating the Canberra

curve. This means that near the boundary of the left domain, the C(p) curve is related
to the distribution of X, and therefore it is more explanatory than the Lorenz curve. So,
the C(p) curve is more suitable for inequality analysis around lower values of X.

Similar to other income inequality indices, the Canberra index can be obtained from
the mean value of the C(p) curve but it represents the area below the C(p) curve. In
Figure 2 from a geometric point of view, the Canberra index is the area between the
Canberra curve and the line of perfect equality. This index is 0 in maximum equality
and 1 in perfect inequality. The new inequality index satisfies all the main properties
required to a synthetic inequality measure (see Subrimanian [17]). It is symmetric in the
sense of its invariance under any permutation of incomes. The symmetry property follows
from the fact that we have defined C directly on an ordered distribution. It satisfies the
Pigue-Dalton condition, a postulate which states that an income transfer from a richer
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to a poorer individual, other things remaining the same including their relative rank in
distribution, decreases the extent of income inequality.

3.2. Determination of the distribution. One important property of an inequality
curve is determining the corresponding income distribution. The following proposition
states this property for the Canberra inequality curve.

3.2. Proposition. Let X be a random variable belonging to L class with C(p) Canberra
curve. The distribution of X is uniquely determined by C(p).

Proof. Based on (2.1) and (3.2), the relation between the C(p) and F−1(t) can be written
as

(3.4)

p∫
0

F−1(t)dt = µ
p(1− C(p))

C(p)− 1
,

the result is achieved by differentiating (3.4) as

F−1(p) = µ
d

dp
[
p(1− C(p))

C(p)− 1
],

thus F−1 will determine F .
�

3.3. Scale invariance. In this subsection, an argument can be advanced in favor of the
requirement that inequality curves and measures should be scale invariant, i.e., that the
inequality associated with a random variable X should be the same as that associated
with the random variable Y = aX for any a > 0.

3.3. Proposition. The Canberra curve and corresponding index are scale invariant.

Proof. Let Y = aX for any a > 0, then

(3.5) F−1
Y (p) = aF−1

X (p), p ∈ (0, 1),
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where F−1
X and F−1

Y are the inverse function of X,Y respectively. Also, we have

(3.6) E(Y ) = aE(X).

Since LX(p) = 1
E(X)

p∫
0

F−1
X (t)dt, is scale invariant, from (3.5) and (3), then the Canberra

curve as a function of Lorenz curve, also is scale invariant. So, we have

(3.7) CY (p) =
p− LY (p)

p+ LY (p)
=
p− LX(p)

p+ LX(p)
= CX(p).

Consequently, the scale invariant of the Canberra index follows from (3.7). �

3.4. Translation effect. Another important property of an inequality measure is its
translation effect. Here, we analyze how some translations influence the Canberra mea-
sure. In the following proposition, it will be shown that the Canberra index is consistent
with translation.

3.4. Proposition. The Canberra measure is consistent with translation.

Proof. Let Y = X+b for any b > 0, CX(p) and CY (p) be point measures of the Canberra
index of X and Y , respectively. So, we have

CY (p) =
µY − µY (p)

µY + µY (p)
,

=
(µX + b)− (µX(p) + b)

(µX + b) + (µX(p) + b)
,

= CX(p)× µX + µX(p)

µX + µX(p) + 2b
.

For every fixed value b > 0, the ratio µX+µX (p)
µX+µX (p)+2b

assumes values in (0, 1). Hence

(3.8) CY (p) < CX(p), p ∈ (0, 1).

Consequently, the consistency of the Canberra index follows from (3.8). �

3.5. Remark. An analogous consideration holds for any b < 0, in this case CY > CX .

4. Stochastic orders based on C(p) curve
An important application of the inequality curves is that they can be used to de-

fine some orderings. Such orderings allow the comparison of distributions in terms of
inequality. This kind of comparison within the same model allows to understand how
the distribution parameters influence the inequality. In this section, a result about the
partial order based on Lorenz curve and the partial order based on Canberra curve is
presented. It will be shown that the two curves establish two equivalent partial orders.
Next we include the definition of the well-known ordering based on the Lorenz curve.

4.1. Definition. Let X and Y be random variables belonging to L class. The Lorenz
order ≤L on L is defined by,

X≤LY ⇔ LX(p) ≥ LY (p), p ∈ [0, 1].

If X≤LY, then X exhibits less inequality than Y in the Lorenz sense. From the
graphical point of view, the random variableX is smaller than Y in this order, if its Lorenz
curve lies above the Lorenz curve of Y for all p ∈ (0, 1). Analogously, to the ordering
based on the Lorenz curve, other orders have been applied in inequality analysis. The
links among some different orders and their relationships with inequality have been deeply
studied (see Sarbia [16], Kleiber and Kotz [10], Polisicchio and Porro [15] and Arnold [2]).
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In analogy to Lorenz ordering, the ordering curve are defined for the Canberra inequality
curve as follows.

4.2. Definition. Let X and Y be random variables belonging to L class. The Canberra
order ≤C on L is defined by

X≤CY ⇔ CX(p) ≤ CY (p), p ∈ (0, 1].

If X≤CY, then X exhibits less inequality than Y in the Canberra sense.

4.3. Lemma. Let X,Y ∈ L. Then

(4.1) X≤LY ⇔ X≤CY.

Proof. By definition, X≤LY, means LX(p) ≥ LY (p) for any fixed p ∈ (0, 1) , also, since
the Canberra curve can be written in the form

C(p) = 1− 2

[ p
L(p)

] + 1
,

and conversely

L(p) =
p

[ 2
1−C(p)

]− 1
,

it is evident that X≤LY ⇔ X≤CY . �

The stochastic order based on Bonferroni and Zenga curves appear to be essentially
equivalent to the stochastic order based on Lorenz curve (Arcagni and Porro [1] and
Arnold [2]). Since the Canberra and Lorenz order are equivalent in (4.1), hence, the
relation based on curve orderings follows from Proposition 4.4.

4.4. Proposition. Let X,Y ∈ L. Then the following statements are equivalent:

X≤CY ⇔ X≤LY ⇔ X≤BY ⇔ X≤ZY,

where ≤B and ≤Z denote the Bonferroni order and the Zenga order, respectively.

For the definitions and features of the Bonferroni order and the Zenga order stochastic
dominance, we refer the reader to Arcagni and Porro [1] and Arnold [2].

5. The Behavior of the Canberra curve in some income models
The comparison between the Lorenz and the Canberra curves arise in the comparison

of the curves for some income models. In this section, two curves are presented. The
Lorenz curve is the oldest but also the most used nowadays despite its forced behavior.
The Canberra curve is the most recent although related to the Lorenz curve and it hasn’t
a forced behavior. It can assume different shapes which allow to distinguish different
situations in terms of inequality.

Several densities have been proposed in the literature to model the income distribution.
Of course all these densities are defined for a positive support. The most simple distribu-
tions, and consequently the widely used ones are exponential, uniform and Pareto. These
distribution models just examined have one or two parameters, in spite of that, their
curves have different behaviors. In order to fit better tails, three-parameter distributions
are proposed. We shall examine the Singh-Maddala distribution as a three-parameter
distribution.
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5.1. Exponential model. Let X be a random variable with exponential distribution
FX(x) = 1− e−λxI(x>0), where λ > 0 is its parameter distribution, then the L(p) curve
is

L(p) = p+ (1− p) log(1− p), p ∈ [0, 1],

and from that, the Canberra curve can be obtained as

C(p) = − (1− p) log(1− p)
2p+ (1− p) log(1− p) , p ∈ (0, 1].

It is important to note that the scale parameter λ is not an inequality indicator, in
fact the Canberra curve, Lorenz curve and inequality measures derived from them don’t
depend on λ (see Figure 3).
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Figure 3. Lorenz and Canberra curves of exponential distribution

5.2. Pareto model. A random variable X follows a Pareto distribution if its distribu-
tion function is

F (x) = 1− (
x

x0
)−θI(x>x0),

where x0 > 0 and θ > 1. In this case,

L(p) = 1− (1− p)(1−
1
θ
), p ∈ [0, 1],

and from that, the Canberra curve can be obtained as

(5.1) C(p) =
p− [1− (1− p)(1−

1
θ
)]

p+ [1− (1− p)(1−
1
θ
)]
, p ∈ (0, 1].

Both curves do not depend on scale parameter x0. It can be seen that, for any
fixed p ∈ (0, 1) as θ increases, the Lorenz curve increases too (whereas the inequality
decreases). For the C(p) curve, since for any fixed p ∈ (0, 1) the partial derivative of
C(p) with respect to θ is negative, it follows that if θ increases, then the C(p) curve
decreases, and so inequality does. Therefore, for both curves, the distribution parameter
θ is an inverse inequality indicator. Suppose Θ = {θ | 1 < θ <∞} be a parameter space
of Pareto model. In this case, we have

lim
θ→1

L(p, θ) = 0 and lim
θ→∞

L(p, θ) = p.
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Some L(p) and C(p) curves for the Pareto model are drawn in Figures 4. Each curve
corresponds to a different choice of the distribution parameter θ. It is worth noting that
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Figure 4. Lorenz and Canberra curves of Pareto distribution

in the Pareto model for Canberra curve in (5.1), we have
• lim
p→0+

C(p) = 1
2θ−1

, lim
p→1−

C(p) = 0, and therefore, as p→ 0, the C(p) curve tends

to a value which depends only on the parameter θ. Also as p → 1, the C(p)
curve has a force behavior and it tends to 1.

• C′(p) > 0, θ > 1, consequently C(p) curve is increasing for p ∈ (0, 1].
• C′′(p) < 0, θ > 1, consequently C(p) curve is concave for p ∈ (0, 1].

5.3. The uniform model. Consider the random variable X with uniform distribution
FX(x) = x−a

b−a I(a<x<b), where 0 < a < b are parameters distribution, then the L(p) curve
is

L(p) =
2ap+ (b− a)p2

a+ b
, p ∈ [0, 1],

and therefore the C(p) curve is

(5.2) C(p) =
(1− p)(b− a)

p(b− a) + (3a+ b)
, p ∈ (0, 1].

Here, the role of the two parameters a and b for the uniform model in relation to
Lorenz and Canberra curves has been analyzed. In Figure 5 some L(p) and C(p) curves
are shown with different values of a and b = 10. In Figure 6, the distribution parameter a
is fixed in 2, and the value of b changes. It is evident that, if the value of the distribution
parameter b is fixed then a is an inverse inequality indicator, and if a is fixed, then b is
a direct indicator.

It is notable that in the uniform model for Canberra curve in (5.2), we have
• lim
p→0+

C(p) = b−a
3a+b

and lim
p→1−

C(p) = 0, and therefore, as p → 0+, C(p) curve

tends to a value which depends on the two parameters.
• C′(p) = 2(b2−a2)

(ap−bp−3a−b)2 > 0, consequently C(p) curve is increasing for p ∈ (0, 1).

• C
′′

(p) = 4(b−a)2(a+b)
(ap−bp−3a−b)2 > 0, consequently C(p) curve is convex for p ∈ (0, 1).
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Figure 5. Lorenz and Canberra curves for uniform model with b = 10
and different values of a
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Figure 6. Lorenz and Canberra curves for uniform model with a = 2
and different values of b

5.4. The Singh Madalla model. Let X be a non-negative random income variable
with Singh Madalla distribution and corresponding cdf,

F (x) = 1− 1

[1 + (x
b
)a]q

,
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where a, b, q > 0. If q > 1
a
, then using Expression (2.1), the Lorenz curve of X is

L(p) =
1

µ

p∫
0

b[(1− y)
− 1
q − 1]

1
a
dy

=
bq

µ

z∫
0

t
1
a (1− t)q−

1
a
−1dt

= Iz(1 +
1

a
, q − 1

a
), p ∈ [0, 1],

where z = 1 − (1− p)
1
q and Ix(a, b) denotes the incomplete beta function ratio defined

as

Ix(a, b) =

x∫
0

ta−1(1− t)b−1dt

1∫
0

ta−1(1− t)b−1dt

.

Therefore, C(p) curve is

C(p) =
p− Iz(1 + 1

a
, q − 1

a
)

p+ Iz(1 + 1
a
, q − 1

a
)
, p ∈ (0, 1].

Here, the role of the parameter q for the Singh Madalla model in relation to Lorenz
and Canberra curves has been analyzed. We note that since b is the scale parameter in
the Singh Madalla model, the inequality indices and curves are invariant to it, and thus
our results will not be affected by the choice. In Figure 7, some L(p) and C(p) curves
are shown for different values of q using a = 2. It is evident that, if the value of the
distribution parameter a is fixed then q is an inverse inequality indicator. In similar way,
if q is fixed, then a is an indirect indicator too.

It is noteworthy that when the inequality curve is concave/convex, the lowest and the
highest incomes are the most frequent and there is a tendency for polarization, in which
case C(p) is convex/concave. That is, unlike what occurs with Lorenz curve, the shape
of the Canberra curve yields more information on the associated distribution.

6. Sampling estimator of Canberra index
Let X1, . . . , Xn be a random sample of size n from an cdf F . Suppose X1:n ≤ . . . ≤

Xi:n ≤ . . . ≤ Xn:n be the corresponding order statistics. We can define the Canberra
estimator by plug in empirical cdf of F (F̂n) instead of F in (3.1) and (3.2) as

Ĉn =
1

n

n∑
i=1

X̄ − X̄i:n
X̄ + X̄i:n

, i = 1, 2, . . . , n,

where X̄i:n is the partial ordered mean and X̄ denoting the sample mean of X1, . . . , Xn.
A nice property of this distance estimator is that for large sample size, the Canberra

estimator is asymptotically normal. In many income distribution studies, however, in-
volving fairly large samples, the distribution of Canberra estimator is normal distribution
without regard of what distribution each of the income variables follow. It can be noted
that C(p) curve is a function of F based on (3.2) and (3.3). Thus, for more emphesize,
we show C(F ) instead of C(p) in the following theorem.

6.1. Theorem. Let X be a random variable belonging to L class with E(|X|2+α) < ∞
for α ≥ 1, the estimator of Canberra index is asymptotically normal.
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Figure 7. Lorenz and Canberra curves for the Singh Madalla model
with a = 2 and different values of q

Proof. Under mild conditions on cdf of X such as continuity and differentiability, the
Canberra estimator may be represented as (Hoeffding [7])

Ĉn = C +
1

n

n∑
i=1

hC(Xi) + o(n
−1
2 ),

where hC(Xi) denotes the influence function evaluated at the point Xi, i.e.

hC(Xi) = lim
λ→0

C(F + λ(δXi − F ))− C(F )

λ
,

and δX denotes the distribution with unit mass at X. It follows that the Canberra
inequality estimator has normal distribution asymptotically. Then

√
n(Ĉn − C)

d−→ N(0, σ2
C),

where d−→ denotes convergence in distribution and σ2
C = V ar(hC(X)).

�

7. Simulation results
In an effort to gauge the actual performance of the inferential procedures, we de-

velop a simulation study. We consider the Singh Madalla distribution (with cdf F (x) =
1 − 1

[1+( x
b
)a]q

), the fitted distribution to real income data based on 2013 nominal fam-
ily income. The data can be obtained from the Census Population Reports which are
available online ‖. The shape parameter values of the fitted distribution given by the
maximum likelihood estimates are a = 1.4803, q = 4.0415 and scale parameter equal to
b = 185.2766. We remind that b as a scale parameter of the Singh Madalla model does
not affect the inequality at all.

In this section, we study by simulation to what extent the Canberra estimator proposed
here give reliable inference. First, in order to see whether the asymptotic normality

‖http://www.cesus.gov/hhes/www/income/data/incpovhlth
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assumption yields a good approximation, simulations were undertaken with drawings
from the fitted distribution to real data. The true value of the Canberra index for this
distribution (C0) is easily computed to be 0.4327. In Figure 8, graphs are shown of
the empirical distribution function of 10,000 realisations of the statistic τC = Ĉ−C0

σ̂
Ĉ

. It
can be noted that the estimation of the standard error was obtained using bootstraping
method. For sample sizes n = 50 and 100 the graph of the standard normal cdf is also
given as a benchmark in Figure 8.
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Figure 8. Distribution of Canberra standardized statistic as a func-
tion of sample size

It can be seen that, the Canberra estimator is consistent and its asymptotic standard
normal is good.

Here, we carried out a simulation study to investigate the behavior of the Canberra
index in terms of bias, mean square errors (MSE) and the great absolute deviation of its
distribution from the normal distribution function using the Kolmogorov distance under
the fitted distribution to real data with mentioned parameters. To find these summary
statistics, 10,000 estimate of Canberra index is obtained by taking the sample size n=
10, 20, 30, 50, 70 and 100. The results are shown in Table 2.

Table 2. Summary statistics of the Canberra measure in Singh
Madalla model

n Bias MSE Divergence from normal
10 -0.08212663 0.0117186263 0.3987576
20 -0.04392713 0.0050472391 0.2923378
30 -0.03033756 0.0031951613 0.2441087
50 -0.01851632 0.0018111669 0.1976690
70 -0.01283985 0.0012556791 0.1765563
100 -0.01017360 0.0008928519 0.1332017

From Table 2, it is observed that bias, MSE and the great absolute deviation from
normal distribution for the Canberra index decrease with increasing n. Also, there is an
underestimate for discussed measure in all of the chosen values of sample size.
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8. Application to real data
In this section, some empirical Lorenz and Canberra curves for the income distribution

of the data coming from the Polish Household Budget Survey (HBS) for the years 2006
and 2008 have been presented.∗∗

The left panel of Figure 9 depicts the Lorenz curves for the considered income distri-
butions. The curves point out a medium-high level of inequality, but actually no relevant
difference over years is highlighted. It is difficult to obtain more details about the dy-
namic evolution of the inequality. In the right panel of Figure 9, the corresponding C(p)
curves are drawn. By an analysis of these curves, some dissimilarities among the years
can be found. The behavior of the C(p) curves over years clearly shows that the inequal-
ity for lower incomes (related to the low values of p, from 0 up to about 0.40) increased
from 2006 to 2008, while for higher incomes (related to the high values of p, from 0.40
up to 1) the situation is different: for such kind of incomes, the inequality decreased
in the considered time range. Remarks of such kind are difficult to be observed in the
Lorenz curve. Thus the Canberra curve seems to be more sensitive to low incomes that
the traditional Lorens curve.
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Figure 9. Lorenz curves (left) and Canberra curves (right) for the real
income data

∗∗see Jedrzejczak [8]
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9. Conclusion
In this note, some important properties for the Canberra inequality index have been

discussed. This measure fulfills the most common required properties to an inequality
measure. Comparison of Lorenz and Canberra curves highlights main results. Canberra
curve can be considered more explanatory and flexible than Lorenz curve. All these char-
acteristics play an essential role, especially in economics and applied statistics. Another
important point is about inequality indicators. For the analyzed income distributions,
all the direct (respectively inverse) inequality indicators for Lorenz curve are direct (re-
spectively inverse) inequality indicators for Canberra curve and vice versa: this feature
implies the consistency between the two curves, although they approach the inequality
measuring in two different methods. For these reasons, the Canberra and the related in-
dex seem to be a valid alternative to the well-known Lorenz curve and the concentration
indices derived from it. This index and its underlying curve display interesting graphical
interpretations and it is sensitive to low incomes.
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