ON GENERALIZED f-HARMONIC MAPS AND LIOUVILLE TYPE THEOREM

MUSTAPHA DJAA AND AHMED MOHAMED CHERIF

ABSTRACT. In this paper, we prove that every semi-conformal harmonic map between Riemannian manifolds is a generalized f-harmonic map. We also prove a Liouville type theorem for f-harmonic maps in general sense from IR^m onto a Riemannian manifold N with non-positive sectional curvature, where $f \in C^\infty(IR^m \times N)$ is a smooth positive function which satisfies some suitable conditions.

1. Introduction

Liouville type theorems for harmonic maps between complete smooth Riemannian manifolds have been done by many authors. Eells-Sampson [9] proved that any (bounded) harmonic map from a compact Riemannian manifold with positive Ricci curvature into a complete manifold with non-positive curvature is a constant map. Schoen-Yau [15] also proved that any harmonic map with finite energy from a complete smooth Riemannian manifold with non-negative Ricci curvature into a complete manifold with non-positive curvature is a constant map. Cheng [3] showed that any harmonic map with sublinear growth from a complete Riemannian manifold with non-negative Ricci curvature into an Hadamard manifold is a constant map. Liu [8] proved the Liouville-type theorem for p-harmonic maps with free boundary values. Bair-Fardoun-Ouakkas [1] proved the Liouville-type theorem for bi-harmonic maps

The purpose of this paper is to provide a proof of the Liouville type theorem for f-harmonic maps in generalized sense from IR^m onto a Riemannian manifold N with non-positive sectional curvature, where $f \in C^{\infty}(IR^m \times N)$ is a smooth positive function which satisfies some suitable conditions.

Date: January 1, 2013 and, in revised form, February 2, 2013.

²⁰⁰⁰ Mathematics Subject Classification. 53A45, 53C20, 58E20.

Key words and phrases. f-harmonic maps; f-conformal maps; Liouville Theorem.

The authors was supported by LGACA and LGMFAMI Laboratories and National Agency Scientific Research.

Consider a smooth map $\varphi:(M^m,g)\longrightarrow (N^n,h)$ between Riemannian manifolds and let $f:M\times N\longrightarrow (0,+\infty)$ be a smooth positive function. The map φ is said to be a generalized f-harmonic map, if it is a critical point of the f-energy functional

(1.1)
$$E_f(\varphi) = \frac{1}{2} \int_K f(x, \varphi(x)) |d\varphi|^2 v_g.$$

on any compact subset $K \subset M$. The Euler-Lagrange equation associated to the f-energy functional is

(1.2)
$$\tau_f(\varphi) \equiv f_{\varphi} \tau(\varphi) + d\varphi(\operatorname{grad}^M f_{\varphi}) - e(\varphi)(\operatorname{grad}^N f) \circ \varphi = 0,$$

where:

 $f_{\varphi}: M \longrightarrow (0, +\infty)$ is the positive function defined by

(1.3)
$$f_{\varphi}(x) = f(x, \varphi(x)), \quad x \in M,$$

$$(grad^M f)_{(x,y)} = \sum_{i,j=1}^m g^{ij} \frac{\partial f}{\partial x^i}(x,y) \frac{\partial}{\partial x^j}, \quad (x,y) \in M \times N,$$

$$(grad^N f)_{(x,y)} = \sum_{i,j=1}^n h^{ij} \frac{\partial f}{\partial y^i}(x,y) \frac{\partial}{\partial y^j}, \quad (x,y) \in M \times N,$$

 $\tau(\varphi) = \operatorname{trace}_g \nabla d\varphi$ is the tension field of φ , and $e(\varphi) = \frac{1}{2}|d\varphi|^2$ is the energy density of φ .

 $\tau_f(\varphi)$ is called the f-tension field of φ ([4]) [11]).

2. Semi-conformal maps and f-harmonicity

Let $\varphi:(M^m,g)\longrightarrow (N^n,h)$ be a smooth map between Riemannian manifolds. Let $x\in M$, the tangent space at x splits $T_xM=H_x\oplus V_x$ where $V_x=\operatorname{Ker} d_x\varphi$ and $H_x=V_x^\perp$ is the orthogonal complement of the vertical space V_x . The map φ is called semi-conformal if for each $x\in M$ where $d_x\varphi\neq 0$ the restriction $d_x\varphi:H_x\longrightarrow T_{\varphi(x)}N$ is conformal and surjective. On setting $\lambda(x)=0$ at points x where $d_x\varphi=0$, we obtain a continuous function $\lambda:M\longrightarrow IR_+$ such that for any $X,Y\in H_x$

$$h(d_x\varphi(X), d_x\varphi(Y)) = \lambda^2(x)g(X, Y),$$

the function λ is called the dilation of φ . Note that the generalized conformal maps is discussed in [13].

Let M^m be a Riemannian manifold and N^n be a Riemannian submanifold of IR^k . Then, we have

Theorem 2.1. Any semi-conformal harmonic map $\varphi: M^m \longrightarrow N^n$ is f-harmonic with $f(x,y) = F(2y + (n-2)\varphi(x))$ for all $(x,y) \in M \times N$ where $F \in C^{\infty}(IR^k)$ is a smooth positive function.

Proof. A semi-conformal harmonic map φ is f-harmonic if and only if

$$\tau_f(\varphi) = d\varphi(\operatorname{grad}^M f_\varphi) - e(\varphi)(\operatorname{grad}^N f) \circ \varphi = 0,$$

where $f_{\varphi}: M \longrightarrow (0, +\infty)$ is a smooth positive function given by

$$f_{\varphi}(x) = f(x, \varphi(x)) = F(n \varphi(x)).$$

Let us choose $\{e_1,...,e_m\}$ an orthonormal frame on a domain of M such that the vectors $\{e_1,...,e_n\}$ are horizontal and the vectors $\{e_{n+1},...,e_m\}$ are vertical, so that $d\varphi(e_i) = \lambda\left(\widetilde{e}_i \circ \varphi\right)$ for i=1,...,n where $\{\widetilde{e}_1,...,\widetilde{e}_n\}$ is an orthonormal frame on a domain of N. Then, we have

$$d\varphi(\operatorname{grad}^{M} f_{\varphi}) = \sum_{i=1}^{m} e_{i}(f_{\varphi}) \, d\varphi(e_{i})$$

$$= n \sum_{i=1}^{n} d\varphi(e_{i})(F) \, d\varphi(e_{i})$$

$$= n \lambda^{2} \sum_{i=1}^{n} (\widetilde{e}_{i} \circ \varphi)(F) \, (\widetilde{e}_{i} \circ \varphi)$$

$$= n \lambda^{2} (\operatorname{grad}^{N} F) \circ \varphi.$$

$$(\operatorname{grad}^{N} f) \circ \varphi = \sum_{i=1}^{n} (\widetilde{e}_{i} \circ \varphi)(f) \, (\widetilde{e}_{i} \circ \varphi)$$

$$= 2 \sum_{i=1}^{n} \sum_{\alpha=1}^{k} (\widetilde{e}_{i} \circ \varphi)(y^{\alpha}) \, \partial_{\alpha}(F) \, (\widetilde{e}_{i} \circ \varphi)$$

$$= 2 \sum_{i=1}^{n} (\widetilde{e}_{i} \circ \varphi)(F)(\widetilde{e}_{i} \circ \varphi)$$

$$= 2 (\operatorname{grad}^{N} F) \circ \varphi.$$

Since $e(\varphi) = \frac{n}{2}\lambda^2$, we get

$$e(\varphi)(\operatorname{grad}^N f) \circ \varphi = n \lambda^2(\operatorname{grad}^N F) \circ \varphi.$$

If n=1, we arrive at the following corollary

Corollary 2.1. Let $F \in C^{\infty}(IR)$ be a smooth positive function and $f(x,y) = F(2y - \varphi(x))$ for all $(x,y) \in M \times IR$. Then $\varphi \in C^{\infty}(M)$ is f-harmonic map if and only if is harmonic.

Proof. From the formula (1.2) we have

(2.1)
$$\tau_f(\varphi) = f_{\varphi} \tau(\varphi) + d\varphi(\operatorname{grad}^M f_{\varphi}) - e(\varphi)(\operatorname{grad}^N f) \circ \varphi,$$

with

$$f_{\varphi}(x) = f(x, \varphi(x)) = F(\varphi(x)),$$

for all $x \in M$. By calculating the terms of equation 2.1, we obtain

$$d\varphi(\operatorname{grad}^{M} f_{\varphi}) = \sum_{i=1}^{m} e_{i}(f_{\varphi})d\varphi(e_{i})$$

$$= \sum_{i=1}^{m} e_{i}(F \circ \varphi)e_{i}(\varphi)$$

$$= \sum_{i=1}^{m} e_{i}(\varphi)(F' \circ \varphi)e_{i}(\varphi)$$

$$= (F' \circ \varphi)|\operatorname{grad}^{M} \varphi|^{2},$$

$$-e(\varphi)(\operatorname{grad}^{IR} f) \circ \varphi = -\frac{1}{2}\sum_{i=1}^{m} \langle d\varphi(e_{i}), d\varphi(e_{i}) \rangle (\frac{\partial f}{\partial y}) \circ \varphi$$

$$= -\frac{1}{2}\sum_{i=1}^{m} e_{i}(\varphi)^{2}[2(F' \circ \varphi)]$$

$$= -|\operatorname{grad}^{M} \varphi|^{2}(F' \circ \varphi),$$

$$(2.3)$$

where $\{e_i\}$ is an orthonormal frame in M, F' = dF/dt and $e_i(\varphi) = d\varphi(e_i)$. Substituting (2.2) and, (2.3) in (2.1), we obtain

$$\tau_f(\varphi) = f_{\varphi} \, \tau(\varphi).$$

Example 2.1. Let $F \in C^{\infty}(IR)$ be a smooth positive function. The map

$$\varphi: IR^2 \longrightarrow IR$$

 $(x_1, x_2) \longrightarrow x_1^2 - x_2^2$

is f-harmonic with $f(x_1, x_2, y) = F(2y - x_1^2 + x_2^2)$ for all $(x_1, x_2, y) \in IR^2 \times IR$.

Note that φ is harmonic, from the formula (1.2), we deduce that φ is f-harmonic if and only if

(2.4)
$$d\varphi(\operatorname{grad}^{IR^2} f_{\varphi}) - e(\varphi)(\operatorname{grad}^{IR} f) \circ \varphi = 0.$$

We have

$$f_{\varphi}(x_{1}, x_{2}) = f(x_{1}, x_{2}, \varphi(x_{1}, x_{2}))$$

$$= F(2\varphi(x_{1}, x_{2}) - x_{1}^{2} + x_{2}^{2})$$

$$= F(2x_{1}^{2} - 2x_{2}^{2} - x_{1}^{2} + x_{2}^{2})$$

$$= F(x_{1}^{2} - x_{2}^{2}).$$

$$\operatorname{grad}^{IR^{2}} f_{\varphi} = \frac{\partial f_{\varphi}}{\partial x_{1}} \frac{\partial}{\partial x_{1}} + \frac{\partial f_{\varphi}}{\partial x_{2}} \frac{\partial}{\partial x_{2}}$$

$$= 2x_{1}F'(x_{1}^{2} - x_{2}^{2}) \frac{\partial}{\partial x_{1}} - 2x_{2}F'(x_{1}^{2} - x_{2}^{2}) \frac{\partial}{\partial x_{2}}$$

$$d\varphi(\operatorname{grad}^{IR^{2}} f_{\varphi}) = 2x_{1}F'(x_{1}^{2} - x_{2}^{2}) \frac{\partial \varphi}{\partial x_{1}} - 2x_{2}F'(x_{1}^{2} - x_{2}^{2}) \frac{\partial \varphi}{\partial x_{2}}$$

$$(2.5) = 4x_{1}^{2}F'(x_{1}^{2} - x_{2}^{2}) + 4x_{2}^{2}F'(x_{1}^{2} - x_{2}^{2}).$$

$$e(\varphi) = \frac{1}{2}(\frac{\partial \varphi}{\partial x_{1}})^{2} + \frac{1}{2}(\frac{\partial \varphi}{\partial x_{2}})^{2}$$

$$= 2x_{1}^{2} + 2x_{2}^{2}.$$

$$(\operatorname{grad}^{IR} f) \circ \varphi = (\frac{\partial f}{\partial y}) \circ \varphi$$

$$= 2F'(x_{1}^{2} - x_{2}^{2}).$$

$$(2.6) \quad e(\varphi)(\operatorname{grad}^{IR} f) \circ \varphi = 4x_{1}^{2}F'(x_{1}^{2} - x_{2}^{2}) + 4x_{2}^{2}F'(x_{1}^{2} - x_{2}^{2}).$$
From (2.5) and (2.6) we obtain (2.4).

Example 2.2. The radial projection $\varphi: x \in IR^{m+1} \setminus \{0\} \longrightarrow \varphi(x) = \frac{x}{|x|} \in S^m$ is f-harmonic, where $F \in C^{\infty}(IR^{m+1} \setminus \{0\})$ is a smooth positive function and $f(x,y) = F\left(\frac{2\,y\,|x| + (m-2)\,x}{|x|}\right)$ for all $(x,y) \in (IR^{m+1} \setminus \{0\}) \times S^m$.

Indeed; the radial projection φ is a semi-conformal harmonic maps (see [6]), so from Theorem 2.1, we deduce that φ is f-harmonic with

$$f(x,y) = F\left(2y + (m-2)\frac{x}{|x|}\right)$$
$$= F\left(\frac{2y|x| + (m-2)x}{|x|}\right).$$

Remark 2.1. Using Theorem 2.1, we can construct many examples for f-harmonic maps in a generalized sense.

Theorem 2.2. Let $f_1 \in C^{\infty}(M)$ and $f_2 \in C^{\infty}(N)$ be two smooth functions and $f = e^{f_1 f_2}$. A semi-conformal map $\varphi : M^m \longrightarrow N^2$ from a Riemannian manifold M of dimension m to a Riemannian manifold N of dimension m, is m-harmonic if and only if

$$\tau(\varphi) + (f_2 \circ \varphi) d\varphi(\operatorname{grad}^M f_1) = 0.$$

Proof. We have

(2.7)
$$\tau_f(\varphi) = f_{\varphi} \tau(\varphi) + d\varphi(\operatorname{grad}^M f_{\varphi}) - e(\varphi)(\operatorname{grad}^N f) \circ \varphi,$$

where
$$f_{\varphi}(x) = f(x, \varphi(x)) = e^{f_1(x) f_2(\varphi(x))}$$
.

Let $\{e_1, ..., e_m\}$ be an orthonormal frame on a domain of M such that the vectors

 $\{e_1, e_2\}$ are horizontal and the vectors $\{e_3, ..., e_m\}$ are vertical, so that $d\varphi(e_i) = \lambda\left(\widetilde{e}_i \circ \varphi\right)$ for i = 1, 2 where $\{\widetilde{e}_1, \widetilde{e}_2\}$ is an orthonormal frame on a domain of N. By calculating the terms of equation 2.7, we obtain

$$d\varphi(\operatorname{grad}^{M} f_{\varphi}) = \sum_{i=1}^{m} e_{i}(f_{\varphi}) \, d\varphi(e_{i})$$

$$= \sum_{i=1}^{m} e^{f_{1}(f_{2} \circ \varphi)} \, e_{i}(f_{1}(f_{2} \circ \varphi)) \, d\varphi(e_{i})$$

$$= e^{f_{1}(f_{2} \circ \varphi)} \left\{ (f_{2} \circ \varphi) \, d\varphi(\operatorname{grad}^{M} f_{1}) + f_{1} \, d\varphi(\operatorname{grad}^{M}(f_{2} \circ \varphi)) \right\},$$

$$d\varphi(\operatorname{grad}^{M}(f_{2} \circ \varphi)) = \sum_{i=1}^{m} e_{i}(f_{2} \circ \varphi) \, d\varphi(e_{i})$$

$$= \sum_{i=1}^{2} d\varphi(e_{i})(f_{2}) \, d\varphi(e_{i})$$

$$= \sum_{i=1}^{2} \lambda^{2} \left(\widetilde{e}_{i} \circ \varphi \right)(f_{2}) \left(\widetilde{e}_{i} \circ \varphi \right)$$

$$= \lambda^{2} \left(\operatorname{grad}^{N} f_{2} \right) \circ \varphi,$$

$$d\varphi(\operatorname{grad}^{M} f_{\varphi}) =$$

$$(2.8) \qquad e^{f_{1}(f_{2} \circ \varphi)} \left\{ (f_{2} \circ \varphi) \, d\varphi(\operatorname{grad}^{M} f_{1}) + f_{1} \, \lambda^{2} \left(\operatorname{grad}^{N} f_{2} \right) \circ \varphi \right\}.$$

$$(\operatorname{grad}^{N} f) \circ \varphi = \sum_{i=1}^{2} (\widetilde{e}_{i} \circ \varphi)(f)(\widetilde{e}_{i} \circ \varphi)$$

$$= \sum_{i=1}^{2} (\widetilde{e}_{i} \circ \varphi)(f_{1} f_{2}) e^{f_{1} (f_{2} \circ \varphi)} (\widetilde{e}_{i} \circ \varphi)$$

$$= f_{1} e^{f_{1} (f_{2} \circ \varphi)} (\operatorname{grad}^{N} f_{2}) \circ \varphi,$$

As $e(\varphi) = \lambda^2$, then

(2.9)
$$e(\varphi)(\operatorname{grad}^{N} f) \circ \varphi = \lambda^{2} f_{1} e^{f_{1}(f_{2} \circ \varphi)} (\operatorname{grad}^{N} f_{2}) \circ \varphi.$$

Substituting (2.8) and (2.9) in (2.7), we obtain

$$\tau_{f}(\varphi) = e^{f_{1}(f_{2}\circ\varphi)} \left[\tau(\varphi) + (f_{2}\circ\varphi)d\varphi(\operatorname{grad}^{M}f_{1}) + f_{1}\lambda^{2}(\operatorname{grad}^{N}f_{2})\circ\varphi - f_{1}\lambda^{2}(\operatorname{grad}^{N}f_{2})\circ\varphi\right]$$

$$(2.10) = e^{f_{1}(f_{2}\circ\varphi)} \left[\tau(\varphi) + (f_{2}\circ\varphi)d\varphi(\operatorname{grad}^{M}f_{1})\right].$$

From the formula (2.10), the Theorem 6 follows.

Example 2.3. Let $M = (IR^2 \setminus \{0\}) \times IR$ and let $\varphi : M \longrightarrow IR^2$ defined by

$$\varphi(x_1, x_2, x_3) = (\sqrt{x_1^2 + x_2^2}, x_3).$$

The map φ is semi-conformal with dilation $\lambda = 1$. The tension field of φ is

$$\tau(\varphi)(x_1, x_2, x_3) = \left(\frac{1}{\sqrt{x_1^2 + x_2^2}}, 0\right).$$

According to Theorem 2.2 the map φ is f-harmonic with $f = e^{f_1 f_2}$ where

$$f_1(x_1, x_2, x_3) = \frac{1}{\sqrt{x_1^2 + x_2^2}}$$
 and $f_2(y_1, y_2) = y_1$.

3. A Liouville Type Theorem for f-Harmonic Maps

Theorem 3.1. Let (N,h) be a Riemannian manifold with non-positive sectional curvature $\operatorname{Sect}^N \leq 0$. Consider an f-harmonic map $\varphi: IR^m \longrightarrow N$ with finite f-energy $E_f(\varphi) = \frac{1}{2} \int_{IR^m} f_{\varphi} |d\varphi|^2 dx < \infty$, where $f \in C^{\infty}(IR^m \times N)$ is a smooth positive function such that $\operatorname{Hess}(f_{\varphi}) \leq 0$. If $\nabla^{\varphi} e(\varphi)(\operatorname{grad}^N \ln f) \circ \varphi \geq 0$ and $\operatorname{Vol}_f(IR^m) \equiv \int_{IR^m} f_{\varphi} dx = \infty$, then φ is constant.

We need the following lemmas to prove Theorem 3.1.

Lemma 3.1 ([14]). Let $\varphi: (M^m, g) \longrightarrow (N^n, h)$ a smooth mapping between Riemannian manifolds and let $f \in C^{\infty}(M)$, then

$$\langle d\varphi, \nabla^{\varphi} d\varphi(\operatorname{grad}^M f) \rangle = \frac{1}{2} (\operatorname{grad}^M f) (|d\varphi|^2) + \langle d\varphi, d\varphi(\nabla^M \operatorname{grad}^M f) \rangle.$$

Proof. Let $\{e_1, ..., e_m\}$ be an orthonormal frame such that $\nabla_{e_i}^M e_j = 0$ at $x \in M$ for all i, j = 1, ..., m. Then calculating at x

$$\langle d\varphi, \nabla^{\varphi} d\varphi(\operatorname{grad}^M f) \rangle = \sum_{i=1}^m h(d\varphi(e_i), \nabla_{e_i}^{\varphi} d\varphi(\operatorname{grad}^M f)).$$

For all i = 1, ..., m, we have

$$\begin{split} \nabla^{\varphi}_{e_i} d\varphi(\operatorname{grad}^M f) &= \sum_{j=1}^m \nabla^{\varphi}_{e_i} \big(e_j(f) \, d\varphi(e_j) \big) \\ &= \sum_{j=1}^m e_j(f) \, \nabla^{\varphi}_{e_i} d\varphi(e_j) + \sum_{j=1}^m e_i(e_j(f)) \, d\varphi(e_j) \\ &= \sum_{j=1}^m e_j(f) \, \nabla^{\varphi}_{e_j} d\varphi(e_i) + \sum_{j=1}^m e_i(e_j(f)) \, d\varphi(e_j), \end{split}$$

we conclude that

$$\langle d\varphi, \nabla^{\varphi} d\varphi(\operatorname{grad}^{M} f) \rangle = \sum_{i,j=1}^{m} e_{j}(f) h(d\varphi(e_{i}), \nabla^{\varphi}_{e_{j}} d\varphi(e_{i}))$$
$$+ \sum_{i,j=1}^{m} e_{i}(e_{j}(f)) h(d\varphi(e_{i}), d\varphi(e_{j})).$$

By noticing that

$$\frac{1}{2} \left(\operatorname{grad}^{M} f \right) \left(|d\varphi|^{2} \right) = \sum_{i,j=1}^{m} e_{j}(f) h(d\varphi(e_{i}), \nabla_{e_{j}}^{\varphi} d\varphi(e_{i})),$$

and

$$\langle d\varphi, d\varphi(\nabla^M \operatorname{grad}^M f) \rangle = \sum_{i,j=1}^m h(d\varphi(e_i), d\varphi(\nabla^M_{e_i} e_j(f) e_j))$$
$$= \sum_{i,j=1}^m e_i(e_j(f)) h(d\varphi(e_i), d\varphi(e_j)),$$

the Lemma 3.1 follows.

Lemma 3.2. Let (N,h) be a Riemannian manifold and $f \in C^{\infty}(IR^m \times N)$ be a smooth positive function. Consider an f-harmonic map $\varphi : IR^m \longrightarrow N$, then we have

$$\frac{1}{2}\Delta^{IR^{m}}|d\varphi|^{2} = |\nabla d\varphi|^{2} + \frac{1}{f_{\varphi}^{2}}|d\varphi(\operatorname{grad}^{IR^{m}}f_{\varphi})|^{2} + \langle d\varphi, \nabla^{\varphi}e(\varphi)(\operatorname{grad}^{N}\ln f) \circ \varphi \rangle
- \frac{1}{2f_{\varphi}}(\operatorname{grad}^{IR^{m}}f_{\varphi})(|d\varphi|^{2}) - \frac{1}{f_{\varphi}}\langle d\varphi, d\varphi(\nabla^{IR^{m}}\operatorname{grad}^{IR^{m}}f_{\varphi}) \rangle
- \sum_{i,j=1}^{m} h(R^{N}(d\varphi(e_{i}), d\varphi(e_{j}))d\varphi(e_{j}), d\varphi(e_{i}))$$

where $\{e_1, ..., e_m\}$ be an orthonormal frame on IR^m .

Proof. We start recalling the standard Bochner formula for the smooth map φ . Let $\{e_1, ..., e_m\}$ be an orthonormal frame on IR^m , we have

$$\frac{1}{2}\Delta^{IR^{m}}|d\varphi|^{2} = |\nabla d\varphi|^{2} + \langle d\varphi, \nabla^{\varphi}\tau(\varphi) \rangle + \sum_{i=1}^{m} h(d\varphi(\operatorname{Ricci}^{IR^{m}}e_{i}), d\varphi(e_{i}))$$

$$- \sum_{i,j=1}^{m} h(R^{N}(d\varphi(e_{i}), d\varphi(e_{j})) d\varphi(e_{j}), d\varphi(e_{i}))$$
(3.1)

where

$$|\nabla d\varphi|^2 = \sum_{i,j=1}^m h(\nabla d\varphi(e_i, e_j), \nabla d\varphi(e_i, e_j)),$$

and

$$\langle d\varphi, \nabla^{\varphi} \tau(\varphi) \rangle = \sum_{i=1}^{m} h(d\varphi(e_i), \nabla_{e_i}^{\varphi} \tau(\varphi)).$$

Since

$$\tau_f(\varphi) = f_{\varphi} \tau(\varphi) + d\varphi(\operatorname{grad}^{IR^m} f_{\varphi}) - e(\varphi)(\operatorname{grad}^N f) \circ \varphi = 0,$$

we obtain

$$\tau(\varphi) = -\frac{1}{f_{\varphi}} d\varphi(\operatorname{grad}^{IR^m} f_{\varphi}) + \frac{1}{f_{\varphi}} e(\varphi)(\operatorname{grad}^N f) \circ \varphi$$
$$= -\frac{1}{f_{\varphi}} d\varphi(\operatorname{grad}^{IR^m} f_{\varphi}) + e(\varphi)(\operatorname{grad}^N \ln f) \circ \varphi,$$

then we get

$$\langle d\varphi, \nabla^{\varphi} \tau(\varphi) \rangle = \frac{1}{f_{\varphi}^{2}} |d\varphi(\operatorname{grad}^{IR^{m}} f_{\varphi})|^{2} - \frac{1}{f_{\varphi}} \langle d\varphi, \nabla^{\varphi} d\varphi(\operatorname{grad}^{IR^{m}} f_{\varphi}) \rangle$$

$$+ \langle d\varphi, \nabla^{\varphi} e(\varphi)(\operatorname{grad}^{N} \ln f) \circ \varphi \rangle.$$
(3.2)

By the Lemma 3.1, the second term on the right-hand side of (3.2) is

$$-\frac{1}{f_{\varphi}} \langle d\varphi, \nabla^{\varphi} d\varphi (\operatorname{grad}^{IR^{m}} f_{\varphi}) \rangle = -\frac{1}{2f_{\varphi}} (\operatorname{grad}^{IR^{m}} f_{\varphi}) (|d\varphi|^{2})$$

$$-\frac{1}{f_{\varphi}} \langle d\varphi, d\varphi (\nabla^{IR^{m}} \operatorname{grad}^{IR^{m}} f_{\varphi}) \rangle.$$
(3.3)

Since $Ricci^{IR^m} = 0$, by (3.1), (3.2) and (3.3), we have

$$\frac{1}{2}\Delta^{IR^{m}}|d\varphi|^{2} = |\nabla d\varphi|^{2} + \frac{1}{f_{\varphi}^{2}}|d\varphi(\operatorname{grad}^{IR^{m}}f_{\varphi})|^{2} + \langle d\varphi, \nabla^{\varphi}e(\varphi)(\operatorname{grad}^{N}\ln f) \circ \varphi \rangle
- \frac{1}{2f_{\varphi}}(\operatorname{grad}^{IR^{m}}f_{\varphi})(|d\varphi|^{2}) - \frac{1}{f_{\varphi}}\langle d\varphi, d\varphi(\nabla^{IR^{m}}\operatorname{grad}^{IR^{m}}f_{\varphi}) \rangle
- \sum_{i,j=1}^{m} h(R^{N}(d\varphi(e_{i}), d\varphi(e_{j}))d\varphi(e_{j}), d\varphi(e_{i})).$$

Proof. of Theorem 3.1. By the Lemma 3.2, we have

$$\frac{1}{2} f_{\varphi} \Delta^{IR^{m}} |d\varphi|^{2} = f_{\varphi} |\nabla d\varphi|^{2} + \frac{1}{f_{\varphi}} |d\varphi(\operatorname{grad}^{IR^{m}} f_{\varphi})|^{2} - \frac{1}{2} (\operatorname{grad}^{IR^{m}} f_{\varphi}) (|d\varphi|^{2})
+ f_{\varphi} \langle d\varphi, \nabla^{\varphi} e(\varphi)(\operatorname{grad}^{N} \ln f) \circ \varphi \rangle - \langle d\varphi, d\varphi(\nabla^{IR^{m}} \operatorname{grad}^{IR^{m}} f_{\varphi}) \rangle
- f_{\varphi} \sum_{i,j=1}^{m} h(R^{N} (d\varphi(e_{i}), d\varphi(e_{j})) d\varphi(e_{j}), d\varphi(e_{i})).$$

If we denote $\Delta_f^{IR^m} \rho \equiv f_{\varphi} \Delta^{IR^m} \rho + (\operatorname{grad}^{IR^m} f_{\varphi})(\rho)$ for all $\rho \in C^{\infty}(IR^m)$, then

$$\frac{1}{2}\Delta_{f}^{IR^{m}}|d\varphi|^{2} = f_{\varphi}|\nabla d\varphi|^{2} + f_{\varphi}\langle d\varphi, \nabla^{\varphi}e(\varphi)(\operatorname{grad}^{N} \ln f) \circ \varphi\rangle
+ \frac{1}{f_{\varphi}}|d\varphi(\operatorname{grad}^{IR^{m}} f_{\varphi})|^{2} - \langle d\varphi, d\varphi(\nabla^{IR^{m}} \operatorname{grad}^{IR^{m}} f_{\varphi})\rangle
- f_{\varphi}\sum_{i,j=1}^{m} h(R^{N}(d\varphi(e_{i}), d\varphi(e_{j}))d\varphi(e_{j}), d\varphi(e_{i})).$$
(3.4)

Since Sect^N ≤ 0 , Hess^{IR^m} $f_{\varphi} \leq 0$ and $\nabla^{\varphi} e(\varphi)(\operatorname{grad}^{N} \ln f) \circ \varphi \geq 0$, by (3.4) we obtain

(3.5)
$$\frac{1}{2}\Delta_f^{IR^m}|d\varphi|^2 \ge f_{\varphi}|\nabla d\varphi|^2.$$

Since

$$\frac{1}{2}\Delta_f^{IR^m}|d\varphi|^2=|d\varphi|\Delta_f^{IR^m}|d\varphi|+f_\varphi\,|\operatorname{grad}^{IR^m}|d\varphi||^2$$

by (3.5) and the Kato's inequality (see [2] [7]) we get

$$(3.6) |d\varphi|\Delta_f^{IR^m}|d\varphi| \ge f_{\varphi}(|\nabla d\varphi|^2 - |\operatorname{grad}^{IR^m}|d\varphi||^2) \ge 0.$$

Let $\rho: IR^m \longrightarrow IR$ be a smooth function with compact support, then

$$\rho^{2}|d\varphi|\Delta_{f}^{IR^{m}}|d\varphi| = \rho^{2}|d\varphi|\operatorname{div}^{IR^{m}}\left(f_{\varphi}\operatorname{grad}^{IR^{m}}|d\varphi|\right)$$

$$= \operatorname{div}^{IR^{m}}\left(\rho^{2}|d\varphi|f_{\varphi}\operatorname{grad}^{IR^{m}}|d\varphi|\right) - f_{\varphi}\rho^{2}|\operatorname{grad}^{IR^{m}}|d\varphi||^{2}$$

$$(3.7) \qquad -2f_{\varphi}\rho|d\varphi| < \operatorname{grad}^{IR^{m}}\rho, \operatorname{grad}^{IR^{m}}|d\varphi| >_{IR^{m}}.$$

By (3.6), (3.7) and the Stokes theorem, we deduce

$$0 \leq \int_{IR^m} \rho^2 |d\varphi| \Delta_f^{IR^m} |d\varphi| dx$$

$$0 \leq -\int_{IR^m} f_{\varphi} \rho^2 |\operatorname{grad}^{IR^m} |d\varphi||^2 dx$$

$$-2 \int_{IR^m} f_{\varphi} \rho |d\varphi| < \operatorname{grad}^{IR^m} \rho, \operatorname{grad}^{IR^m} |d\varphi| >_{IR^m} dx.$$
(3.8)

By the Young inequality (see [17]) we have

(3.9)

$$-2 < |d\varphi|\operatorname{grad}^{IR^m}\rho, \rho\operatorname{grad}^{IR^m}|d\varphi|>_{IR^m} \leq \frac{1}{\epsilon}|d\varphi|^2|\operatorname{grad}^{IR^m}\rho|^2 + \epsilon\rho^2|\operatorname{grad}^{IR^m}|d\varphi||^2.$$

Substituting (3.9) in (3.8), we obtain

$$0 \le -\int_{IR^m} f_{\varphi} \rho^2 |\operatorname{grad}^{IR^m} |d\varphi||^2 dx + \frac{1}{\epsilon} \int_{IR^m} f_{\varphi} |d\varphi|^2 |\operatorname{grad}^{IR^m} \rho|^2 dx + \epsilon \int_{IR^m} f_{\varphi} \rho^2 |\operatorname{grad}^{IR^m} |d\varphi||^2 dx,$$

then

$$(3.10) \qquad (1 - \epsilon) \int_{IR^m} f_{\varphi} \rho^2 |\operatorname{grad}^{IR^m} |d\varphi||^2 dx \le \frac{1}{\epsilon} \int_{IR^m} f_{\varphi} |d\varphi|^2 |\operatorname{grad}^{IR^m} \rho|^2 dx,$$

for any $\epsilon > 0$. Choose the smooth cut-off $\rho = \rho_R$, i.e $\rho \le 1$ on M, $\rho = 1$ on the ball B(0,R), $\rho = 0$ on $IR^m \backslash B(0,2R)$ and $|\operatorname{grad}^{IR^m} \rho| \le \frac{2}{R}$. Let $0 < \epsilon < 1$, replacing $\rho = \rho_R$ in (3.10) we obtain

$$(3.11) 0 \le (1 - \epsilon) \int_{IR^m} f_{\varphi} \rho^2 |\operatorname{grad}^{IR^m} |d\varphi||^2 dx \le \frac{4}{\epsilon R^2} \int_{IR^m} f_{\varphi} |d\varphi|^2 dx.$$

Since $E_f(\varphi) = \frac{1}{2} \int_{IR^m} f_{\varphi} |d\varphi|^2 dx < \infty$, when $R \to \infty$, we have

$$\frac{4}{\epsilon R^2} \int_{IR^m} f_{\varphi} |d\varphi|^2 dx \to 0.$$

Thus, by (3.11), we have $|\operatorname{grad}^{IR^m}|d\varphi||=0$, i.e $|d\varphi|=c$ constant. If c>0,

$$E_f(\varphi) = \frac{c^2}{2} \int_{IR^m} f_{\varphi} dx = \frac{c^2}{2} \operatorname{Vol}_f(IR^m) < \infty.$$

But $\operatorname{Vol}_f(IR^m) = \infty$ then c = 0, i.e φ is constant.

If f(x,y) = 1 for all $(x,y) \in IR^m \times N$, we recover the following classical result:

Corollary 3.1. Let (N,h) be Riemannian manifold with non-positive sectional curvature $\operatorname{Sect}^N \leq 0$. Consider an harmonic map $\varphi: IR^m \longrightarrow N$ with finite energy $E(\varphi) = \frac{1}{2} \int_{IR^m} |d\varphi|^2 dx < \infty$, then φ is constant.

Let $f_1: IR^m \longrightarrow (0, \infty)$ be a smooth function. If $f(x,y) = f_1(x)$ for all $(x,y) \in IR^m \times N$. We recover the following result obtained in Theorem 3.3 of [14] and Theorem 1.2 of [16]:

Corollary 3.2. Let (N,h) be Riemannian manifold with non-positive sectional curvature $\operatorname{Sect}^N \leq 0$ and let $f_1: IR^m \longrightarrow (0,+\infty)$ be a smooth positive function with non-positive hessien $\operatorname{Hess}^{IR^m} f_1 \leq 0$. Consider an f_1 -harmonic map $\varphi: IR^m \longrightarrow N$ with finite f_1 -energy $E_{f_1}(\varphi) = \frac{1}{2} \int_{IR^m} f_1 |d\varphi|^2 dx < \infty$. If

$$Vol_{f_1}(IR^m) = \int_{IR^m} f_1 \, dx = \infty,$$

then φ is constant.

References

- [1] Baird P., Fardoun A. and Ouakkas S., Liouville-type Theorems for Biharmonic Maps between Riemannian Manifolds, Advances in Calculus of Variations. 3, Issue 1 (2009), 4968.
- [2] Calderbank D. M. J., Gauduchon P. and Herzlich M., On the Kato inequality in Riemannian geometry, Sminaires et Congrs 4, SMF 2000, p. 95-113.
- [3] Cheng, S. Y., Liouville Theorem for Harmonic Maps, Geometry of the Laplace operator (Proc. Sympos. Pure Math., Univ. Hawaii, Honolulu, Hawaii, (1979), 147-151, Proc.Sympos. Pure Math., XXXVI, Amer. Math. Soc., Providence, R.I., 1980.
- [4] Djaa M., Mohamed Cherif A., Zegga K. And Ouakkas S., On the Generalized of Harmonic and Bi-harmonic Maps, international electronic journal of geometry, 5 no. 1(2012), 90-100.
- [5] Djaa M. and Mohamed Cherif A., On the Generalized f-Biharmonic Maps and Stress f-Bienergy Tensor, Journal of Geometry and Symmetry in Physics, JGSP 29(2013), 65-81.
- [6] Baird P., Wood J.C., Harmonic Morphisms between Riemannain Manifolds, Clarendon Press, Oxford, 2003.
- [7] P. Brard, A note on Bochner type theorems for complete manifolds, Manuscripta Math. 69 (1990) 261266.
- [8] Liu J., Liouville-type Theorems of p-harmonic Maps with free Boundary Values, Hiroshima Math. 40 (2010), 333-342
- [9] Eells, J. Jr. and Sampson, J. H., Harmonic mappings of Riemannian manifolds, Amer.J. Math. 86 1964 109-160.
- [10] Ouakkas S., Nasri R. and Djaa M., On the f-harmonic and f-biharmonic Maps, J. P. Journal of Geometry. and Topology. 10 1 (2010), 11-27.
- [11] A.M. Cherif and M. Djaa, Geometry of energy and bienergy variations between Riemannian manifolds, Kyungpook Mathematical Journal, 55(2015), pp 715-730.
- [12] Mohammed Cherif A. and Djaa M., On Generalized f-harmonic Morphisms, Comment. Math. Univ. Carolin. 55,1 (2014) 17-77.
- [13] Mohamed Cherif A., Elhendi H. and Terbeche M., On Generalized Conformal Maps, Bulletin of Mathematical Analysis and Applications, 4 Issue 4 (2012), 99-108.
- [14] Rimoldi M. and Veronelli G., f-Harmonic Maps and Applications to Gradient Ricci Solitons, arXiv:1112.3637, (2011).
- [15] Schoen R. M. and Yau, S.-T., Harmonic Maps and the Topology of Stable Hypersurfaces and Manifolds with Non-negative Ricci Curvature, Comment. Math. Helv. 51 (1976), no.3, 333-341.
- [16] Xu Wang D., Harmonic Maps from Sooth Metric Measure Spaces, Internat. J. Math. 23 (2012), no. 9, 1250095, 21.
- [17] Young W.C., On the multiplication of successions of Fourier constants, Proc. Royal Soc. Lond. 87 (1912), 331-339.
- [18] Zegga K., Djaa M. and A.M. Cherif, On the f-biharmonic maps and submanifolds, Kyungpook Mathematical Journal, 55 (2015), pp 157-168.

- RELIZANE UNIVERSITY, SCIENCES FACULTY, DEPARTMENT OF MATHEMATICS, RELIZANE-ALGERIA
- MASCARA UNIVERSITY, SCIENCES FACULTY, DEPARTMENT OF MATHEMATICS, MASCARA-ALGERIA E-mail address: Djaamustapha@Live.com - Ahmed29cherif@gmail.com