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ON GENERALIZED f-HARMONIC MAPS AND LIOUVILLE
TYPE THEOREM

MUSTAPHA DJAA AND AHMED MOHAMED CHERIF

ABSTRACT. In this paper, we prove that every semi-conformal harmonic map
between Riemannian manifolds is a generalized f-harmonic map. We also
prove a Liouville type theorem for f-harmonic maps in general sense from
IR™ onto a Riemannian manifold N with non-positive sectional curvature,
where f € C°(IR™ x N) is a smooth positive function which satisfies some
suitable conditions.

1. INTRODUCTION

Liouville type theorems for harmonic maps between complete smooth Riemann-
ian manifolds have been done by many authors. Eells-Sampson [9] proved that
any (bounded) harmonic map from a compact Riemannian manifold with positive
Ricci curvature into a complete manifold with non-positive curvature is a constant
map. Schoen-Yau [15] also proved that any harmonic map with finite energy from
a complete smooth Riemannian manifold with non-negative Ricci curvature into
a complete manifold with non-positive curvature is a constant map. Cheng [3]
showed that any harmonic map with sublinear growth from a complete Riemann-
ian manifold with non-negative Ricci curvature into an Hadamard manifold is a
constant map. Liu [8] proved the Liouville-type theorem for p-harmonic maps with
free boundary values. Bair-Fardoun-Ouakkas [1] proved the Liouville-type theorem
for bi-harmonic maps

The purpose of this paper is to provide a proof of the Liouville type theorem
for f-harmonic maps in generalized sense from I R™ onto a Riemannian manifold
N with non-positive sectional curvature, where f € C*°(IR™ x N) is a smooth
positive function which satisfies some suitable conditions.
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Consider a smooth map ¢ : (M™,g) — (N, h) between Riemannian manifolds
and let f : M x N — (0, 4+00) be a smooth positive function. The map ¢ is said to
be a generalized f-harmonic map, if it is a critical point of the f-energy functional

(1) Ey(p) =3 /K F(@, (@) |del? v,

on any compact subset K C M. The Euler-Lagrange equation associated to the
f-energy functional is

(12)  74(p) = for(p)+dp(grad™ f,) — e(p)(grad™ f) oo =0,
where:
fo : M — (0,+00) is the positive function defined by
(1.3) fo(@) = f(z,0()), xe€M,
) 0
(grade>(x,y) = Z g’ anZ (xay)@’ (z,y) € M x N,
ij=1
“ L Of 0
(grade)(r,y) = Z hmii(xvy)i*v (x,y) € M x N7
ij=1 Oy oy’

(i) = tracey Vdep is the tension field of ¢, and e(yp) = 3|dip|? is the energy density
of .

Tr(¢p) is called the f-tension field of ¢ ([4]) [11]).

2. SEMI-CONFORMAL MAPS AND f-HARMONICITY

Let o : (M™,g) — (N™, h) be a smooth map between Riemannian manifolds.
Let z € M, the tangent space at = splits T, M = H, @V, where V,, = Kerd,p and
H, = VgCL is the orthogonal complement of the vertical space V,. The map ¢ is
called semi-conformal if for each x € M where d,p # 0 the restriction d, : H, —
Tp() N is conformal and surjective. On setting A(z) = 0 at points 2 where d,¢ = 0,
we obtain a continuous function A : M — IR, such that for any X,Y € H,

h(dzp(X), dup(Y)) = N (2)g(X,Y),

the function A is called the dilation of . Note that the generalized conformal maps
is discussed in [13].

Let M™ be a Riemannian manifold and N™ be a Riemannian submanifold of
IR*. Then, we have

Theorem 2.1. Any semi-conformal harmonic map ¢ : M™ — N™ is f-harmonic
with f(z,y) = F(2y+ (n—2) p(x)) for all (z,y) € M x N where F € C*°(IRF) is
a smooth positive function.

Proof. A semi-conformal harmonic map ¢ is f-harmonic if and only if

mi(p) = de(grad™ f,) —e(p)(grad” f) o =0,

where f, : M — (0, +00) is a smooth positive function given by

fo(@) = f(z, 0(x)) = F(np(z)).
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Let us choose {ey, ..., e, } an orthonormal frame on a domain of M such that the
vectors {eq, ..., e, } are horizontal and the vectors {e;, 41, ..., e, } are vertical, so that
dp(e;) = A(€; 0 ¢) for i = 1,...,n where {€1,...,€,} is an orthonormal frame on a
domain of N. Then, we have

I
[
D
.Gkh
=9
S
—~
£

do(grad™ f,)

nA%(grad™ F) o .

(grad™ f)op => (€ op)(f) (Eiop)

i=1

n k
=23 Y (@ o 9)u™) alF) @ 0 )

i=1 a=1
n

2> (€iop)(F)(€ioyp)

i
=2(grad"V F) o .

Since e(p) = A2, we get

e(p)(grad™ f) o =nA%(grad" F)o .

If n =1, we arrive at the following corollary
Corollary 2.1. Let F € C*(IR) be a smooth positive function and f(z,y) =
F(2y — ga(ac)) for all (x,y) € M x IR. Then ¢ € C*®(M) is f-harmonic map if

and only if is harmonic.

Proof. From the formula (1.2) we have

(2.1) 7i(p) = for(p) +do(grad™ f,) — e(p)(grad™ f) o,

with
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for all x € M. By calculating the terms of equation 2.1, we obtain

do(grad™ f,)

> eilfo)dp(er)

i=1

= Z ei(Fop)ei(p)

= Z ei()(F" o p)ei(p)

(2.2) = (F'oyp)|grad™ o],

of

—e(p)(grad’® flop = - Z<d¢(ei),dw(ei)>(@)ow

i(9)?12(F 0 )]

@

(2:3) = —[grad™ o]*(F' o ),

where {e;} is an orthonormal frame in M, F’ = dF/dt and e;(¢) = dp(e;).
Substituting (2.2) and, (2.3) in (2.1), we obtain

Ti(0) = fo ().

Example 2.1. Let F € C°°(IR) be a smooth positive function. The map

p:IR> — IR

(x1,22) —> x%—x%

is f-harmonic with f(xy,72,y) = F(2y — 22 + 22) for all (z1,22,y) € IR? x IR.

Note that ¢ is harmonic, from the formula (1.2), we deduce that ¢ is f-harmonic
if and only if

(2.4) dp(grad™ f,) — e()(grad'® f) o p = 0.
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We have
f¢($17$2) = f(3317332,80(3317$2))
= F(2p(x1,22) — o] + 3)
= F(22? — 222 — 2% +22)
= F(z]—23).
2 of, 0O of, 0
JiE - e ¥ L ZJe Y
gra fLP 8%1 8x1 8.%2 axg
= 2z F’(mQ—xQ)i—%c F’(a:2—332)i
! ! 2 8131 2 1 2 31‘2.
2 a(p 8(,0
dp(grad’? fo) = 2xF'(2% — x%)a—xl — 2xo F' (22 — :E%)a—%2
(2.5) = 422F' (2% — ) + 4adF (23 — 23).
1,002 1,002
G(QD) - 2(6x1) +2(6$2)
= 2z% + 2x3.
(Ead ™ fop = (g)ow

= 2F'(2? — 22).
(26) e(p)(grad’ flop = 4aiF'(af - a3) +daF' (af — a3).
From (2.5) and (2.6) we obtain (2.4).
Example 2.2. The radial projection ¢ : x € IR™\{0} — p(x) = ﬁ e sm
is f-harmonic, where F € C®°(IR™*1\{0}) is a smooth positive function and

f(xvy) = F(W) for all (557:1/) c (IRm+1\{O}) x §m .

Indeed; the radial projection ¢ is a semi-conformal harmonic maps (see [6]), so
from Theorem 2.1, we deduce that ¢ is f-harmonic with

fle,y) = F(2y+ (m — 2)%)

F(2yz|+|3(37|712)z).

Remark 2.1. Using Theorem 2.1, we can construct many examples for f-harmonic
maps in a generalized sense.

Theorem 2.2. Let f1 € C®(M) and f, € C>®°(N) be two smooth functions and
f = ez A semi-conformal map ¢ : M™ — N? from a Riemannian manifold
M of dimension m to a Riemannian manifold N of dimension 2, is f-harmonic if
and only if

() + (f2 0 ¢) dp(grad™ f1) = 0.
Proof. We have
(2.7) 71(p) = fo7() + dep(grad™ f,) — e(p)(grad™ f)o o,

where f,(z) = f(z,p(z)) = ef1(®) f2(e(2)),
Let {eq,...,em} be an orthonormal frame on a domain of M such that the vectors
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{e1,ex} are horizontal and the vectors {es, ..., e,,} are vertical, so that dp(e;) =
A(€; o) for i = 1,2 where {€71, €2} is an orthonormal frame on a domain of N. By
calculating the terms of equation 2.7, we obtain

dip(grad™ fo) = Z (fo) de(es)

= Z f1(f20¢) (fl(f2 o 90)) d(ﬂ(ei)

=1
= ef 120901 ( £ 0 ) dep(grad™ f1) + f1 dp(grad™ (f2 0 0))},

m

dp(grad™ (f200)) =D ei(f2 0 9) dp(e:)

i=1

2
- Z do(eq)(f2) dp(e;)
i=1
2
=Y N @op)(f) (Eioyp)
i=1
= X2 (grad™ fy) 0 o,
dgp(gradM fo) =
(2.8) N 229 {(fa 0 ) dp(grad™ f1) + f1 X (grad™ f2) o o}

[ V)

(grad™ f)ow = (@ o @) ()@ o)

i=1
2
=S @ o) (fi ) e ) (5 0 )
i=1
=fi o1 (f209) (gradN f2) o,
As e(p) = A2, then

(2.9) e(p)(grad™ f) oo = A2 fy e1172°9) (grad® fo) o

Substituting (2.8) and (2.9) in (2.7), we obtain

Ti(e) = el r(p) + (f2 0 p)dp(erad™ fi) + fi)*(grad™ f) o
—fiX*(grad™ f2) 0 ¢
(2.10) — 1 (f200) [T(ap) +(fa0 90) d(p(gradM fl)]
From the formula (2.10), the Theorem 6 follows. O

Example 2.3. Let M = (IR?\{0}) x IR and let ¢ : M — I R? defined by

p(z1,22,23) = (y/af + 23, 23).
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The map ¢ is semi-conformal with dilation A = 1. The tension field of ¢ is

() (1,22, 35) = (Wiﬁ,o).

According to Theorem 2.2 the map ¢ is f-harmonic with f = ef1/2 where
1

i@, 02,03) = —=—=—= and fa(y1,y2) = 1.
Ty + x5

3. A LiouviLLE TYPE THEOREM FOR f-HARMONIC MAPS

Theorem 3.1. Let (N,h) be a Riemannian manifold with non-positive sectional
curvature Sect™ < 0. Consider an f-harmonic map @ IR™ — N with finite
f-energy Ef(@) = % [1pm foo ldo|? du < oo, where f € C*°(IR™ x N) is a smooth
positive function such that Hess(f,) < 0. If Vee(p)(grad¥ Inf) o ¢ > 0 and
Volf(IR™) = [;pm fodx = 00, then ¢ is constant.

We need the following lemmas to prove Theorem 3.1.

Lemma 3.1 ([14]). Let ¢ : (M™,g) — (N™, h) a smooth mapping between Rie-
mannian manifolds and let f € C*°(M), then

(do, Vedp(arad™ £)) = 1 (arad™ 1) (deP) + (dp, dp(V™ grad f)).

Proof. Let {e1,...,em} be an orthonormal frame such that V¥e; = 0 at x € M for
all i,7 = 1,...,m. Then calculating at =

(do, V?de(grad™ f)) = hldp(e:), VE dp(grad™ ).
i=1
For all i =1, ..., m, we have

Ve de(grad™ f) = V¢ (e;(f) dp(e;))

NE

<.
Il
—

ej(f) Ve dp(e;) + ) eile;(f)) deles)

NE
NE

j=1

<.
Il
—_

ei(e;(f)) dp(ej),

NE
M

e;(f) VE dp(e;) +
1

<.
Il
—

J

we conclude that

(dp, V?dp(grad™ f)) = }Z e;(f) h(dp(e;), VE dp(e;))

By noticing that
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and
(dp, dp(VM grad™ f)) = > h(dp(e;), dp(V X e;(f)e;))
i,j=1
= Z ei(ej(f)) h(dp(e:), dp(e;)),
i,j=1
the Lemma 3.1 follows. O

Lemma 3.2. Let (N,h) be a Riemannian manifold and f € C*°(IR™ x N) be a
smooth positive function. Consider an f-harmonic map ¢ : IR™ — N, then we
have

1 m 1 m
S AT ldpl? = [Vdgl* + ﬁldw(gradm Fo)? + (dp, V¥e(p)(grad™ In f) o )

%)

—~ i(gradm” fo) (ldel?) — J}ww, dp(VIE" grad™™" f,))

= 27 h(BN (dp(er). dp(e;)) dple;). diple:)
ig=1
where {e1,...,em} be an orthonormal frame on IR™.

Proof. We start recalling the standard Bochner formula for the smooth map ¢. Let
{e1,...,em} be an orthonormal frame on IR™, we have

m

%AIRM do|* = [Vdep|* + (dp, VeT()) + Z h(de(Ricci'™" €;), dp(e;))
i=1
(3.1) - i h(RN (deo(es), dg(e;))dp(e;), dp(e;))
ig=1
where
|Vdp|* = Z h(Vdep(es,e;), Vdp(es, e;)),
=1
and
(de, Ve7(p)) = f: h(dp(ei), VET(0)).
i=1
Since

1) = fo () + dip(grad™™" f,,) — e(y)(grad™ f) o =0,

we obtain

() = ——dp(grad! X" fe) () (grad™ f) o ¢

+ ie
fe fe

- —fidso(grad”‘” fo) +e(@)(grad™ In f) o g,
)



ON GENERALIZED f-HARMONIC MAPS AND LIOUVILLE TYPE THEOREM 41
then we get
(do, Vo7 (¢)) = 7 L |dp(grad!®” fo)l? (d%Wd@(gradIR fe))

(3.2) + (dg, V¥?e(p)(grad™ In f) o <p>.
By the Lemma 3.1, the second term on the right-hand side of (3.2) is

—f—¢<d<p,vwd<p (grad'™" f,)) = fﬁ(grad”%m £0) (ldgl?)

(3.3) -7 L o, dp(VIF" grad!®" f,)).
©
Since Ricci’®" =0, by (3.1), (3.2) and (3.3), we have

SAT dgf? = [Vdgl? + 5 |dplgrad ™" 1,2 + (dg, T2e(i)(grad™ In f) o )

f2
= L)) = 7 1)
- Z (RN (dg(es), dp(e;))dp(e;), dpler)).
ij=1

Proof. of Theorem 3.1. By the Lemma 3.2, we have
1 m 1 m 1 m
o oA el = [ Vgl + ldo(arad™ fo)l* = 5 (arad™ f,) (del’)

+ fo(dp, V¥e(p)(grad™ In f) o @) — {dp, dp(VI " grad"®" f,))

m

— o 3 (RN (de(er), diole;))dole; ), diper)).

i,7=1

If we denote Af,Rmp = f,AE" p 4 (gradIRm fo)(p) for all p € C=(IR™),
then

1 m
S AT diol? = [o| Vil + fo(dio, Voe(p) (grad™ In ) o )

1 . » .
+ —|dp(grad"™" f,)? — (di, dp(VI" grad™™" f,))
©

(3.4) — fo Y h(RY (dp(e:), dip(e;))dp(e;), dples)).
ij=1

Since Sect™ < 0, Hess'®" fo < 0 and V¥e(p)(grad¥ In f) o ¢ > 0, by (3.4) we
obtain

1 m
(3.5) FAFT ldgl® > fo [Vl
Since

AIR’"\dsolQ |d| AFE" |d| + £, | grad"™" |dep|?
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by (3.5) and the Kato’s inequality (see [2] [7]) we get
(3.6) |do| AT |dg| > f,(IVdp|* — | grad™" |de||*) > 0.
Let p: IR™ — IR be a smooth function with compact support, then
PPldp| AL |dip| = p?|dip| div' " (£, grad"®" |dy))
= div'™" (p?|de|f, grad"™" |dip]) — fop?| grad™ |de||?
(3.7) —2f,pldp| < grad™" p, grad™" |dip| > .
By (3.6), (3.7) and the Stokes theorem, we deduce

0 S/ p°ldp| AL dp|dz
IR™

0<-— fop? grad™™" |dy|[dx

(3.8) — 2/ fopldp| < grad ®" p, grad’®" |dp| > pm da.
IR’VTL
By the Young inequality (see [17]) we have
(3.9)
m m 1 m m
~2 < |de|grad™" p, pgrad ™" |dg| >1rn < —|dgl*| grad™™" pf + ep?| grad" " |deo|*.

Substituting (3.9) in (3.8), we obtain
m 1 m
05— [ eplend ™ faelPde L [ foldegd™ s
IR™ € JIR™

e [ foptlerd!™” g,
IR’VYL
then
m 1 m
310 (1=0) [ foplarad™ dplPde < ¢ [ folagl g™ pPda,
IR’"L IR‘NL

for any € > 0. Choose the smooth cut-off p = pr, i.e p <1on M, p =1 on the ball
B(0,R), p =0 on TR™\B(0,2R) and | grad’®" p| < 2. Let 0 < € < 1, replacing
p = pr in (3.10) we obtain

m 4
Gr)  0<0-9 [ foled™ ldolPdr< o [ fildpPd.
IR™ eR IR™
Since Ef(@) = 3 [;pm fo ldp|? dz < oo, when R — oo, we have
4
— dep|*dz — 0.
€R2 IR™ f‘P‘ <)O| v

Thus, by (3.11), we have | grad!®" |dyp|| = 0, i.e |d¢| = ¢ constant. If ¢ > 0,

2 2
Bilp) =5 | fodu= %Volf(IRm) < .

But Voly(/R™) = oo then ¢ = 0, i.e ¢ is constant. (]

If f(x,y) =1 for all (z,y) € IR™ x N, we recover the following classical result:
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Corollary 3.1. Let (N,h) be Riemannian manifold with non-positive sectional
curvature Sect’ < 0. Consider an harmonic map ¢ : IR™ —s N with finite
energy E(p) = %f]}%m dy|* dx < 0o, then ¢ is constant.

Let fi : IR™ — (0,00) be a smooth function. If f(z,y) = fi(z) for all
(z,y) € IR™ x N. We recover the following result obtained in Theorem 3.3 of [14]
and Theorem 1.2 of [16]:

Corollary 3.2. Let (N,h) be Riemannian manifold with non-positive sectional
curvature Secty < 0 and let f; : IR™ — (0,400) be a smooth positive func-

tion with non-positive hessien Hess' " fi < 0. Consider an fi-harmonic map
¢ : IR™ — N with finite f1-energy Ey, () = %IIR"L filde|? doe < co. If

Vol;, IR™) = fidx = oo,
IR™

then ¢ is constant.
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