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INEQUALITIES OF HERMITE-HADAMARD TYPE FOR

ϕ-CONVEX FUNCTIONS

S. S. DRAGOMIR1,2

Abstract. Some inequalities of Hermite-Hadamard type for ϕ-convex func-

tions defined on real intervals are given.

1. Introduction

We recall here some concepts of convexity that are well known in the literature.
Let I be an interval in R.

Definition 1.1 ([37]). We say that f : I → R is a Godunova-Levin function or that
f belongs to the class Q (I) if f is non-negative and for all x, y ∈ I and t ∈ (0, 1)
we have

(1.1) f (tx+ (1− t) y) ≤ 1

t
f (x) +

1

1− t
f (y) .

Some further properties of this class of functions can be found in [28], [29], [31],
[43], [46] and [47]. Among others, its has been noted that non-negative monotone
and non-negative convex functions belong to this class of functions.

Definition 1.2 ([31]). We say that a function f : I → R belongs to the class P (I)
if it is nonnegative and for all x, y ∈ I and t ∈ [0, 1] we have

(1.2) f (tx+ (1− t) y) ≤ f (x) + f (y) .

Obviously Q (I) contains P (I) and for applications it is important to note that
also P (I) contain all nonnegative monotone, convex and quasi convex functions, i.
e. nonnegative functions satisfying

(1.3) f (tx+ (1− t) y) ≤ max {f (x) , f (y)}
for all x, y ∈ I and t ∈ [0, 1] .
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For some results on P -functions see [31] and [44] while for quasi convex functions,
the reader can consult [30].

Definition 1.3 ([7]). Let s be a real number, s ∈ (0, 1]. A function f : [0,∞) →
[0,∞) is said to be s-convex (in the second sense) or Breckner s-convex if

f (tx+ (1− t) y) ≤ tsf (x) + (1− t)s f (y)

for all x, y ∈ [0,∞) and t ∈ [0, 1] .

For some properties of this class of functions see [1], [2], [7], [8], [26], [27], [38],
[40] and [49].

In order to unify the above concepts for functions of real variable, S. Varošanec
introduced the concept of h-convex functions as follows.

Assume that I and J are intervals in R, (0, 1) ⊆ J and functions h and f are
real non-negative functions defined in J and I, respectively.

Definition 1.4 ([52]). Let h : J → [0,∞) with h not identical to 0. We say that
f : I → [0,∞) is an h-convex function if for all x, y ∈ I we have

(1.4) f (tx+ (1− t) y) ≤ h (t) f (x) + h (1− t) f (y)

for all t ∈ (0, 1) .

For some results concerning this class of functions see [52], [6], [41], [50], [48] and
[51].

We can introduce now another class of functions.

Definition 1.5. We say that the function f : I → [0,∞) is of s-Godunova-Levin
type, with s ∈ [0, 1] , if

(1.5) f (tx+ (1− t) y) ≤ 1

ts
f (x) +

1

(1− t)s
f (y) ,

for all t ∈ (0, 1) and x, y ∈ I.

We observe that for s = 0 we obtain the class of P -functions while for s = 1 we
obtain the class of Godunova-Levin. If we denote by Qs (I) the class of s-Godunova-
Levin functions defined on I, then we obviously have

P (I) = Q0 (I) ⊆ Qs1 (I) ⊆ Qs2 (I) ⊆ Q1 (I) = Q (I)

for 0 ≤ s1 ≤ s2 ≤ 1.
The following inequality holds for any convex function f defined on R

(1.6) (b− a)f

(
a+ b

2

)
<

∫ b

a

f(x)dx < (b− a)
f(a) + f(b)

2
, a, b ∈ R.

It was firstly discovered by Ch. Hermite in 1881 in the journal Mathesis (see [42]).
But this result was nowhere mentioned in the mathematical literature and was not
widely known as Hermite’s result.

E. F. Beckenbach, a leading expert on the history and the theory of convex
functions, wrote that this inequality was proven by J. Hadamard in 1893 [5]. In
1974, D. S. Mitrinović found Hermite’s note in Mathesis [42]. Since (1.6) was
known as Hadamard’s inequality, the inequality is now commonly referred as the
Hermite-Hadamard inequality.

For related results, see [10]-[19], [22]-[25], [32]-[35] and [45].
The following inequality of Hermite-Hadamard type holds [48]
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Theorem 1.1. Assume that the function f : I → [0,∞) is an h-convex function
with h ∈ L [0, 1] . Let y, x ∈ I with y 6= x and assume that the mapping [0, 1] 3 t 7→
f [(1− t)x+ ty] is Lebesgue integrable on [0, 1] . Then

(1.7)
1

2h
(
1
2

)f (x+ y

2

)
≤ 1

y − x

∫ y

x

f (u) du ≤ [f (x) + f (y)]

∫ 1

0

h (t) dt.

If we write (1.7) for h (t) = t, then we get the classical Hermite-Hadamard
inequality for convex functions

(1.8) f

(
x+ y

2

)
≤ 1

y − x

∫ y

x

f (u) du ≤ f (x) + f (y)

2
.

If we write (1.7) for the case of P -type functions f : I → [0,∞), i.e., h (t) =
1, t ∈ [0, 1] , then we get the inequality

(1.9)
1

2
f

(
x+ y

2

)
≤ 1

y − x

∫ y

x

f (u) du ≤ f (x) + f (y) ,

that has been obtained for functions of real variable in [31].
If f is Breckner s-convex on I, for s ∈ (0, 1) , then by taking h (t) = ts in (1.7)

we get

(1.10) 2s−1f

(
x+ y

2

)
≤ 1

y − x

∫ y

x

f (u) du ≤ f (x) + f (y)

s+ 1
,

that was obtained for functions of a real variable in [26].
If f : I → [0,∞) is of s-Godunova-Levin type, with s ∈ [0, 1), then

(1.11)
1

2s+1
f

(
x+ y

2

)
≤ 1

y − x

∫ y

x

f (u) du ≤ f (x) + f (y)

1− s
.

We notice that for s = 1 the first inequality in (1.11) still holds, i.e.

(1.12)
1

4
f

(
x+ y

2

)
≤
∫ 1

0

f [(1− t)x+ ty] dt.

The case for functions of real variables was obtained for the first time in [31].

2. ϕ-Convex Functions

We introduce the following class of h-convex functions.

Definition 2.1. Let ϕ : (0, 1) → (0,∞) a measurable function. We say that the
function f : I → [0,∞) is a ϕ-convex function on the interval I if for all x, y ∈ I
we have

(2.1) f (tx+ (1− t) y) ≤ tϕ (t) f (x) + (1− t)ϕ (1− t) f (y)

for all t ∈ (0, 1) .

If we denote ` (t) = t, the identity function, then it is obvious that f is h-convex
with h = `ϕ. Also, all the examples from the introduction can be seen as ϕ-convex
functions with appropriate choices of ϕ.

If we take ϕ (t) = 1
ts+1 with s ∈ [0, 1] then we get the class of s-Godunova-Levin

functions. Also, if we put ϕ (t) = ts−1 with s ∈ (0, 1) , then we get the concept of
Breckner s-convexity. We notice that for all these examples we have

ϕ+ (0) := lim
t→0+

ϕ (t) =∞.
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The case of convex functions, i.e. when ϕ (t) = 1 is the only example from above
for which ϕ+ (0) is finite, namely ϕ+ (0) = 1.

Consider the family of functions, for p > 1 and k > 0

(2.2) δ (p, k) : [0, 1]→ R+, δ (p, k) (t) = k (1− t)p + 1.

We observe that δ+ (p, k) (0) = δ (p, k) (0) = k + 1, δ (p, k) is strictly decreasing on
[0, 1] and δ (p, k) (t) ≥ δ (p, k) (1) = 1.

Definition 2.2. We say that the function f : I → [0,∞) is a δ (p, k)-convex
function on the interval I if for all x, y ∈ I we have

(2.3) f (tx+ (1− t) y) ≤ t [k (1− t)p + 1] f (x) + (1− t) (ktp + 1) f (y)

for all t ∈ (0, 1) .

It is obvious that any nonnegative convex function is a δ(p,k)-convex function for
any p > 1 and k > 0.

For m > 0 we consider the family of functions

η (m) : [0, 1]→ R+, η (m) (t) := exp [m (1− t)] .

We observe that η+ (m) (0) = η (m) (0) = exp (m) , η (m) is strictly decreasing on
[0, 1] and η (m) (t) ≥ η (m) (1) = 1.

Definition 2.3. We say that the function f : I → [0,∞) is a η (m)-convex function
on the interval I if for all x, y ∈ I we have

(2.4) f (tx+ (1− t) y) ≤ t exp [m (1− t)] f (x) + (1− t) exp (mt) f (y)

for all t ∈ (0, 1) .

It is obvious that any nonnegative convex function is a η (m)-convex function for
any m > 0.

There are many other examples one can consider. In fact any continuos function
ϕ : [0, 1]→ [1,∞) can generate a class of ϕ-convex function that contains the class
of nonnegative convex functions.

Utilising Theorem 1.1 we can state the following result.

Theorem 2.1. Assume that the function f : I → [0,∞) is a ϕ-convex function
with `ϕ ∈ L [0, 1] . Let y, x ∈ I with y 6= x and assume that the mapping [0, 1] 3
t 7→ f [(1− t)x+ ty] is Lebesgue integrable on [0, 1] . Then

(2.5)
1

ϕ
(
1
2

)f (x+ y

2

)
≤ 1

y − x

∫ y

x

f (u) du ≤ [f (x) + f (y)]

∫ 1

0

tϕ (t) dt.

The proof follows from (1.7) by taking h (t) = tϕ (t) , t ∈ (0, 1) .

Remark 2.1. We notice that, since
∫ 1

0
tϕ (t) dt can be seen as the expectation of

a random variable X with the density function ϕ, the inequality (2.5) provides
a connection to Probability Theory and motivates the introduction of ϕ-convex
function as a natural concept, having available many examples of density functions
ϕ that arise in applications.

We have the following particular cases:
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Corollary 2.1. Assume that the function f : I → [0,∞) is a a δ (p, k)-convex
function on the interval I with p > 1 and k > 0. Let y, x ∈ I with y 6= x and
assume that the mapping [0, 1] 3 t 7→ f [(1− t)x+ ty] is Lebesgue integrable on
[0, 1] . Then

2p

k + 2p
f

(
x+ y

2

)
≤ 1

y − x

∫ y

x

f (u) du(2.6)

≤ [f (x) + f (y)]

[
1

2
+

k

(p+ 1) (p+ 2)

]
.

Proof. For ϕ (t) = k (1− t)p + 1 we have ϕ
(
1
2

)
= k+2p

2p and∫ 1

0

tϕ (t) dt =

∫ 1

0

(1− t)ϕ (1− t) dt =

∫ 1

0

(1− t) (ktp + 1) dt

= k

∫ 1

0

(
tp − tp+1

)
dt+

1

2
=

k

(p+ 1) (p+ 2)
+

1

2
,

and utilizing (2.5) we get (2.6). �

and

Corollary 2.2. Assume that the function f : I → [0,∞) is a η (m)-convex function
on the interval I with m > 0. Let y, x ∈ I with y 6= x and assume that the mapping
[0, 1] 3 t 7→ f [(1− t)x+ ty] is Lebesgue integrable on [0, 1] . Then

(2.7) e−
m
2 f

(
x+ y

2

)
≤ 1

y − x

∫ y

x

f (u) du ≤ em −m− 1

m2
[f (x) + f (y)] .

Proof. For ϕ (t) = exp [m (1− t)] we have ϕ
(
1
2

)
= e

m
2 and∫ 1

0

tϕ (t) dt =

∫ 1

0

(1− t)ϕ (1− t) dt =

∫ 1

0

(1− t) emtdt

=
1

m

∫ 1

0

(1− t) d
(
emt
)

=
1

m

[
(1− t) emt

∣∣1
0

+

∫ 1

0

emtdt

]
=

1

m

[
−1 +

1

m
(em − 1)

]
=
em −m− 1

m2

and utilizing (2.5) we get (2.7). �

3. Some Results for Differentiable Functions

If we assume that the function f : I → [0,∞) is differentiable on the interior of

I denoted by I̊ then we have the following ”gradient inequality” that will play an
essential role in the following.

Theorem 3.1. Let ϕ : (0, 1)→ (0,∞) a measurable function and such that the right
limit ϕ+ (0) exists and is finite, the left limit ϕ− (1) = 1 and the left derivative in
1 denoted ϕ′− (1) exists and is finite. If the function f : I → [0,∞) is differentiable

on I̊ and ϕ-convex, then

(3.1) ϕ+ (0) f (x)−
[
ϕ′− (1) + 1

]
f (y) ≥ f ′ (y) (x− y)

for any x, y ∈ I̊ with x 6= y.
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Proof. Since f is ϕ-convex on I, then

tϕ (t) f (x) + (1− t)ϕ (1− t) f (y) ≥ f (tx+ (1− t) y)

for any t ∈ (0, 1) and for any x, y ∈ I̊ , which is equivalent to

tϕ (t) f (x) + [(1− t)ϕ (1− t)− 1] f (y) ≥ f (tx+ (1− t) y)− f (y)

and by dividing by t > 0 we get

(3.2) ϕ (t) f (x) +

[
(1− t)ϕ (1− t)− 1

t

]
f (y) ≥ f (tx+ (1− t) y)− f (y)

t

for any t ∈ (0, 1) .

Now, since f is differentiable on y ∈ I̊ , then we have

lim
t→0+

f (tx+ (1− t) y)− f (y)

t
= lim

t→0+

f (y + t (x− y))− f (y)

t
(3.3)

= (x− y) lim
t→0+

f (y + t (x− y))− f (y)

t (x− y)

= (x− y) f ′ (y)

for any x ∈ I̊ with x 6= y.
Also since ϕ− (1) = 1 and ϕ′− (1) exists and is finite, we have

lim
t→0+

(1− t)ϕ (1− t)− 1

t
= lim

s→1−

sϕ (s)− 1

1− s
= − lim

s→1−

sϕ (s)− 1

s− 1
(3.4)

= − lim
s→1−

s (ϕ (s)− ϕ (1)) + s− 1

s− 1

= −ϕ′− (1)− 1.

Taking the limit over t→ 0+ in (3.2) and utilizing (3.3) and (3.4) we get the desired
result (3.1). �

Remark 3.1. If we assume that

(3.5) ϕ+ (0)− ϕ− (1) ≥ ϕ′− (1) ,

then the inequality (3.1) also holds for x = y.
There are numerous examples of such functions, for instance, if , as above. we

take ϕ (t) = k (1− t)p + 1, t ∈ [0, 1] (p > 1, k > 0) then ϕ+ (0) = k + 1, ϕ− (1) = 1
and ϕ′− (1) = 0, which satisfy the condition (3.5).

If we take ϕ (t) = exp [m (1− t)] (m > 0) , then ϕ+ (0) = expm, ϕ− (1) = 1 and
ϕ′− (1) = −m. We have

ϕ+ (0)− ϕ− (1)− ϕ′− (1) = em − 1 +m > 0

for m > 0.

The following result holds:

Theorem 3.2. Let ϕ : (0, 1)→ (0,∞) a measurable function and such that the right
limit ϕ+ (0) exists and is finite, the left limit ϕ− (1) = 1 and the left derivative in 1
denoted ϕ′− (1) exists and is finite. Assume also that ϕ′− (1) > −1. If the function

f : I → [0,∞) is differentiable on I̊ and ϕ-convex, then

(3.6)
ϕ+ (0)

ϕ′− (1) + 1
· f (x) + f (y)

2
≥ 1

y − x

∫ y

x

f (u) du ≥
ϕ′− (1) + 1

ϕ+ (0)
f

(
x+ y

2

)
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for any x, y ∈ I.

Proof. Assume that y > x with x, y ∈ I. From (3.1) we get

ϕ+ (0) f (u)−
[
ϕ′− (1) + 1

]
f

(
x+ y

2

)
≥ f ′

(
x+ y

2

)(
x− x+ y

2

)
for any u ∈ [x, y] with u 6= x+y

2 .
Integrating this inequality over u on [x, y] we get

ϕ+ (0)

∫ y

x

f (u) du−
[
ϕ′− (1) + 1

]
(y − x) f

(
x+ y

2

)
≥ f ′

(
x+ y

2

)∫ y

x

(
u− x+ y

2

)
du = 0

which implies (3.6).
The case y < x goes likewise and the proof of the second inequality in (3.6) is

completed.
Assume that y > x with x, y ∈ I. From (3.1) we get

ϕ+ (0) f (x)−
[
ϕ′− (1) + 1

]
f ((1− t)x+ ty)(3.7)

≥ f ′ ((1− t)x+ ty) (x− (1− t)x− ty)

= tf ′ ((1− t)x+ ty) (x− y)

for any t ∈ (0, 1) and

ϕ+ (0) f (y)−
[
ϕ′− (1) + 1

]
f ((1− t)x+ ty)(3.8)

≥ f ′ ((1− t)x+ ty) (y − (1− t)x− ty)

= (1− t) f ′ ((1− t)x+ ty) (y − x)

for any t ∈ (0, 1) .
Now, if we multiply (3.7) by 1− t, (3.8) by t and add the obtained inequalities,

then we get

(3.9) ϕ+ (0) [(1− t) f (x) + tf (y)] ≥
[
ϕ′− (1) + 1

]
f ((1− t)x+ ty)

for any t ∈ (0, 1) , that is of interest in itself as well.
Now, if we integrate this inequality on [0, 1] we get

ϕ+ (0)

[
f (x)

∫ 1

0

(1− t) dt+ f (y)

∫ 1

0

tdt

]
(3.10)

≥
[
ϕ′− (1) + 1

] ∫ 1

0

f ((1− t)x+ ty) dt.

Since ∫ 1

0

(1− t) dt =

∫ 1

0

tdt =
1

2

and ∫ 1

0

f ((1− t)x+ ty) dt =
1

y − x

∫ y

x

f (u) du,

then by (3.11) we get the desired inequality (3.7). �
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Remark 3.2. Since the function f takes nonnegative values, then the second in-
equality in (3.6) and the inequality (3.10) are trivially satisfied if ϕ′− (1) + 1 ≤ 0,
so we must assume that ϕ′− (1) + 1 > 0.

This condition is satisfied for the function ϕ (t) = k (1− t)p + 1, t ∈ [0, 1] (p >
1, k > 0). If ϕ (t) = exp [m (1− t)] (m > 0) then the condition ϕ′− (1)+1 = 1−m > 0
is satisfied only for m ∈ (0, 1) .

Now, if we write the inequality (3.6) for ϕ (t) = k (1− t)p + 1,we get

(3.11) (k + 1)
f (x) + f (y)

2
≥ 1

y − x

∫ y

x

f (u) du ≥ 1

k + 1
f

(
x+ y

2

)
From (2.6) we also have

[f (x) + f (y)]

[
1

2
+

k

(p+ 1) (p+ 2)

]
≥ 1

y − x

∫ y

x

f (u) du(3.12)

≥ 2p

k + 2p
f

(
x+ y

2

)
.

Since
2p

k + 2p
− 1

k + 1
=

2pk + 2p − k − 2p

(k + 2p) (k + 1)
=

(2p − 1) k

(k + 2p) (k + 1)
≥ 0

and
k + 1

2
− 1

2
− k

(p+ 1) (p+ 2)
=
k

2
− k

(p+ 1) (p+ 2)
≥ 0

it follows that the inequality (3.12) is better than (3.11).
Now, consider the family of functions

ϑ (k, p, q) := ktp (1− t)q + 1

where k > 0, p > 0 and q > 1.

Definition 3.1. We say that the function f : I → [0,∞) is a ϑ (k, p, q)-convex
function on the interval I if for all x, y ∈ I we have

(3.13) f (tx+ (1− t) y) ≤ t [ktp (1− t)q + 1] f (x) + (1− t) [k (1− t)p tq + 1] f (y)

for all t ∈ (0, 1) .

We observe that this class contains the class of nonnegative convex functions for
any k > 0, p > 0 and q > 1.

Corollary 3.1. If the function f : I → [0,∞) is differentiable on I̊ and ϑ (k, p, q)-
convex with k > 0, p > 0 and q > 1 then

(3.14)
f (x) + f (y)

2
≥ 1

y − x

∫ y

x

f (u) du ≥ f
(
x+ y

2

)
for any x, y ∈ I.

If we write the inequality (2.5) for ϕ = ϑ (k, p, q) , then we get

1

k
(
1
2

)p+q
+ 1

f

(
x+ y

2

)
≤ 1

y − x

∫ y

x

f (u) du(3.15)

≤ [f (x) + f (y)]

[
kβ (p+ 2, q + 1) +

1

2

]
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where

β (u, v) :=

∫ 1

a

tu−1 (1− t)v−1 , u, v > 0

is Euler’s Beta function.
Since

1

k
(
1
2

)p+q
+ 1

< 1 and kβ (p+ 2, q + 1) +
1

2
>

1

2
,

it follows that the inequality (3.14) is better than (3.15).
Now, more generally, assume that

ϕ (g, q) : [0, 1]→ [1,∞), ϕ (g, q) (t) = g (t) (1− t)q + 1

where g : [0, 1]→ [0,∞) is continuous and q > 1.
We then have

ϕ+ (g, q) (0) = g (0) + 1, ϕ− (g, q) (1) = 1, ϕ′− (g, q) (1) = 0

and

ϕ

(
1

2

)
= g

(
1

2

)(
1

2

)q

+ 1,

∫ 1

0

tϕ (t) dt =

∫ 1

0

t (1− t)q g (t) dt+
1

2
.

If we apply Theorem 2.1 to the function ϕ (g, q) we have

[f (x) + f (y)]

[∫ 1

0

t (1− t)q g (t) dt+
1

2

]
≥ 1

y − x

∫ y

x

f (u) du(3.16)

≥ 1

g
(
1
2

) (
1
2

)q
+ 1

f

(
x+ y

2

)
.

If we apply Theorem 3.2 to the same function ϕ (g, q) we also have

(g (0) + 1)
f (x) + f (y)

2
≥ 1

y − x

∫ y

x

f (u) du(3.17)

≥ 1

g (0) + 1
f

(
x+ y

2

)
.

Consider the difference

∆1 :=
1

g (0) + 1
− 1

g
(
1
2

) (
1
2

)q
+ 1

=
g
(
1
2

) (
1
2

)q − g (0)

[g (0) + 1]
[
g
(
1
2

) (
1
2

)q
+ 1
]

and the difference

∆2 :=

∫ 1

0

t (1− t)q g (t) dt+
1

2
− g (0) + 1

2

=

∫ 1

0

t (1− t)q g (t) dt− 1

2
g (0) .

We observe that if ∆1,∆2 ≥ (≤) 0 then the double inequality (3.17) is better (worse)
than (3.17).

If we take g (0) = 0, then (3.17) is better than (3.16) for any q > 1.
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If we take g (t) = kt+ 1, k > 0 then

∆1 =
g
(
1
2

) (
1
2

)q − g (0)

[g (0) + 1]
[
g
(
1
2

) (
1
2

)q
+ 1
] =

k
(
1
2

)q+1

k
(
1
2

)q+1
+ 1

> 0

showing that the second inequality in (3.17) is better than the same inequality in
(3.16) for any k > 0 and q > 1.

We also have

∆2 =

∫ 1

0

t (1− t)q g (t) dt− 1

2
g (0) =

∫ 1

0

t (1− t)q (kt+ 1) dt− 1

2

= k

∫ 1

0

t2 (1− t)q dt+

∫ 1

0

t (1− t)q dt− 1

2

= kβ (3, q + 1) + β (2, q + 1)− 1

2
.

If we take

k >
1
2 − β (2, q + 1)

β (3, q + 1)
=

1
2 −

1
(q+1)(q+2)

β (3, q + 1)

=
(q + 1) (q + 2)− 2

2 (q + 1) (q + 2)β (3, q + 1)
(> 0)

then ∆2 > 0 showing that the first inequality in (3.17) is better than the first
inequality in (3.16).

If we take

0 < k <
(q + 1) (q + 2)− 2

2 (q + 1) (q + 2)β (3, q + 1)

then ∆2 < 0 showing that the first inequality in (3.17) is worse than the first
inequality in (3.16).

Conclusion 1. The inequalities (2.5) and (3.6) are not comparable, meaning that
some time one is better then the other, depending on the ϕ-convex function involved.

4. Some Related Results

If we apply Theorem 2.1 on the subintervals
[
x, x+y

2

]
and

[
x+y
2 , y

]
(provided

x < y) and add the corresponding inequalities we get:

Proposition 4.1. Assume that the function f : I → [0,∞) is a ϕ-convex function
with `ϕ ∈ L [0, 1] . Let y, x ∈ I with y 6= x and assume that the mappings [0, 1] 3 t 7→
f
[
(1− t)x+ tx+y

2

]
, f
[
(1− t) x+y

2 + ty
]

are Lebesgue integrable on [0, 1] . Then

1

ϕ
(
1
2

) [f (3x+ y

4

)
+ f

(
x+ 3y

4

)]
(4.1)

≤ 1

y − x

∫ y

x

f (u) du ≤
[
f

(
x+ y

2

)
+
f (x) + f (y)

2

] ∫ 1

0

tϕ (t) dt.

Also, by Theorem 3.2 we have

Proposition 4.2. Let ϕ : (0, 1) → (0,∞) a measurable function and such that
the right limit ϕ+ (0) exists and is finite, the left limit ϕ− (1) = 1 and the left
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derivative in 1 denoted ϕ′− (1) exists and is finite. Assume also that ϕ′− (1) > −1.

If the function f : I → [0,∞) is differentiable on I̊ and ϕ-convex, then

ϕ′− (1) + 1

ϕ+ (0)

[
f

(
3x+ y

4

)
+ f

(
x+ 3y

4

)]
(4.2)

≤ 1

y − x

∫ y

x

f (u) du ≤
[
f

(
x+ y

2

)
+
f (x) + f (y)

2

]
ϕ+ (0)

ϕ′− (1) + 1

for any x, y ∈ I.

Now we can prove the following result as well:

Theorem 4.1. Let ϕ : (0, 1)→ (0,∞) a measurable function and such that the right
limit ϕ+ (0) exists and is finite, the left limit ϕ− (1) = 1 and the left derivative in 1
denoted ϕ′− (1) exists and is finite. Assume also that ϕ′− (1) > −2. If the function

f : I → [0,∞) is differentiable on I̊ and ϕ-convex, then

1

y − x

∫ y

x

f (u) du(4.3)

≤ ϕ+ (0)

ϕ′− (1) + 2
f

(
x+ y

2

)
+

1

ϕ′− (1) + 2
· f (x) + f (y)

2

for any x, y ∈ I.

Proof. Assume that x < y. From the inequality (3.1) we have

(4.4) ϕ+ (0) f

(
x+ y

2

)
−
[
ϕ′− (1) + 1

]
f (u) ≥ f ′ (u)

(
x+ y

2
− u
)

for any u ∈ [x, y] with u 6= x+y
2 .

Integrating over u ∈ [x, y] and dividing by y − x we have

ϕ+ (0) f

(
x+ y

2

)
−
[
ϕ′− (1) + 1

] 1

y − x

∫ y

x

f (u) du(4.5)

≥ 1

y − x

∫ y

x

f ′ (u)

(
x+ y

2
− u
)
du.

Integrating by parts, we have∫ y

x

f ′ (u)

(
x+ y

2
− u
)
du =

(
x+ y

2
− u
)
f (u)

∣∣∣∣y
x

+

∫ y

x

f (u) du

=

∫ y

x

f (u) du− f (y) + f (x)

2
(y − x)

and by (4.5) we get

ϕ+ (0) f

(
x+ y

2

)
−
[
ϕ′− (1) + 1

] 1

y − x

∫ y

x

f (u) du

≥ 1

y − x

∫ y

x

f (u) du− f (y) + f (x)

2
,
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which is equivalent to

ϕ+ (0) f

(
x+ y

2

)
+
f (y) + f (x)

2

≥ 1

y − x

∫ y

x

f (u) du+
[
ϕ′− (1) + 1

] 1

y − x

∫ y

x

f (u) du

=
[
ϕ′− (1) + 2

] 1

y − x

∫ y

x

f (u) du.

Since ϕ′− (1) + 2 > 0, then on dividing by ϕ′− (1) + 2 we get the desired result
(4.3). �

Remark 4.1. We observe that

ϕ+ (0)

ϕ′− (1) + 2
<

ϕ+ (0)

ϕ′− (1) + 1

and if we assume that ϕ is taken to satisfy the condition

ϕ+ (0) >
ϕ′− (1) + 1

ϕ′− (1) + 2
∈ (0, 1) ,

then
1

ϕ′− (1) + 2
<

ϕ+ (0)

ϕ′− (1) + 1

and the inequality (4.3) is better than the second inequality in (4.2).
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