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ON THE GROWTH PROPERTIES OF GENERALIZED

ITERATED ENTIRE FUNCTIONS

DIBYENDU BANERJEE AND NILKANTA MONDAL

Abstract. In this paper, we study some growth properties of generalized
iterated entire functions to generalize some earlier results.

1. INTRODUCTION AND DEFINITIONS

If f and g be two transcendental entire functions defined in the open complex

plane C, then Clunie [4] proved that lim
r→∞

T (r,f◦g)
T (r,f) = ∞ and lim

r→∞
T (r,f◦g)
T (r,g) = ∞.

In [10] Singh proved some comparative growth properties of log T (r, f ◦ g) and
T (r, f) and raised the problem of investigating the comparative growth properties
of log T (r, f ◦g) and T (r, g). After this several authors {see [3], [7] etc.,} made close
investigation on comparative growth of log T (r, f ◦ g) and T (r, g) by imposing cer-
tain restrictions on orders of f and g. In the present paper, we study such growth
properties for generalized iterated entire functions.

Definition 1.1. Let f be a meromorphic function and T (r, f) be its Nevanlinna’s
characteristic function. Then the numbers ρ(f), λ(f) defined by

ρ(f) = lim sup
r→∞

log T (r,f)
log r

and λ(f) = lim inf
r→∞

log T (r,f)
log r are respectively called order and lower order of f .

Definition 1.2. ([3]) Let f be a meromorphic function. Then the numbers ρp(f),
λp(f) defined by

ρp(f) = lim sup
r→∞

log[p] T (r,f)
log r

and λp(f) = lim inf
r→∞

log[p] T (r,f)
log r , where p = 1, 2, 3, ...

are respectively called p-th order and p-th lower order of f .
For p = 1, the above definition coincides with the classical definition of order

and lower order.
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If f is entire one can easily verify that

ρp(f) = lim sup
r→∞

log[p+1]M(r,f)
log r

and λp(f) = lim inf
r→∞

log[p+1]M(r,f)
log r , where p = 1, 2, 3, ... .

Definition 1.3. ([3]) Let f be a meromorphic function. Then the numbers ρp(f),

λp(f) defined by

ρp(f) = lim sup
r→∞

log[p+1] T (r,f)
log r

and λp(f) = lim inf
r→∞

log[p+1] T (r,f)
log r , where p = 1, 2, 3, ...

are respectively called pth hyper order and pth hyper lower order of f .
If f is entire one can easily verify that

ρp(f) = lim sup
r→∞

log[p+2]M(r,f)
log r

and λp(f) = lim inf
r→∞

log[p+2]M(r,f)
log r , where p = 1, 2, 3, ... .

Definition 1.4. ([3]) Let f be a meromorphic function of order zero. Then the
numbers ρ∗p(f) and λ∗p(f) are defined as follows

ρ∗p(f) = lim sup
r→∞

log[p] T (r,f)

log[2] r

and λ∗p(f) = lim inf
r→∞

log[p] T (r,f)

log[2] r
, where p = 1, 2, 3, ... .

Definition 1.5. ([7]) A function λf (r) is called a lower proximate order of a mero-
morphic function f if

i) λf (r) is non negative and continuous for r ≥ r0 say;
ii) λf (r) is differentiable for r ≥ r0 except possibly at isolated points at which

λ
′

f (r − 0) and λ
′

f (r + 0) exist;

iii) lim
r→∞

λf (r) = λ(f) <∞ ;

iv) lim
r→∞

rλ
′

f (r) log r = 0 ; and

v) lim inf
r→∞

T (r,f)

rλf (r) = 1.

Definition 1.6. A real valued function ϕ(r) is said to have the property P1 if
i) ϕ(r) is non negative and continuous for r ≥ r0 say;
ii) ϕ(r) is strictly increasing and ϕ(r)→∞ as r →∞;
iii) logϕ(r) ≤ δϕ( r4 ) holds for every δ > 0 and for all sufficiently large values of r.

Remark 1.1. If ϕ(r) satisfies the property P1 then it is clear that log[p] ϕ(r) ≤ δϕ( r4 )
holds for every p ≥ 1.

Definition 1.7. ([1]) Let f and g be two non-constant entire functions and α be
any real number satisfying 0 < α ≤ 1. Then the generalized iteration of f with
respect to g is defined as follows:

f1,g(z) = (1− α)z + αf(z)
f2,g(z) = (1− α)g1,f (z) + αf(g1,f (z))
f3,g(z) = (1− α)g2,f (z) + αf(g2,f (z))



94 DIBYENDU BANERJEE AND NILKANTA MONDAL

.... .... ....
fn,g(z) = (1− α)gn−1,f (z) + αf(gn−1,f (z))

and so are
g1,f (z) = (1− α)z + αg(z)
g2,f (z) = (1− α)f1,g(z) + αg(f1,g(z))
g3,f (z) = (1− α)f2,g(z) + αg(f2,g(z))

.... .... ....
gn,f (z) = (1− α)fn−1,g(z) + αg(fn−1,g(z)).

Definition 1.8. ([3]) Let a be a complex number, finite or infinite. The Valiron
deficiency δ(a, f) of a with respect to a meromorphic function f is defined as:

δ(a, f) = 1− lim inf
r→∞

N(r,a;f)
T (r,f)

= lim sup
r→∞

m(r,a;f)
T (r,f) .

We do not explain the standard notations and definitions of the theory of entire
and meromorphic functions as those are available in [5] and [11]. Throughout we
assume f, g etc., are non-constant entire functions such that maximum modulus
functions of f, g and all of their generalized iterated functions satisfy property P1.

2. LEMMAS

In this section we present some lemmas which will be needed in the sequel.

Lemma 2.1. ([5]) If f(z) be regular in |z| ≤ R, then for 0 ≤ r < R
T (r, f) ≤ log+M(r, f) ≤ R+r

R−rT (R, f).
In particular, if f be non-constant entire, then for all large values of r
T (r, f) ≤ logM(r, f) ≤ 3T (2r, f).

Lemma 2.2. ([7]) Let f be a meromorphic function. Then for δ > 0 the function
rλ(f)+δ−λf (r) is an increasing function of r.

Lemma 2.3. ([8]) Let f be an entire function of finite lower order. If there exist
entire functions ai(i = 1, 2, 3, ...m;m ≤ ∞) satisfying T (r, ai) = o{T (r, f)} and
m∑
i=1

δ(ai, f) = 1 then

lim
r→∞

T (r,f)
logM(r,f) = 1

π .

Lemma 2.4. ([2]) If f is meromorphic and g is entire then for all large values of
r
T (r, f ◦ g) ≤ (1 + o(1)) T (r,g)

logM(r,g)T (M(r, g), f).

Since g is entire so using Lemma 2.1, we have
T (r, f ◦ g) ≤ (1 + o(1))T (M(r, g), f).
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Lemma 2.5. ([9]) Let f and g be transcendental entire functions with ρ(g) <∞, η
be a constant satisfying 0 < η < 1 and δ be a positive number. Then
T (r, f ◦ g) +O(1) ≥ N(r, 0; f ◦ g)

≥ (log 1
η )[ N(M((ηr)

1
1+δ ,g),0;f)

log(M((ηr)
1

1+δ ,g)−O(1))
−O(1)]

as r →∞ through all values.

Lemma 2.6. Let f and g be two non-constant entire functions. Then
M(r, f ◦ g) ≤M(M(r, g), f) holds for all large values of r.

Lemma 2.7. ([3]) For a meromorphic function f of finite lower order, lower prox-
imate order exists.

3. MAIN THEOREMS

In this section, we present the main results of this paper.

Theorem 3.1. Let f(z) and g(z) be two entire functions such that λp(f) and ρp(g)
are finite and λp(g) > 0. Then for even n

i) lim inf
r→∞

log[(n−1)p] T (r,fn,g)
T (r,g) ≤ 3ρp(f)2λ(g)

ii) lim sup
r→∞

log[(n−1)p] T (r,fn,g)
T (r,g) ≥ λp(f)

2.4(n−1)λ(g) .

Proof. If λ(g) =∞, then (i) and (ii) are obvious. So we suppose that λ(g) <∞.
If ρp(f) =∞ then (i) is obvious. So we suppose that ρp(f) <∞. Since f and g

are non-constants so
(3.1) M(r, f) ≥ µr and M(r, g) ≥ µr for some 0 < µ < 1.
Now by Lemma 2.1 we get for all large values of r and arbitrary ε > 0

T (r, fn,g) ≤ logM(r, fn,g)
= logM(r, (1− α)gn−1,f + αf(gn−1,f ))
≤ log{(1− α) 1

µM(M(r, gn−1,f ), f) + 1
µαM(M(r, gn−1,f ), f)},

using (3.1) and Lemma 2.6
(3.2) = logM(M(r, gn−1,f ), f) +O(1)

or, log[p] T (r, fn,g) ≤ log[p+1]M(M(r, gn−1,f ), f) +O(1)
< (ρp(f) + ε) logM(r, gn−1,f ) +O(1)

or, log[2p] T (r, fn,g) < log[p] logM(r, gn−1,f ) +O(1)

< log[p]{logM(M(r, fn−2,g), g)}+O(1), using (3.2)
< (ρp(g) + ε) logM(r, fn−2,g) +O(1).

So, log[3p] T (r, fn,g) < (ρp(f) + ε) logM(r, gn−3,f ) +O(1).
Proceeding similarly after some steps we get

log[(n−2)p] T (r, fn,g) < (ρp(g) + ε) logM(r, f2,g) +O(1).

So, log[(n−1)p] T (r, fn,g) < (ρp(f) + ε) logM(r, g1,f ) +O(1)
= (ρp(f) + ε) logM(r, (1− α)z + αg(z)) +O(1)
≤ (ρp(f) + ε){logM(r, z) + logM(r, g)}+O(1)

(3.3) = (ρp(f) + ε){log r + logM(r, g)}+O(1).
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On the other hand, since lim inf
r→∞

T (r,g)
rλg(r)

= 1, we get for a sequence of values of r

tending to infinity
(3.4) T (r, g) < (1 + ε)rλg(r)

and for all large of values of r,
(3.5) T (r, g) > (1− ε)rλg(r).
Therefore, for all large values of r, we get from (3.3) and (3.5)
log[(n−1)p] T (r,fn,g)

T (r,g) <
(ρp(f)+ε){log r+logM(r,g)}+O(1)

(1−ε)rλg(r)

=
(ρp(f)+ε) logM(r,g)

(1−ε)rλg(r) + o(1) [since lim
r→∞

λg(r) = λ(g) > 0]

≤ (ρp(f)+ε)3T (2r,g)

(1−ε)rλg(r) + o(1).

Therefore we get from (3.4) for a sequence of values of r tending to infinity
log[(n−1)p] T (r,fn,g)

T (r,g) ≤ 3(ρp(f)+ε)(1+ε)(2r)
λ(g)+δ

(1−ε)(2r)λ(g)+δ−λg(2r)rλg(r) + o(1)

=
3(ρp(f)+ε)(1+ε)

(1−ε) 2λ(g)+δ rλ(g)+δ−λg(r)

(2r)λ(g)+δ−λg(2r)
+ o(1)

≤ 3(ρp(f)+ε)(1+ε)
(1−ε) 2λ(g)+δ + o(1)

because rλ(g)+δ−λg(r) is an increasing function of r.
Since ε > 0 and δ > 0 are arbitrary we get

lim inf
r→∞

log[(n−1)p] T (r,fn,g)
T (r,g) ≤ 3ρp(f)2λ(g) and (i) is proved.

If λp(f) = 0, then (ii) is obvious. So we suppose that λp(f) > 0. Then we have
for all large values of r
T (r, fn,g) = T (r, (1− α)gn−1,f + αf(gn−1,f ))

≥ T (r, αf(gn−1,f ))− T (r, (1− α)gn−1,f ) +O(1)
≥ T (r, f(gn−1,f ))− T (r, gn−1,f ) +O(1) [for α 6= 1]

> 1
3 exp[p−1]{ 19M( r4 , gn−1,f )}λp(f)−ε − T (r, gn−1,f ) +O(1),

see [10], page 100}
or, log[p] T (r, fn,g) > log{ 19M( r4 , gn−1,f )}λp(f)−ε − log[p] T (r, gn−1,f ) +O(1)

≥ (λp(f)− ε) logM( r4 , gn−1,f )− 1
2 (λp(f)− ε) logM( r4 , gn−1,f )

+O(1),
using property P1 and Lemma 2.1

(3.6) = 1
2 (λp(f)− ε) logM( r4 , gn−1,f ) +O(1)

or, log[2p] T (r, fn,g) > log[p]{logM( r4 , gn−1,f )}+O(1)

≥ log[p] T ( r4 , gn−1,f ) +O(1), using Lemma 2.1

> 1
2 (λp(g)− ε) logM( r42 , fn−2,g) +O(1). using (3.6)

Proceeding similarly after some steps we get

(3.7) log[(n−2)p] T (r, fn,g) >
1
2 (λp(g)− ε) logM( r

4n−2 , f2,g) +O(1).

So, log[(n−1)p] T (r, fn,g) >
1
2 (λp(f)− ε) logM( r

4n−1 , g1,f ) +O(1)

= 1
2 (λp(f)− ε) logM( r

4n−1 , (1− α)z + αg(z)) +O(1)

(3.8) ≥ 1
2 (λp(f)− ε){logM( r

4n−1 , g)− logM( r
4n−1 , z)}+O(1)

(3.9) ≥ 1
2 (λp(f)− ε){T ( r

4n−1 , g)− log r
4n−1 }+O(1).

From (3.4), (3.5) and (3.9) we get for a sequence of values of r tending to infinity
log[(n−1)p] T (r,fn,g)

T (r,g) >
1
2 (λp(f)−ε){T ( r

4n−1 ,g)−log r

4n−1 }+O(1)

(1+ε)rλg(r)

=
1
2 (λp(f)−ε)T ( r

4n−1 ,g)

(1+ε)rλg(r)
+ o(1) {since lim

r→∞
λg(r) = λ(g) > 0}

>
1
2 (λp(f)−ε)(1−ε)(

r

4n−1 )
λg( r

4n−1 )

(1+ε)rλg(r)
+ o(1)
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=
1
2 (λp(f)−ε)(1−ε)

(1+ε) ( 1
4n−1 )λ(g)+δ r

λ(g)+δ−λg(r)

( r

4n−1 )
λ(g)+δ−λg( r

4n−1 ) + o(1)

≥
1
2 (λp(f)−ε)(1−ε)

(1+ε)4(n−1)(λ(g)+δ) + o(1)

because rλ(g)+δ−λg(r) is ultimately an increasing function of r.
Since ε > 0 and δ > 0 are arbitrary, so we have from above that

lim sup
r→∞

log[(n−1)p] T (r,fn,g)
T (r,g) ≥ λp(f)

2.4(n−1)λ(g) and (ii) is proved.

Theorem 3.2. Let f(z) and g(z) be two entire functions such that λp(g) and ρp(f)
are finite and λp(f) > 0. Then for odd n

i) lim inf
r→∞

log[(n−1)p] T (r,fn,g)
T (r,f) ≤ 3ρp(g)2λ(f)

ii) lim sup
r→∞

log[(n−1)p] T (r,fn,g)
T (r,f) ≥ λp(g)

2.4(n−1)λ(f) .

Theorem 3.3. Let f(z) and g(z) be two entire functions such that λp(g) > 0.
Also suppose that there exist entire functions ai(i = 1, 2, 3, ...,m;m ≤ ∞) such that

T (r, ai) = o{T (r, g)} as r → ∞(i = 1, 2, 3, ...,m) and
m∑
i=1

δ(ai, g) = 1. Then for

even n

lim sup
r→∞

log[(n−1)p] T (r,fn,g)
T (r,g) ≥ πλp(f)

2.4(n−1)λ(g) .

Proof. If λ(g) = ∞ or λp(f) = 0, then the theorem is obvious. So we suppose
that λ(g) <∞ and λp(f) > 0.

For 0 < ε < min{λp(f), λp(g), 1} we get from (3.8)

log[(n−1)p] T (r, fn,g) >
1
2 (λp(f)− ε){logM( r

4n−1 , g)− log r
4n−1 }+O(1)

Therefore,
log[(n−1)p] T (r,fn,g)

T (r,g) >
1
2 (λp(f)−ε){logM( r

4n−1 ,g)−log r

4n−1 }+O(1)

T (r,g)

=
1
2 (λp(f)−ε) logM( r

4n−1 ,g)

T (r,g) + o(1)

= 1
2 (λp(f)− ε) logM( r

4n−1 ,g)

T ( r

4n−1 ,g)

T ( r

4n−1 ,g)

T (r,g) + o(1).

But from (3.4) and (3.5) we get for a sequence of values of r tending to infinity
and for δ > 0

T ( r

4n−1 ,g)

T (r,g) > (1−ε)
(1+ε)

( r

4n−1 )λ(g)+δ

( r

4n−1 )
λ(g)+δ−λg( r

4n−1 )
1

rλg(r)

≥ (1−ε)
(1+ε)

1
(4n−1)λ(g)+δ

because rλ(g)+δ−λg(r) is an increasing function of r.
Since ε(> 0) and δ(> 0) are arbitrary, so we have from Lemma 2.3 and above

that

lim sup
r→∞

log[(n−1)p] T (r,fn,g)
T (r,g) ≥ π 1

2λp(f)

4(n−1)λ(g)

=
πλp(f)

2.4(n−1)λ(g) .

Theorem 3.4. Let f(z) and g(z) be two entire functions such that λp(f) > 0.
Also suppose that there exist entire functions ai(i = 1, 2, 3, ...,m;m ≤ ∞) such that

T (r, ai) = o{T (r, f)} as r →∞(i = 1, 2, 3, ...,m) and
m∑
i=1

δ(ai, f) = 1. Then for odd

n
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lim sup
r→∞

log[(n−1)p] T (r,fn,g)
T (r,f) ≥ πλp(g)

2.4(n−1)λ(f) .

Theorem 3.5. Let f(z) be an entire function and g(z) be a transcendental entire
function such that ρp(f), λ(g) and ρp(g) are finite. Also suppose that there exist
entire functions ai(i = 1, 2, 3, ...,m;m ≤ ∞) such that T (r, ai) = o{T (r, g)} as

r →∞(i = 1, 2, 3, ...,m) and
m∑
i=1

δ(ai, g) = 1. Then for even n

lim inf
r→∞

log[(n−1)p] T (r,fn,g)
T (2n−2r,g) ≤ πλp(f).

Proof. We have for all large values of r
T (r, fn,g) = T (r, (1− α)gn−1,f + αf(gn−1,f ))

≤ T (r, gn−1,f ) + T (r, f(gn−1,f )) +O(1)
≤ T (r, gn−1,f ) + (1 + o(1))T (M(r, gn−1,f ), f) +O(1), using Lemma 2.4

or, log[p] T (r, fn,g) ≤ log[p] T (r, gn−1,f ) + log[p] T (M(r, gn−1,f ), f) +O(1)

< log[p] T (r, gn−1,f ) + (ρp(f) + ε) logM(r, gn−1,f ) +O(1)
≤ T (2r, gn−1,f ) + (ρp(f) + ε)3T (2r, gn−1,f ) +O(1),

using Lemma 2.1
(3.10) = {3(ρp(f) + ε) + 1}T (2r, gn−1,f ) +O(1)

or, log[2p] T (r, fn,g) < log[p] T (2r, gn−1,f ) +O(1)
< {3(ρp(g) + ε) + 1}T (22r, fn−2,g) +O(1), using (3.10)

or, log[3p] T (r, fn,g) < log[p] T (22r, fn−2,g) +O(1).
Proceeding similarly after some steps we get

log[(n−1)p] T (r, fn,g) < log[p] T (2n−2r, f2,g) +O(1)

= log[p] T (2n−2r, (1− α)g1,f + αf(g1,f )) +O(1)

≤ log[p] T (2n−2r, g1,f ) + log[p] T (2n−2r, f(g1,f )) +O(1)

(3.11) ≤ log[p] T (2n−2r, g1,f ) + log[p] T (M(2n−2r, g1,f ), f) +O(1).
using Lemma 2.4

Therefore, for a sequence of values of r tending to infinity

log[(n−1)p] T (r, fn,g) < log[p] T (2n−2r, g1,f )+(λp(f)+ε) logM(2n−2r, g1,f )+O(1)

= log[p] T (2n−2r, (1− α)z + αg) + (λp(f) + ε)
× logM(2n−2r, (1− α)z + αg) +O(1)

≤ log[p] T (2n−2r, z)+log[p] T (2n−2r, g)+(λp(f)+ε){logM(2n−2r, z)
+ logM(2n−2r, g)}+O(1)

≤ log[p+1](2n−2r)+log[p] T (2n−2r, g)+(λp(f)+ε){log(2n−2r)
+ logM(2n−2r, g)}+O(1).

Therefore,
log[(n−1)p] T (r,fn,g)

T (2n−2r,g) <
log[p] T (2n−2r,g)+(λp(f)+ε) logM(2n−2r,g)+O(1)

T (2n−2r,g)

= (λp(f) + ε) logM(2n−2r,g)
T (2n−2r,g) + o(1).

Since ε(> 0) is arbitrary, we get using Lemma 2.3 that

lim inf
r→∞

log[(n−1)p] T (r,fn,g)
T (2n−2r,g) ≤ πλp(f).

Remark 3.1. Under the hypothesis of Theorem 3.5 we have also

lim sup
r→∞

log[(n−1)p] T (r,fn,g)
T (2n−2r,g) ≤ πρp(f).
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Theorem 3.6. Let f(z) be a transcendental entire function and g(z) be an entire
function such that ρp(f), λ(f) and ρp(g) are finite. Also suppose that there exist
entire functions ai(i = 1, 2, 3, ...,m;m ≤ ∞) satisfying T (r, ai) = o(T (r, f)) as

r →∞(i = 1, 2, 3, ...,m) and
m∑
i=1

δ(ai, f) = 1. Then for odd n

lim inf
r→∞

log[(n−1)p] T (r,fn,g)
T (2n−2r,f) ≤ πλp(g).

Remark 3.2. Under the hypothesis of Theorem 3.6 we have also

lim sup
r→∞

log[(n−1)p] T (r,fn,g)
T (2n−2r,f) ≤ πρp(g).

Theorem 3.7. Let f(z) and g(z) be two entire functions such that 0 < λp(f) ≤
ρp(f) <∞ and 0 < λp(g) ≤ ρp(g) <∞. Then for even n

λp(g)
ρp(g)

≤ lim inf
r→∞

log[np+1] T (r,fn,g)

log[p] T (r,g(k))
≤ lim sup

r→∞

log[np+1] T (r,fn,g)

log[p] T (r,g(k))
≤ ρp(g)

λp(g)

for k = 0, 1, 2, ... .

Proof. We have for all large values of r from (3.9)

log[(n−1)p] T (r, fn,g) >
1
2 (λp(f)− ε){T ( r

4n−1 , g)− log r
4n−1 }+O(1)

or,

(3.12) log[np] T (r, fn,g) > log[p] T ( r
4n−1 , g)− log[p+1]( r

4n−1 ) +O(1)
or,

(3.13) log[np+1] T (r, fn,g) > log[p+1] T ( r
4n−1 , g)− log[p+2]( r

4n−1 ) +O(1).

Since lim sup
r→∞

log[p] T (r,g(k))
log r = ρp(g) so for all large values of r we obtain

(3.14) log[p] T (r, g(k)) < (ρp(g) + ε) log r.
Now from (3.13) and (3.14)
log[np+1] T (r,fn,g)

log[p] T (r,gk)
>

log[p+1] T ( r

4n−1 ,g)−log
[p+2]( r

4n−1 )+O(1)

(ρp(g)+ε) log r

= 1
(ρp(g)+ε)

log[p+1] T ( r

4n−1 ,g)

log( r

4n−1 )

log( r

4n−1 )

log r + o(1).

Since ε (> 0) was arbitrary, by Definition 1.3

(3.15)
λp(g)
ρp(g)

≤ lim inf
r→∞

log[np+1] T (r,fn,g)

log[p] T (r,g(k))
.

From (3.3) for all large values of r and arbitrary ε > 0

log[(n−1)p] T (r, fn,g) < (ρp(f) + ε){log r + logM(r, g)}+O(1)
or,

(3.16) log[np] T (r, fn,g) < log[p+1] r + log[p+1]M(r, g) +O(1)

or, log[np+1] T (r, fn,g) < log[p+2] r + log[p+2]M(r, g) +O(1).
Therefore,

(3.17)
log[np+1] T (r,fn,g)

log[p] T (r,g(k))
< log[p+2]M(r,g)

log[p] T (r,g(k))
+ o(1).

Since lim inf
r→∞

log[p] T (r,g(k))
log r = λp(g), it follows for all large values of r

(3.18) log[p] T (r, g(k)) > (λp(g)− ε) log r.
Now from (3.17) and (3.18)

log[np+1] T (r,fn,g)

log[p] T (r,g(k))
< log[p+2]M(r,g)

log r.(λp(g)−ε) + o(1).

Since ε(> 0) is arbitrary, we have



100 DIBYENDU BANERJEE AND NILKANTA MONDAL

(3.19) lim sup
r→∞

log[np+1] T (r,fn,g)

log[p] T (r,g(k))
≤ ρp(g)

λp(g)
.

The theorem follows from (3.15) and (3.19).

Theorem 3.8. Let f(z) and g(z) be two entire functions such that 0 < λp(f) ≤
ρp(f) <∞ and 0 < λp(g) ≤ ρp(g) <∞. Then for odd n

λp(f)
ρp(f)

≤ lim inf
r→∞

log[np+1] T (r,fn,g)

log[p] T (r,f(k))
≤ lim sup

r→∞

log[np+1] T (r,fn,g)

log[p] T (r,f(k))
≤ ρp(f)

λp(f)

for k = 0, 1, 2, ... .

Theorem 3.9. Let f(z) and g(z) be two entire functions such that 0 < λp(f) ≤
ρp(f) <∞, 0 < λp(g) ≤ ρp(g) <∞ and λ(g) <∞. Then for even n

λp(g)
ρp(g)

≤ lim inf
r→∞

log[np] T (r,fn,g)

log[p] T (r,g)
≤ 1 ≤ lim sup

r→∞

log[np] T (r,fn,g)

log[p] T (r,g)
≤ ρp(g)

λp(g)
.

Proof. From (3.12) we get for all large values of r
log[np] T (r,fn,g)

log[p] T (r,g)
>

log[p] T ( r

4n−1 ,g)−log
[p+1]( r

4n−1 )+O(1)

log[p] T (r,g)

=
log[p] T ( r

4n−1 ,g)

log( r

4n−1 )
log r−log 4n−1

log[p] T (r,g)
+ o(1)

(3.20) =
log[p] T ( r

4n−1 ,g)

log( r

4n−1 )
log r

log[p] T (r,g)
+ o(1).

Since lim sup
r→∞

log[p] T (r,g)
log r = ρp(g), for all large values of r, we obtain

(3.21) log[p] T (r, g) < (ρp(g) + ε) log r.
Since ε(> 0) is arbitrary, we get from (3.20) and (3.21)

(3.22)
λp(g)
ρp(g)

≤ lim inf
r→∞

log[np] T (r,fn,g)

log[p] T (r,g)
.

From (3.16) we get for all large values of r

(3.23) log[np] T (r, fn,g) < log[p+1] r + log[p+1]M(r, g) +O(1).
Again from Lemma 2.1 and (3.4) we get for a sequence of values of r tending to

infinity and for δ > 0
logM(r, g) < 3(1 + ε)(2r)λg(2r)

= 3(1 + ε) (2r)λ(g)+δ

(2r)λ(g)+δ−λg(2r)

= 3(1 + ε)2λ(g)+δ rλ(g)+δ−λg(r)

(2r)λ(g)+δ−λg(2r)
rλg(r)

≤ 3(1 + ε)2λ(g)+δrλg(r)

because rλ(g)+δ−λg(r) is an increasing function of r.
Using (3.5) we get for a sequence of values of r tending to infinity

logM(r, g) < 3(1+ε)
1−ε 2λ(g)+δT (r, g).

Therefore, log[p+1]M(r, g) < log[p] T (r, g) +O(1).
So, from (3.23) we get for a sequence of values of r tending to infinity
log[np] T (r,fn,g)

log[p] T (r,g)
< 1 + o(1).

So,

(3.24) lim inf
r→∞

log[np] T (r,fn,g)

log[p] T (r,g)
≤ 1.

Also from (3.16) we get for all large values of r
log[np] T (r,fn,g)

log[p] T (r,g)
< log[p+1] r+log[p+1]M(r,g)+O(1)

log[p] T (r,g)
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= log[p+1]M(r,g)

log[p] T (r,g)
+ o(1)

(3.25) = log[p+1]M(r,g)
log r

log r
log[p] T (r,g)

+ o(1).

Since lim inf
r→∞

log[p] T (r,g)
log r = λp(g), it follows for all large values of r

(3.26) log[p] T (r, g) > (λp(g)− ε) log r.
Since ε(> 0) is arbitrary, we get from (3.25) and (3.26)

(3.27) lim sup
r→∞

log[np] T (r,fn,g)

log[p] T (r,g)
≤ ρp(g)

λp(g)
.

From (3.12) we get for all large values of r
log[np] T (r,fn,g)

log[p] T (r,g)
>

log[p] T ( r

4n−1 ,g)−log
[p+1]( r

4n−1 )+O(1)

log[p] T (r,g)

(3.28) =
log[p] T ( r

4n−1 ,g)

log[p] T (r,g)
+ o(1).

Now from (3.5) we get for all large values of r

T ( r
4n−1 , g) > (1− ε)( r

4n−1 )λg(
r

4n−1 )

= (1− ε)( 1
4n−1 )λg+δ rλ(g)+δ−λg(r)

( r

4n−1 )
λ(g)+δ−λg( r

4n−1 ) r
λg(r)

≥ (1− ε)( 1
4n−1 )λg+δrλg(r)

because rλ(g)+δ−λg(r) is an increasing function of r.
So, by (3.4) we get for a sequence of values of r tending to infinity

T ( r
4n−1 , g) > (1− ε)( 1

4n−1 )λ(g)+δ.T (r,g)
1+ε .

So,

(3.29) log[p] T ( r
4n−1 , g) > log[p] T (r, g) +O(1).

Therefore by (3.28) and (3.29) we get for a sequence of values of r tending to infinity
log[np] T (r,fn,g)

log[p] T (r,g)
> log[p] T (r,g)

log[p] T (r,g)
+ o(1).

Hence,

(3.30) lim sup
r→∞

log[np] T (r,fn,g)

log[p] T (r,g)
≥ 1.

The theorem follows from (3.22), (3.24), (3.27) and (3.30).

Remark 3.3. If in addition to the condition of Theorem 3.9, we suppose that ρp(g) =
λp(g) then for even n

lim
r→∞

log[np] T (r,fn,g)

log[p] T (r,g)
= 1.

Remark 3.4. The conditions λp(f) > 0 or ρp(f) < ∞ cannot be omitted in Theo-
rem 3.9 and Remark 3.3 which are evident from the following examples.

Example 3.1. Let f(z) = z, g(z) = exp z, p = 1 and α = 1.
Then ρp(f) = λp(f) = 0, 0 < 1 = ρp(g) = λp(g) <∞ and fn,g(z) = exp[n2 ] z for

even n.
Now, log[np] T (r, fn,g) = log[n] T (r, exp[n2 ] z)

≤ log[n](logM(r, exp[n2 ] z))

= log[n2 +1] r.

Therefore, lim
r→∞

log[np] T (r,fn,g)

log[p] T (r,g)
= 0.

Example 3.2. Let f(z) = exp[2] z, g(z) = exp z , p = 1 and α = 1.
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Then ρp(f) = λp(f) =∞, ρp(g) = λp(g) = 1 and fn,g(z) = exp[
3n
2 ]z for even n.

Now, log[np] T (r, fn,g) = log[n] T (r, exp[ 3n2 ] z)

≥ log[n]( 1
3 logM( r2 , exp[ 3n2 ] z))

= exp[n2−1]( r2 ) +O(1).

Therefore, lim
r→∞

log[np] T (r,fn,g)

log[p] T (r,g)
=∞.

Theorem 3.10. Let f(z) and g(z) be two entire functions such that 0 < λp(f) ≤
ρp(f) <∞, 0 < λp(g) ≤ ρp(g) <∞ and λ(f) <∞. Then for odd n

λp(f)
ρp(f)

≤ lim inf
r→∞

log[np] T (r,fn,g)

log[p] T (r,f)
≤ 1 ≤ lim sup

r→∞

log[np] T (r,fn,g)

log[p] T (r,f)
≤ ρp(f)

λp(f)
.

Remark 3.5. If in addition to the condition of Theorem 3.10, we suppose that
ρp(f) = λp(f) then for odd n

lim
r→∞

log[np] T (r,fn,g)

log[p] T (r,f)
= 1.

Remark 3.6. Similarly the conditions λp(g) > 0 or ρp(g) < ∞ cannot be omitted
in Theorem 3.10 and Remark 3.5, which are evident from the following examples.

Example 3.3. Let f(z) = exp z, g(z) = z, p = 1 and α = 1.

Then ρp(g) = λp(g) = 0, 0 < 1 = ρp(f) = λp(f) < ∞ and fn,g(z) = exp[n+1
2 ] z

for odd n.
Now, log[np] T (r, fn,g) = log[n] T (r, exp[n+1

2 ] z)

≤ log[n](logM(r, exp[n+1
2 ] z))

= log[n+1
2 ] r.

Therefore, lim
r→∞

log[np] T (r,fn,g)

log[p] T (r,f)
= 0.

Example 3.4. Let f(z) = exp z, g(z) = exp[2] z, p = 1 and α = 1.

Then ρp(f) = λp(f) = 1, ρp(g) = λp(g) = ∞ and fn,g(z) = exp[1+
3(n−1)

2 ] z =

exp[ 3n−1
2 ] z for odd n.

Now, log[np] T (r, fn,g) = log[n] T (r, exp[ 3n−1
2 ] z)

≥ log[n]( 1
3 logM( r2 , exp[ 3n−1

2 ] z))

= exp[n−3
2 ]( r2 ) +O(1).

Therefore, lim
r→∞

log[np] T (r,fn,g)

log[p] T (r,g)
=∞.

Theorem 3.11. Let f(z) and g(z) be two entire functions such that 0 < λp(f) ≤
ρp(f) <∞ and 0 < λp(g) ≤ ρp(g) <∞. Then for even n

λp(g)
ρp(f)

≤ lim inf
r→∞

log[np] T (r,fn,g)

log[p] T (r,f(k))
≤ lim sup

r→∞

log[np] T (r,fn,g)

log[p] T (r,f(k))
≤ ρp(g)

λp(f)

for k = 0, 1, 2, 3, ... .

Proof. From (3.12) we get for all large values of r
log[np] T (r,fn,g)

log[p] T (r,f(k))
>

log[p] T ( r

4n−1 ,g)−log
[p+1]( r

4n−1 )+O(1)

log[p] T (r,f(k))
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=
log[p] T ( r

4n−1 ,g)

log( r

4n−1 ) . log r−log 4n−1

log[p] T (r,f(k))
+ o(1)

(3.31) =
log[p] T ( r

4n−1 ,g)

log( r

4n−1 ) . log r
log[p] T (r,f(k))

+ o(1).

Since lim sup
r→∞

log[p] T (r,f(k))
log r = ρp(f), so for all large values of r

(3.32) log[p] T (r, f (k)) < (ρp(f) + ε) log r.
From (3.31) and (3.32)

log[np] T (r,fn,g)

log[p] T (r,f(k))
>

λp(g)−ε
ρp(f)+ε

+ o(1).

Since ε(> 0) is arbitrary

(3.33)
λp(g)
ρp(f)

≤ lim inf
r→∞

log[np] T (r,fn,g)

log[p] T (r,f(k))
.

Also from (3.16) for all large values of r
log[np] T (r,fn,g)

log[p] T (r,f(k))
< log[p+1] r+log[p+1]M(r,g)+O(1)

log[p] T (r,f(k))

(3.34) = log[p+1]M(r,g)
log r

log r
log[p] T (r,f(k))

+ o(1).

Since lim inf
r→∞

log[p] T (r,f(k))
log r = λp(f), it follows for all large values of r

(3.35) log[p] T (r, f (k)) > (λp(f)− ε) log r.
Since ε(> 0) is arbitrary, we get from (3.34) and (3.35)

(3.36) lim sup
r→∞

log[np] T (r,fn,g)

log[p] T (r,f(k))
≤ ρp(g)

λp(f)
.

The theorem follows from (3.33) and (3.36).

Theorem 3.12. Let f(z) and g(z) be two entire functions such that 0 < λp(f) ≤
ρp(f) <∞ and 0 < λp(g) ≤ ρp(g) <∞. Then for odd n

λp(f)
ρp(g)

≤ lim inf
r→∞

log[np] T (r,fn,g)

log[p] T (r,g(k))
≤ lim sup

r→∞

log[np] T (r,fn,g)

log[p] T (r,g(k))
≤ ρp(f)

λp(g)

for k = 0, 1, 2, 3, ... .

Theorem 3.13. Let f(z) and g(z) be two entire functions such that 0 < λp(f) ≤
ρp(f) <∞ and ρp(g) <∞. Then

lim sup
r→∞

log[(n−1)p] T (r,fn,g)

log[p−1] T (exp[p](2n−2r),f(k))
= 0 for k = 0, 1, 2, 3, ... .

Proof. First suppose that n is even. Suppose 0 < ε < λp(f).
From (3.11) we have for all large values of r

log[(n−1)p] T (r, fn,g) < log[p] T (2n−2r, g1,f ) + log[p] T (M(2n−2r, g1,f ), f) +O(1)

< log[p] T (2n−2r, g1,f )+(ρp(f)+ε) logM(2n−2r, g1,f )+O(1)

= log[p] T (2n−2r, (1− α)z + αg) + (ρp(f) + ε)
× logM(2n−2r, (1− α)z + αg) +O(1)

≤ log[p] T (2n−2r, z)+log[p] T (2n−2r, g)+(ρp(f)+ε){logM(2n−2r, z)
+ logM(2n−2r, g)}+O(1)

(3.37) < log[p+1](2n−2r)+(ρp(g)+ε) log(2n−2r)+(ρp(f)+ε) log(2n−2r)

+(ρp(f) + ε) exp[p−1](2n−2r)ρp(g)+ε +O(1).
On the other hand we get for all large values of r
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log[p] T (r,f(k))
log r > λp(f)− ε

or, log[p−1] T (r, f (k)) > rλp(f)−ε.
Therefore,

(3.38) log[p−1] T (exp[p](2n−2r), f (k)) > (exp[p](2n−2r))λp(f)−ε.
From (3.37) and (3.38) we have for all large values of r

log[(n−1)p] T (r,fn,g)

log[p−1] T (exp[p](2n−2r),f(k))
<

(ρp(f)+ε)exp
[p−1](2n−2r)ρp(g)+ε

(exp[p](2n−2r))λp(f)−ε
+ o(1).

and hence, lim sup
r→∞

log[(n−1)p] T (r,fn,g)

log[p−1] T (exp[p](2n−2r),f(k))
= 0 and the theorem is proved for even

n.
Also for odd n we get as in (3.37)

log[(n−1)p] T (r, fn,g) < log[p+1](2n−2r)+(ρp(f)+ε) log(2n−2r)+(ρp(g)+ε) log(2n−2r)

+(ρp(g)+ε) exp[p−1](2n−2r)ρp(f)+ε+O(1)
and consequently the theorem follows immediately.

Remark 3.7. The condition ρp(g) < ∞ cannot be omitted in Theorem 3.13 which
is evident from the following example.

Example 3.5. Let f(z) = exp z, g(z) = exp[3] z, p = 1 and α = 1.
Then ρp(f) = λp(f) = 1, ρp(g) =∞ and

fn,g(z) = exp[2n] z when n is even.

= exp[2n−1] z when n is odd.
Therefore for even n

log[(n−1)p] T (r, fn,g) = log[n−1] T (r, exp[2n] z)

≥ log[n−1][ 13 logM( r2 , exp[2n] z)]

= exp[n]( r2 ) +O(1),
and for odd n

log[(n−1)p] T (r, fn,g) = log[n−1] T (r, exp[2n−1] z)

≥ log[n−1][ 13 logM( r2 , exp[2n−1] z)]

= exp[n−1]( r2 ) +O(1).

Also, log[p−1] T (exp[p](2n−2r), f (k)) = T (exp(2n−2r), f (k))

= exp(2n−2r)
π .

Thus it follows that for any n ≥ 2

lim sup
r→∞

log[(n−1)p] T (r,fn,g)

log[p−1] T (exp[p](2n−2r),f(k))
=∞.

Theorem 3.14. Let f(z) and g(z) be two entire functions such that 0 < λp(g) ≤
ρp(g) <∞ and ρp(f) <∞. Then

lim sup
r→∞

log[(n−1)p] T (r,fn,g)

log[p−1] T (exp[p](2n−2r),g(k))
= 0 for k = 0, 1, 2, 3, ... .

Remark 3.8. The condition ρp(f) < ∞ cannot be omitted in Theorem 3.14 which
is evident from the following example.

Example 3.6. Let f(z) = exp[3] z, g(z) = exp z, p = 1 and α = 1.
Then ρp(g) = λp(g) = 1, ρp(f) =∞ and

fn,g(z) = exp[2n] z when n is even.
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= exp[2n+1] z when n is odd.
Therefore as in Example 3.5 we get for even n

log[(n−1)p] T (r, fn,g) ≥ exp[n]( r2 ) +O(1),
and for odd n

log[(n−1)p] T (r, fn,g) ≥ exp[n+1]( r2 ) +O(1).

Also, log[p−1] T (exp[p](2n−2r), g(k)) = exp(2n−2r)
π .

Thus it follows that for any n ≥ 2

lim sup
r→∞

log[(n−1)p] T (r,fn,g)

log[p−1] T (exp[p](2n−2r),g(k))
=∞.

Theorem 3.15. Let f(z) and g(z) be two transcendental entire functions such that
(i) 0 < λp(g) ≤ ρp(g) ≤ ρ(g) <∞;
(ii) λp(f) > 0 ;
and (iii) δ(0; f) < 1.
Then for any real number A and for even n

lim sup
r→∞

log[(n−1)p] T (r,fn,g)

log[p] T (rA,g(k))
=∞ for k = 0, 1, 2, 3, .... .

Proof. We suppose that A > 0, because otherwise the theorem is obvious.
From (3.7) we get for all large values of r

log[(n−2)p] T (r, fn,g) >
1
2 (λp(g)− ε) logM( r

4n−2 , f2,g) +O(1)

= 1
2 (λp(g)− ε) logM( r

4n−2 , (1− α)g1,f + αf(g1,f )) +O(1)

≥ 1
2 (λp(g)− ε){logM( r

4n−2 , f(g1,f ))− logM( r
4n−2 , g1,f )}

+O(1)
≥ 1

2 (λp(g)− ε){T ( r
4n−2 , f(g1,f ))− logM( r

4n−2 , g1,f )}+O(1)
or,

(3.39) log[(n−1)p] T (r, fn,g) ≥ log[p] T ( r
4n−2 , f(g1,f ))− log[p+1]M( r

4n−2 , g1,f )
+O(1).

For given ε(0 < ε < 1− δ(0; f))
N(r, 0; f) > (1− δ(0; f)− ε)T (r, f) for all sufficiently large values of r.

So, from Lemma 2.5, for all sufficiently large values of r

T ( r
4n−2 , f(g1,f )) +O(1) ≥ (log 1

η )[
(1−δ(0;f)−ε)T{M((ηr)

1
1+γ ,g1,f ),f}

logM((ηr)
1

1+γ ,g1,f )−O(1)
−O(1)]

or, log[p] T ( r
4n−2 , f(g1,f )) ≥ log[p] T (M((ηr)

1
1+γ , g1,f ), f)−log[p+1]M((ηr)

1
1+γ , g1,f )

+O(1)

(3.40) = log[p] T (M((ηr)
1

1+γ , g1,f ), f) +O(log r).

Again log[p+1]M( r
4n−2 , g1,f ) = log[p+1]M( r

4n−2 , (1− α)z + αg)

≥ log[p+1]M( r
4n−2 , g)− log[p+1]M( r

4n−2 , z)

> (λp(g)− ε) log( r
4n−2 )− log[p+1] r

4n−2

(3.41) = O(log r).
Therefore from (3.39), (3.40) and (3.41) for all sufficiently large values of r

log[(n−1)p] T (r, fn,g) > log[p] T (M((ηr)
1

1+γ , g1,f ), f) +O(log r)

> (λp(f)− ε) logM((ηr)
1

1+γ , g1,f ) +O(log r)

= (λp(f)− ε) logM((ηr)
1

1+γ , (1− α)z + αg(z)) +O(log r)

≥ (λp(f)−ε)(logM((ηr)
1

1+γ , g)−logM((ηr)
1

1+γ , z))+O(log r)

> (λp(f)−ε)(exp[p−1](ηr)
1

1+γ (λp(g)−ε)−log(ηr)
1

1+γ )+O(log r)
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(3.42) = (λp(f)− ε) exp[p−1](ηr)
1

1+γ (λp(g)−ε) +O(log r).
Also,

(3.43) log[p] T (rA, g(k)) < A(ρp(g) + ε) log r
for all sufficiently large values of r.

So from (3.42) and (3.43) for all sufficiently large values of r

log[(n−1)p] T (r,fn,g)

log[p] T (rA,g(k))
> O(log r)

A(ρp(g)+ε) log r
+

(λp(f)−ε) exp[p−1](ηr)
1

1+γ
(λp(g)−ε)

A(ρp(g)+ε) log r
.

Therefore, lim sup
r→∞

log[(n−1)p] T (r,fn,g)

log[p] T (rA,g(k))
=∞.

Theorem 3.16. Let f(z) and g(z) be two transcendental entire functions such that
(i) 0 < λp(f) ≤ ρp(f) ≤ ρ(f) <∞;
(ii) λp(g) > 0 ;
and (iii) δ(0; g) < 1.
Then for any real number A and for odd n

lim sup
r→∞

log[(n−1)p] T (r,fn,g)

log[p] T (rA,f(k))
=∞ for k = 0, 1, 2, 3, .... .

Theorem 3.17. Let f(z) and g(z) be two entire functions such that ρp(f) = 0,
ρ∗p(f) <∞ and ρ(g) <∞. Then for even n, ρ(n−1)p(fn,g) <∞.

Proof. To prove the theorem we first prove that ρp(g1,f ) <∞ for any p ≥ 1.
We have g1,f (z) = (1− α)z + αg(z), ρ(z) = 0 and ρ(g) <∞.
So, ρ(g1,f ) ≤ max{ρ(z), ρ(g)}.
Therefore, ρ(g1,f ) <∞.
Again ρp(g1,f ) ≤ ρ(g1,f ) <∞.
From (3.11) for all large values of r
log[(n−1)p] T (r,fn,g)

log r ≤ log[p] T (2n−2r,g1,f )
log r +

log[p] T (M(2n−2r,g1,f ),f)
log r + o(1)

=
log[p] T (2n−2r,g1,f )

log(2n−2r)
log 2n−2+log r

log r +
log[p] T (M(2n−2r,g1,f ),f)

log logM(2n−2r,g1,f )

× log logM(2n−2r,g1,f )
log r + o(1)

Therefore, ρ(n−1)p(fn,g) <∞.

Theorem 3.18. Let f(z) and g(z) be two entire functions such that ρp(g) = 0,
ρ∗p(g) <∞ and ρ(f) <∞. Then for odd n, ρ(n−1)p(fn,g) <∞.
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