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HADAMARD AND FEJÉR-HADAMARD INEQUALITIES FOR

GENERALIZED FRACTIONAL INTEGRALS INVOLVING

SPECIAL FUNCTIONS

G. FARID

Abstract. Fractional calculus is as important as calculus. This paper is due
to presentation of Hadamard and Fejér-Hadamard inequalities for fractional

calculus. We prove Hadamard and Fejér-Hadamard inequalities for general-

ized fractional integral involving Mittag–Leffler function. Also, inequalities for
special cases are obtained.

1. introduction

Definition 1.1. A function f : [a, b]→ R is said to be convex if

(1.1) f (λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

holds, for all x,y ∈ [a,b] and λ ∈ [0, 1]. The function f is called concave if reverse
of inequality (1.1) holds.

For any convex function f : I → R where I is an interval in R, following inequality
holds

(1.2) f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f(x)dx ≤ f(a) + f(b)

2
,

where a, b ∈ I and a<b.
Inequality (1.2) is well known in literature as Hadamard inequality. The Hadamard
inequality got attention of many mathematicians and many generalizations, refine-
ments have been found so far for example see, [7, 3, 4, 6, 14, 15, 16] and the
references cited therein.
In [9] Fejér gave generalization of Hadamard inequality known as Fejér-Hadamard
inequality.
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For any convex function f : I → R where I is an interval in R, following inequality
holds

(1.3) f

(
a+ b

2

)∫ b

a

g(x)dx ≤ 1

b− a

∫ b

a

f(x)g(x)dx ≤ f(a) + f(b)

2

∫ b

a

g(x)dx,

where g is a function which is inegrable, non-negative and symmetric about a+b
2 .

Fractional calculus refers to integration or differentiation of fractional order is as
old as calculus. For a historical survey the reader may see [11, 12, 13].

Fractional integral inequalities are useful in establishing the uniqueness of solu-
tions for certain fractional partial differential equations. They also provide upper
and lower bounds for the solutions of fractional boundary value problems. Many
researchers have explored certain extensions and generalizations of integral inequal-
ities by involving fractional calculus (see, [1, 2, 5, 10, 17, 22, 8, 20]).
As we are going to give Hadamard and Fejér-Hadamard inequalities for generalized
fractional integral operator containing Mittag–Leffler function [19]. We give two
sided definition of this generalized fractional integral operator containing Mittag–
Leffler function as follows:

Definition 1.2. Let α, β, k, l, γ be positive real numbers and ω ∈ R. Then the gen-

eralized fractional integral operator containing Mittag–Leffler function εγ,δ,kα,β,l,ω,a+

for a real-valued continuous function f is defined by:

(1.4) (εγ,δ,kα,β,l,ω,a+f)(x) =

∫ x

a

(x− t)β−1Eγ,δ,kα,β,l(ω(x− t)α)f(t)dt,

and

(1.5) (εγ,δ,kα,β,l,ω′,b−f)(x) =

∫ b

x

(t− x)β−1Eγ,δ,kα,β,l(ω(t− x)α)f(t)dt,

where the function Eγ,δ,kα,β,l is generalized Mittag–Leffler function defined as

(1.6) Eγ,δ,kα,β,l(t) =

∞∑
n=0

(γ)kn
Γ(αn+ β)

tn

(δ)ln
,

and (a)n is the Pochhammer symbol: (a)n = a(a+ 1)...(a+ n− 1), (a)0 = 1.

If δ = l = 1 in (1.4), then integral operator εγ,δ,kα,β,l,ω,a+ reduces to an integral

operator containing generalized Mittag–Leffler function Eγ,1,kα,β,1 introduced by Sri-

vastava, and Tomovski in [21]. Along δ = l = 1 in addition if k = 1 (1.4) reduces to
an integral operator defined by Prabhakar in [17] containing Mittag-Leffler function

Eγα,β . For ω = 0 in (1.4), integral operator εγ,δ,kα,β,l,ω,a+ would correspond essentially

to the Riemann–Liouville fractional integral operator (see, [19]),

Iβa+f(x) =
1

Γ(β)

∫ x

a

(x− t)β−1f(t)dt, β > 0.

Iβb−f(x) =
1

Γ(β)

∫ b

x

(t− x)β−1f(t)dt, β > 0.

In[20], Sarikaya et al. proved the following result:
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Theorem 1.1. Let f : [a, b]→ R be a function with 0 ≤ a < b and f ∈ L1[a, b]. If
f is a convex function on [a, b], then the following inequality for fractional integral
holds:

(1.7) f

(
a+ b

2

)
≤ Γ(β + 1)

2(b− a)β

[
Iβa+f(b) + Iβb−f(a)

]
≤ f(a) + f(b)

2

with β > 0.

In [18] Fejér-Hadamard inequality for Reimann-Liouville fractional integrals which
appears as a generalization of Theorem 1.1 is given.
As fractional integral inequalities are useful in establishing the uniqueness of so-
lutions for certain fractional partial differential equations, in this paper we are
interested to give versions of Hadamard and Fejér-Hadamard inequalities in frac-
tional calculus. Also we show our results are more general than such results which
already have been proved.

2. Hermite Hadamard inequality for generalized fractional
integrals involving Mittag–Leffler function

In the following we give Hadamard and Fejér-Hadamard inequalities for gener-
alized fractional integral containing generalized Mittag–Leffler function defined in
(1.4). We also show that these inequalities are generalizations of Hadamard and
Fejér-Hadamard inequalities for Reimann–Liouville fractional integrals given in [18]
and [20].

Theorem 2.1. Let f : [a, b] → R be a positive function with 0 ≤ a < b and
f ∈ L1[a, b]. If f is a convex function on [a, b], then the following inequality for
fractional integral holds:

f

(
a+ b

2

)
εγ,δ,kα,β,l,ω′,a+1)(b) ≤

(εγ,δ,kα,β,l,ω′,a+f)(b) + (εγ,δ,kα,β,l,ω′,b−f)(a)

2
(2.1)

≤ f(a) + f(b)

2
εγ,δ,kα,β,l,ω′,b−1)(a),

where ω′ = w
(b−a)α .

Proof. For t ∈ [0, 1]; ta+ (1− t)b, (1− t)a+ tb ∈ [a, b]. As f is convex function on
[a, b], therefore we have

f

(
1

2
(ta+ (1− t)b) +

(
1− 1

2

)
((1− t)a+ tb)

)
≤ f(ta+ (1− t)b) + f((1− t)a+ tb)

2

that gives after multiplying with tβ−1Eγ,δ,kα,β,l(ωt
α)

2tβ−1Eγ,δ,kα,β,l(ωt
α)f

(
a+ b

2

)
≤ tβ−1Eγ,δ,kα,β,l(ωt

α) (f(ta+ (1− t)b) + f((1− t)a+ tb)) .

Integrating over t on [0, 1] we have

2f

(
a+ b

2

)∫ 1

0

tβ−1Eγ,δ,kα,β,l(ωt
α)dt

≤
∫ 1

0

tβ−1Eγ,δ,kα,β,l(ωt
α)f(ta+ (1− t)b)dt+

∫ 1

0

tβ−1Eγ,δ,kα,β,l(ωt
α)f((1− t)a+ tb)dt.



HADAMARD AND FEJÉR-HADAMARD INEQUALITIES FOR GENERALIZED ... 111

If u = at + (1 − t)b, then t = b−u
b−a and if v = (1 − t)a + tb, then t = v−a

b−a . So one
can have

(2.2) f

(
a+ b

2

)
(εγ,δ,kα,β,l,ω′,a+1)(b) ≤

(εγ,δ,kα,β,l,ω′,a+f)(b) + (εγ,δ,kα,β,l,ω′,b−f)(a)

2
.

On the other hand using that f is convex on [a, b] we have

f(ta+(1−t)b)+f((1−t)a+tb) ≤ tf(a)+(1−t)f(b)+(1−t)f(a)+tf(b) = f(a)+f(b).

Now multiplying with tβ−1Eγ,δ,kα,β,l(ωt
α) and integrating over [0, 1] we get,∫ 1

0

tβ−1Eγ,δ,kα,β,l(ωt
α)f(ta+ (1− t)b)dt+

∫ 1

0

tβ−1Eγ,δ,kα,β,l(ωt
α)f((1− t)a+ tb)dt

≤ [f(a) + f(b)]

∫ 1

0

tβ−1Eγ,δ,kα,β,l(ωt
α)dt

from which by using change of variables as for (2.2) we get

(2.3) (εγ,δ,kα,β,l,ω′,a+f)(b) + (εγ,δ,kα,β,l,ω′,b−f)(a) ≤ (f(a) + f(b)) εγ,δ,kα,β,l,ω′,b−1)(a).

Combining equation (2.2) and equation (2.3) we get inequality in (2.1). �

Remark 2.1. If δ = l = 1 in (2.1), then we have fractional Hadamard inequality for
integral operator introduced by Srivastava, and Tomovski in [21]. Along δ = l = 1
in addition if k = 1 in (2.1), then we have fractional Hadamard inequality for
integral operator defined by Prabhakar in [17].

Remark 2.2. If we take ω = 0, the above theorem gives inequality in Theorem 1.1.
Moreover if along ω = 0 we take α = 1, then we get (1.2).

In the following we give Fejér-Hadamard inequality for generalized fractional
integral operator defined in (1.4).

Theorem 2.2. Let f : [a, b] → R be a convex function with 0 ≤ a < b and
f ∈ L1[a, b]. Also, let g : [a, b]→ R be a function which is non-negative, integrable
and symmetric about a+b

2 . Then the following inequality for generalized fractional
integral holds

(2.4) f

(
a+ b

2

)
(εγ,δ,kα,β,l,ω′,a+g)(b) ≤

(εγ,δ,kα,β,l,ω′,a+fg)(b) + (εγ,δ,kα,β,l,ω′,b−fg)(a)

2

≤ f(a) + f(b)

2
εγ,δ,kα,β,l,ω′,b−g)(a),

where ω′ = w
(b−a)α .

Proof. For t ∈ [0, 1]; ta + (1 − t)b, (1 − t)a + tb ∈ [a, b]. As f is convex function,
therefore we have

f

(
1

2
(ta+ (1− t)b) +

(
1− 1

2

)
((1− t)a+ tb)

)
≤ f(ta+ (1− t)b) + f((1− t)a+ tb)

2

that gives after multiplying with tβ−1Eγ,δ,kα,β,l(ωt
α)g(tb+ (1− t)a)

2tβ−1Eγ,δ,kα,β,l(ωt
α)f

(
a+ b

2

)
g(tb+ (1− t)a)

≤ tβ−1Eγ,δ,kα,β,l(ωt
α) (f(ta+ (1− t)b) + f((1− t)a+ tb)) g(tb+ (1− t)a).
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Integrating over t on [0, 1]

2f

(
a+ b

2

)∫ 1

0

tβ−1Eγ,δ,kα,β,l(ωt
α)g(tb+ (1− t)a)dt

≤
∫ 1

0

tβ−1Eγ,δ,kα,β,l(ωt
α)f(ta+ (1− t)b)g(tb+ (1− t)a)dt

+

∫ 1

0

tβ−1Eγ,δ,kα,β,l(ωt
α)f((1− t)a+ tb)g(tb+ (1− t)a)dt.

If u = at + (1 − t)b, then t = b−u
b−a and if v = (1 − t)a + tb, then t = v−a

b−a . So one
can have

2f

(
a+ b

2

)∫ b

a

(b− u)
β−1

Eγ,δ,kα,β,l

(
ω

(
b− u
b− a

)α)
g(a+ b− u)du

≤
∫ b

a

(b− u)
β−1

Eγ,δ,kα,β,l

(
ω

(
b− u
b− a

)α)
f(u)g(a+ b− u)du

+

∫ a

b

(v − a)
β−1

Eγ,δ,kα,β,l

(
ω

(
v − a
b− a

)α)
f(v)g(a+ b− v)dv.

From which by symmetry of function g about a+b
2 one can have

(2.5) f

(
a+ b

2

)
εγ,δ,kα,β,l,ω′,a+g)(b) ≤

(εγ,δ,kα,β,l,ω′,a+fg)(b) + (εγ,δ,kα,β,l,ω′,b−fg)(a)

2
.

On the other hand using that f is convex on [a, b] we have

f(ta+(1−t)b)+f((1−t)a+tb) ≤ tf(a)+(1−t)f(b)+(1−t)f(a)+tf(b) = f(a)+f(b).

Now multiplying with tβ−1Eγ,δ,kα,β,l(ωt
α)g(ta+ (1− t)b) and integrating over [0, 1] we

get,∫ 1

0

tβ−1Eγ,δ,kα,β,l(ωt
α)f(ta+ (1− t)b)g(ta+ (1− t)b)dt

+

∫ 1

0

tβ−1Eγ,δ,kα,β,l(ωt
α)f((1− t)a+ tb)g(ta+ (1− t)b)dt

≤ (f(a) + f(b))

∫ 1

0

tβ−1Eγ,δ,kα,β,l(ωt
α)g(ta+ (1− t)b)dt.

From which by change of variables it can be seen

(2.6) (εγ,δ,kα,β,l,ω′,a+fg)(b) + (εγ,δ,kα,β,l,ω′,b−fg)(a) ≤ (f(a) + f(b)) εγ,δ,kα,β,l,ω′,b−g)(a).

Combining equation (2.5) and equation (2.6) we get inequality in (2.4). �

Remark 2.3. If we take g = 1, then we get Theorem 2.1.

Remark 2.4. If δ = l = 1 in (2.4), then we have fractional Fejér-Hadamard inequal-
ity for integral operator introduced by Srivastava, and Tomovski in [21]. Along
δ = l = 1 in addition if k = 1 in (2.4), then we have fractional Fejér-Hadamard
inequality for integral operator defined by Prabhakar in [17].

Remark 2.5. If we take ω = 0, the above theorem gives Fejér-Hadamard inequality
given in [18]. Moreover if along ω = 0 we take α = 1, then we get (1.3).
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