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DEVELOPABLE BERTRAND OFFSETS OF TRAJECTORY

SPACELIKE RULED SURFACES

MEHMET ÖNDER1, ZEHRA EKINCI1, AHMET KÜÇÜK2

Abstract. In this study, some characterizations for developable Bertrand off-

sets of a spacelike ruled surface are introduced. It is shown that if there exist
more than one developable Bertrand offsets of a developable spacelike ruled

surface, then the striction curve of reference surface is a general helix in the
Minkowski 3-space R3

1.

1. Introduction

Ruled surfaces are the surfaces generated by moving a straight line continuously
in the space and are one of the most important topics of differential geometry. In a
spatial motion, the trajectories of oriented lines embedded in a moving space or in
a moving rigid body are generally called trajectory ruled surfaces [7]. Trajectory
ruled surfaces and their offsets are used in many areas of sciences. These sur-
faces are used to study design problems in spatial mechanisms or space kinematics,
Computer Aided Geometric Design (CAGD), geometric modeling and model-based
manufacturing of mechanical products [2,3,7,11,14]. The well-known offset of ruled
surfaces is Bertrand offset which is a generalization of the notion of Bertrand curve
to the ruled surfaces. These offsets have been introduced by Ravani and Ku [11].
The corresponding characterizations of timelike and spacelike ruled surfaces in the
Minkowski 3-space R3

1 have been given by Kasap and Kuruoǧlu [4]. Furthermore,
Küçük has studied developable timelike ruled surfaces and Bertrand trajectory ruled
surface offsets [6,7].

The classification of ruled surfaces in R3
1 has been introduced by Kim and Yoon

[5]. Using this classification, Önder and Uǧurlu have introduced the Frenet frames
of timelike and spacelike ruled surfaces [9,12].

In this paper, we give characterizations for developable Bertrand offsets of space-
like ruled surfaces in R3

1. We introduce some theorems and results between curva-
tures of striction curves of offset surfaces.
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2. Preliminaries

Let consider the standard flat metric defined by

〈 , 〉 = −dx2
1 + dx2

2 + dx2
3.

The real vector space R3 provided with this metric is called the Minkowski 3-space
and denoted by R3

1. Then, (x1, x2, x3) is a standard rectangular coordinate system
of R3

1. In this space, there exist three types of vectors ~v ∈ R3
1 such that ~v is

spacelike if 〈~v,~v〉 > 0 or ~v = 0, timelike if 〈~v,~v〉 < 0 and null (lightlike) if 〈~v,~v〉 = 0
and ~v 6= 0. Similarly, Lorentzian casual character of an arbitrary curve ~α = ~α(s)

is determinate with its velocity vector ~α′(s). Then, ~α = ~α(s) is locally spacelike,

timelike or null (lightlike), if all of its velocity vectors ~α′(s) are spacelike, timelike
or null (lightlike), respectively [8]. The norm of the vector ~v = (v1, v2, v3) ∈ R3

1 is
given by

‖~v‖ =
√
|〈~v, ~v〉|.

For any vectors ~x = (x1, x2, x3) and ~y = (y1, y2, y3) in R3
1, Lorentzian cross product

is defined by

~x× ~y =

∣∣∣∣∣∣
e1 −e2 −e3

x1 x2 x3

y1 y2 y3

∣∣∣∣∣∣ = (x2y3 − x3y2, x1y3 − x3y1, x2y1 − x1y2).

The Lorentzian sphere and hyperbolic sphere of radius r and center origin 0 in
R3

1 are given by

S2
1 =

{
~x = (x1, x2, x3) ∈ R3

1 : 〈~x, ~x〉 = r2
}
,

and

H2
0 =

{
~x = (x1, x2, x3) ∈ R3

1 : 〈~x, ~x〉 = −r2
}
,

respectively (See [13] for details).
For two spacelike vectors ~x and ~y that span a spacelike vector subspace, the real

number θ ≥ 0 given by < ~x, ~y >= ‖~x‖ ‖~y‖ cos θ is called spacelike angle between
the vectors x and y [10].

Analogue to the curves, the characterization of a surface in R3
1 is determinate by

its normal vector. Then, a surface is called a timelike surface if its normal vector
is spacelike and called a spacelike surface if its normal vector is timelike [1]. Now,
we consider ruled surfaces in R3

1 and we give a brief summary of theory of ruled
surfaces in R3

1. The more information can be found in [9,12].

Let I be an open interval in the real line R. Let ~k = ~k(s) be a curve in R3
1

defined on I and ~q = ~q(s) be a unit direction vector of an oriented line in R3
1. Then

the parametric representation of a ruled surface N is given by

(2.1) ϕ(s, v) = ~k(s) + v ~q(s).

Different positions of the straight lines i.e., the parametric s-curve of surface is

called ruling. In (2.1), if we take v = 0, then we obtain the curve ~k = ~k(s) which
is called base curve or generating curve of the surface. Of course, there exist much
more regular curves on the surface. But one of these curves have an important role



142 MEHMET ÖNDER1, ZEHRA EKINCI1, AHMET KÜÇÜK2

and is called striction curve and denoted by ~c = ~c(s). The striction curve is the
focus of striction point which is the foot of common normal between two consecutive
rulings. The parametrization of the striction curve ~c = ~c(s) is given by

(2.2) ~c(s) = ~k(s)−

〈
d~q/ds, d~k/ds

〉
〈d~q/ds, d~q/ds〉

~q(s).

From (2.2) it is clear that the base curve of the ruled surface is its striction curve

if and only if
〈
d~q/ds, d~k/ds

〉
= 0. Furthermore, the generator ~q of a developable

ruled surface is tangent of its striction curve [11].
The distribution parameter (or drall) of a ruled surface is given by

(2.3) δϕ =

∣∣∣d~k/ds, ~q, d~q/ds∣∣∣
〈d~q/ds, d~q/ds〉

.

The geometric interpretation of (2.3) can be given as follows: If
∣∣∣d~k/ds, ~q, d~q/ds∣∣∣ =

0, then the timelike normal vectors of spacelike surface are collinear at all points of
the same ruling which means that the tangent plane does not change and contacts

the surface along a ruling which is called a torsal ruling. If
∣∣∣d~k/ds, ~q, d~q/ds∣∣∣ 6= 0,

then the tangent planes of the surface N are different at all points of the same
ruling, such a ruling is called nontorsal.

Definition 2.1. ([12]) A spacelike ruled surface whose all rulings are torsal is
called a developable spacelike ruled surface. The remaining spacelike ruled surfaces
are called skew spacelike ruled surfaces. Then, it is clear that a spacelike ruled
surface is developable if and only if distribution parameter δϕ is zero at all points
of the surface.

For the unit normal vector ~m of spacelike ruled surface N , we can write ~m =
~ϕs×~ϕv

‖~ϕs×~ϕv‖ . So, at the points of a nontorsal ruling s = s1 we have

(2.4) ~a = lim
v→∞

~m(s1, v) =
(d~q/ds)× ~q
‖d~q/ds‖

,

which is called central tangent. The timelike vector ~h defined by ~h = ~a× ~q is called

central normal. Since the vectors ~q, d~q/ds and ~a are orthogonal, the unit vector ~h
of the central normal is given by

(2.5) ~h =
d~q/ds

‖d~q/ds‖
.

Then, the orthonormal system
{
C; ~q, ~h(timelike), ~a

}
is called Frenet frame of

spacelike ruled surface N where C is the striction point.
Let now assume that the spacelike ruled surface N has non-null Frenet vectors

and non-null derivatives of Frenet vectors. Then, for the vectors ~q,~h and ~a we have
following Frenet formulae
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(2.6)

 dq/ds
dh/ds
da/ds

 =

 0 κ1 0
κ1 0 κ2

0 κ2 0

 q
h
a

 ,
where s is arc length parameter of striction curve and κ1, κ2 are first and second
curvatures of the surface. If the surface is developable, then κ1, κ2 coincide with
the curvature and torsion of striction curve. From (2.6), the Darboux vector of the

Frenet frame
{
O; ~q,~h,~a

}
can be given by ~w = −κ2~q+κ1~a. Thus, for the derivatives

in (2.6) we can write

(2.7) d~q/ds = ~w × ~q, d~h/ds = ~w × ~h, d~a/ds = ~w × ~a,

and also we have

(2.8) ~q × ~h = −~a, ~h× ~a = −~q, ~a× ~q = ~h.

(For details [12]).

3. Developable Bertrand Offsets of Spacelike Ruled Surfaces

Let ϕ and ϕ∗ be two spacelike ruled surfaces given by the parametrizations

(3.1) ϕ(s, v) = ~c(s) + v ~q(s), 〈~q, ~q〉 = 1,

(3.2) ϕ∗ (s, v) = ~c∗(s) + v ~q∗(s), 〈~q∗, ~q∗〉 = 1,

respectively, where (~c) (resp. (~c∗)) is striction curve of ϕ (resp. ϕ∗). Let the

Frenet frames of surfaces ϕ and ϕ∗ be
{
~q,~h,~a

}
and

{
~q∗,~h∗,~a∗

}
, respectively. The

ruled surface ϕ∗ is said to be Bertrand offset of ϕ, if there exists a one to one
correspondence between their rulings such that they have common central normal
along the striction lines (~c) and (~c∗). In this case, (ϕ,ϕ∗) is called a pair of Bertrand
offsets of spacelike ruled surfaces. By definition, we have

(3.3) ~h∗ = ~h,

and so, we can write

(3.4)

 ~q∗

~h∗

~a∗

 =

 cos θ 0 sin θ
0 1 0
− sin θ 0 cos θ

 ~q
~h
~a

 ,

where θ is spacelike angle between the rulings ~q and ~q∗ and called offset angle.
By definition, the striction curve of ϕ∗ is given by

(3.5) ~c∗(s) = ~c(s) + λ~h(s),

where λ is called offset distance. Then the parametrization of ϕ∗ is obtained as
follows
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(3.6)
ϕ∗(s, v) = ~c∗(s) + v ~q∗(s)

=
(
~c(s) + λ~h(s)

)
+ v (cos θ~q + sin θ~a) .

Theorem 3.1. ([4]) The offset angle θ and offset distance λ are constants.

In general, the Bertrand offset of a developable ruled surface is not a developable
surface.

Assume now that spacelike ruled surface ϕ is developable and (ϕ,ϕ∗) be a pair of
Bertrand offsets of trajectory spacelike ruled surfaces. From (2.3), (3.4) and (3.6)
the distribution parameter of ϕ∗ is

(3.7) δϕ∗ =
(λκ2) cos θ − (1 + λκ1) sin θ

κ1 cos θ + κ2 sin θ
,

which gives us that ϕ∗ is developable if and only if

(3.8) (λκ2) cos θ − (1 + λκ1) sin θ = 0,

holds. So, we may give the following theorem and corollaries.

Theorem 3.2. Let (ϕ,ϕ∗) be a pair of Bertrand offsets of spacelike ruled surfaces
and ϕ be developable. Then ϕ∗ is developable if and only if

(λκ2) cos θ − (1 + λκ1) sin θ = 0

is satisfied.

From Theorem 3.2 we obtain the following special cases.

Corollary 3.1. i) If θ = 0, then λ = 0 or κ2 = 0.
(ii) If λ = 0, then θ = 0, i.e., rulings are congruent.
(iii) If κ2 = 0, λ 6= 0, then κ1 = − 1

λ = const or θ = 0.

(iv) If θ = π
2 , λ 6= 0, then κ1 = − 1

λ = const.

Let now assume that both ϕ and ϕ∗ are developable spacelike ruled surfaces and
(ϕ,ϕ∗) is a pair of Bertrand offsets. Then, from (2.6) and (3.5), we can write

(3.9) ~q∗
ds∗

ds
= (1 + λκ1)~q + λκ2~a.

From (3.4) we have

(3.10) ~q∗ = cos θ~q + sin θ~a.

Then, from (3.9) and (3.10), we have the following relationships

(3.11)

{
cos θ = (1 + λκ1) dsds∗ ,
sin θ = λκ2

ds
ds∗ .

Since, there exits a reciprocal relationship between the curves ~c and ~c∗, from (3.11)
we may write
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(3.12)

{
cos θ = (1− λκ∗1)ds

∗

ds ,

sin θ = λκ∗2
ds∗

ds ,

and if we take

cos θ

sin θ
λ = a = const.

from (3.11), we have

(3.13) aκ2 − λκ1 = 1.

Similarly, from (3.12), we have

(3.14) aκ∗2 + λκ∗1 = 1.

Then Eq. (3.13) and (3.14) give the following theorem and corollary.

Theorem 3.3. Let (ϕ,ϕ∗) be a pair of developable Bertrand offsets of spacelike
ruled surfaces. Then there exists the following relationship between curvatures and
torsions of striction curves,

κ∗1 + κ1

κ∗2 − κ2
=
a

λ
= const.

Corollary 3.2. The striction curves ~c and ~c∗ are planar curves in R3
1 if and only

if κ1 = −κ∗1 holds.

Now, assume that ϕ∗ and ϕ∗∗ are two developable Bertrand offsets of the same
developable spacelike ruled surface ϕ. Since ϕ∗ is a Bertrand offset of developable
spacelike surface ϕ, from (3.13) and (3.14), there exist two real constants a, λ such
that

(3.15)

{
aκ2 − λκ1 = 1,
aκ∗2 + λκ∗1 = 1.

Similarly, since ϕ∗∗ is another developable Bertrand offset of ϕ, there are two real
constants b, c such that

(3.16)

{
bκ2 − cκ1 = 1,
bκ∗∗2 + cκ∗∗1 = 1.

where κ∗∗1 and κ∗∗2 are curvature and torsion of striction curve ~c∗∗ of developable
spacelike ruled surface ϕ∗∗, respectively. From (3.15) and (3.16) we have

(3.17)
κ1

κ2
=
b− a
c− λ

= const.,

which means that the striction curve ~c is a general helix. Then, we have the
followings.

Theorem 3.4. If there exist more than one developable Bertrand offsets of a devel-
opable spacelike ruled surface ϕ, then the striction curve ~c of ϕ is a general helix.
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Also, we can give the following corollary from (3.11) and (3.12).

Corollary 3.3. There are the following relationships between curvatures of the
striction curves ~c and ~c∗,

(3.18)

{
sin2(θ) = λ2κ2κ

∗
2 = const.

cos2(θ) = (1− λκ∗1)(1 + λκ1) = const.

Also from (3.18), the following corollary may be given.

Corollary 3.4. i) If θ = 0, λ 6= 0, then κ2 = 0 or κ∗2 = 0 and
κ1−κ∗

1

κ1κ∗
1

= λ = const.

ii) If θ = π
2 , then we have λ 6= 0, κ2κ

∗
2 = 1

λ2 and κ∗1 = 1
λ or κ1 = − 1

λ .

4. Conclusions

Some conditions characterizing developable Bertrand offsets of spacelike ruled
surfaces are given. It is shown that the striction curve of the reference spacelike
ruled surface is a general helix if there are more than one developable Bertrand
offset of a developable spacelike ruled surface in R3

1. Furthermore, some relation-
ships between curvatures and torsions of the striction curves of Bertrand offsets of
spacelike ruled surface are found.
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