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ON THE CODIMENSION-TWO AND -THREE BIFURCATIONS

OF A FOOD WEB OF FOUR SPECIES

HSIU-CHUAN WEI, JENN-TSANN LIN, SHIN-FENG HWANG, AND YUH-YIH CHEN

Abstract. This paper is concerned with codimension-two and -three bifurca-

tions of a food web containing a bottom prey X, two competing predators Y
and Z on X, and a super predator W only on Y . Parameter conditions for a

part of codimension-two bifurcations and a codimension-three bifurcation are

derived. Three-parameter bifurcation diagrams are computed using an adap-
tive grid method to locate the bifurcations determined by the eigenvalues of

equilibria.

1. Introduction

Mathematical modeling is a promising tool to analyze, predict, and control bi-
ological systems. Many mathematical models of biological systems use nonlinear
dynamical systems. In this paper, we study bifurcations of a food web of four
species considered in [5, 6]. The food web includes a bottom prey X, two predators
Y and Z on X, and a super-predator W only on Y . The predators Y and Z have
no direct competition. However, they have competition from consuming the same
resource X. The dimensional model is as follows:

dX
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(
1− X

K

)
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The meanings of the parameters are given in the above quoted papers. Using the
scaling transformations together with the nondimensional parameters suggested in
[5, 6], the nondimensional form of Eqs. (1.1)-(1.4) becomes
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This mathematical model has been studied by varies researchers and proven to
have rich dynamics. Without the top-predator w, y and z cannot coexist at a
stable equilibrium state due to the competitive exclusion principle. When z goes to
extinction, the system becomes a food chain system, and its chaotic dynamics have
been studied by Deng and Hines [1, 2, 3, 4]. Bockelman et al. [5] have proven that
when w is efficient, coexistence of all species is possible and the noncompetitive
z can drive the dynamics from periodic orbits to chaos. Bockelman and Deng [6]
have shown that population chaos does not require the existence of oscillators in any
subsystem of the web, and chaos occurs via a period-doubling cascade from a Hopf
bifurcation point. Wei [7] studied the existence and stability of equilibria using
mathematical analysis and computed two-parameter bifurcation diagrams using
an adaptive grid method. Interesting dynamics and different cascades leading to
chaos were observed from numerical simulations. Wei and Li [8] analyzed a Hopf
bifurcation from the equilibrium with z = 0 and w = 0.

The identification of steady states and their bifurcations is important as a stan-
dard process to study a dynamical system. The steady states in a dynamical system
often provide insight into the mechanism of biological processes leading to predic-
tions of the biological behavior. Bifurcation analysis is the study of the changes in
qualitative or topological structure as parameter values vary, and dynamical sys-
tems often exhibit complex dynamics around high codimensional bifurcation points.
However, since realistic models are nonlinear and complicated, analytical results are
often restricted to particular models with special properties. Numerical analysis is,
thus, important for studying the bifurcations of these systems. An adaptive grid
technique for bifurcations of equilibria in continuous time dynamical systems has
been developed in our previous studies [7, 9]. It does not require the computation of
higher derivatives and can be easily applied to the computation of three-parameter
bifurcations of equilibria [10].

This paper is a continuation of the work by Wei [7] and focuses on three-
parameter bifurcations, as well as codimension-two and -three bifurcations. To
provide details, the mathematical analysis of a part of codimension-two bifurca-
tions and the codimension-thee bifurcation is carried out in Section 2. Numerical
examples and discussion are presented in Section 3. Section 4 provides a brief
conclusion.
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2. Mathematical analysis

Wei [7] has studied the conditions for the existence of the equilibria and their sta-
bility properties. In this paper, we further derive some conditions of codimension-
two and -three bifurcations of equilibria in Eqs. (1.5)-(1.8) using β1, β2, and β3 as
bifurcation parameters. A rectangular parameter domain Ω = (0, 1)× (0, 1)× (0, 1)
is considered, and the other parameters are fixed as in Table 1. Eqs. (1.5)-(1.8)
have eight possible equilibria labeled by Pi, i = 1, . . . , 5, 61, 62, 7, as shown in Table
2 [7]. The notations (x, y, z, w)Pi

, Ei, and A(Pi) are used for the coordinates, region
of existence, and Jacobian matrix of the steady state Pi, respectively, throughout
this paper. Also, Ri denotes the region where Pi is stable.

Table 1. Parameter values in Eqs. (1.5)-(1.8)

ζ ε1 ε2 δ1 δ2 δ3
0.1 0.5 0.1 0.5 0.52 0.54

Table 2. possible equilibria in Eqs. (1.5)-(1.8), t ∈ (0, 1)

P1 P2 P3 P4 P5

x 0 1 δ1β1

1−δ1
δ2β2

1−δ2
δ2β2

1−δ2
y 0 0 (1− x)(β1 + x) 0 t(1− x)(β1 + x)
z 0 0 0 (1− x)(β2 + x) (1− t)(1− x)(β2 + x)
w 0 0 0 0 0

P61 P62 P7

x
(1−β1)+

√
(1−β1)2−4(y−β1)

2

(1−β1)−
√

(1−β1)2−4(y−β1)

2
δ2β2

1−δ2
y δ3β3

1−δ3
δ3β3

1−δ3
δ3β3

1−δ3
z 0 0 β2

1−δ2 (1− x− y
β1+x

)

w ( x
β1+x

− δ1) β3

1−δ3 ( x
β1+x

− δ1) β3

1−δ3
β3

1−δ3 ( x
β1+x

− δ1)

Theorem 2.1. The system, Eqs. (1.5)-(1.8), undergoes a double-zero bifurcation,
where A(P3) has two zero eigenvalues, if β1 = 1−δ1

δ1
and β2 = 1−δ2

δ2
or if β1 >

1−δ1
1+δ1

,

β2 = δ1(1−δ2)
δ2(1−δ1)β1, and β3 = 1−δ3

δ3(1−δ1)β1(1− δ1
1−δ1 β1).

Proof. We let λi, i = 1, . . . , 4, be the eigenvalues of A(P3). From the work by

Wei [7], (x, y, z, w)P3
= ( δ1β1

1−δ1 , (1 − x)(β1 + x), 0, 0), λ1 + λ2 = δ1
ζ (1 − β1(1+δ1)

1−δ1 ),

λ1λ2 = δ1
ζ (1 − δ1 − δ1β1), λ3 = ε1( x

β2+x
− δ2), and λ4 = ε2( y

β3+y
− δ3). Note

that if λ1 = 0, then β1 = 1−δ1
δ1

, x = 1, and y = 0. P3 coincides with P2. Also,

λ2 = −1/ζ < 0, and λ4 = −ε2δ3 < 0. Thus, the system undergoes a double-zero
bifurcation if λ3 = 0 implying β2 = 1−δ2

δ2
. The system undergoes the other double-

zero bifurcation if λ1 + λ2 < 0, λ1λ2 > 0, λ3 = 0, and λ4 = 0. This gives the

conditions β1 >
1−δ1
1+δ1

, β2 = δ1(1−δ2)
δ2(1−δ1)β1, and β3 = 1−δ3

δ3(1−δ1)β1(1− δ1
1−δ1 β1). �

Theorem 2.2. The system undergoes a fold Hopf bifurcation, where A(P3) has
a zero eigenvalue and a pair of pure imaginary eigenvalues, if β1 = 1−δ1

1+δ1
and
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either β2 = δ1(1−δ2)
δ2(1−δ1)β1 and β3 >

1−δ3
δ3(1−δ1)β1(1 − δ1

1−δ1 β1) or β2 >
δ1(1−δ2)
δ2(1−δ1)β1 and

β3 = 1−δ3
δ3(1−δ1)β1(1− δ1

1−δ1 β1).

Proof. Given λi, i = 1, . . . , 4, in the proof of Theorem 2.1, the system undergoes
a fold Hopf bifurcation if λ1 + λ2 = 0, λ1λ2 > 0, and either λ3 = 0 and λ4 < 0
or λ3 < 0 and λ4 = 0. With the domain Ω and the parameter values shown

in Table 1, this gives the conditions β1 = 1−δ1
1+δ1

and either β2 = δ1(1−δ2)
δ2(1−δ1)β1 and

β3 >
1−δ3

δ3(1−δ1)β1(1− δ1
1−δ1 β1) or β2 >

δ1(1−δ2)
δ2(1−δ1)β1 and β3 = 1−δ3

δ3(1−δ1)β1(1− δ1
1−δ1 β1). �

The system undergoes a codimension-three bifurcation, where A(P3) has double-
zero and a pair of pure imaginary eigenvalues, if λ1 + λ2 = 0, λ1λ2 > 0, λ3 = 0,
and λ4 = 0. This gives the conditions of the codimension-three bifurcation in the
next theorem.

Theorem 2.3. The system undergoes a fold Hopf bifurcation, where A(P4) has

a zero eigenvalue and a pair of pure imaginary eigenvalues, if β1 = δ2(1−δ1)
δ1(1+δ2)

and

β2 = 1−δ2
1+δ2

.

Proof. We let λi, i = 1, . . . , 4, be the eigenvalues of A(P4). From the work by

Wei [7], (x, y, z, w)P4 = ( δ2β2

1−δ2 , 0, (1 − x)(β2 + x), 0), λ1 + λ2 = δ2
ζ (1 − β2(1+δ2)

1−δ2 ),

λ1λ2 = ε1δ2
ζ (1−δ2−δ2β2), λ3 = x

β1+x
−δ1, and λ4 = −ε2δ3. The system undergoes

a fold Hopf bifurcation if λ1 + λ2 = 0, λ1λ2 > 0, and λ3 = 0. This gives the

conditions β1 = δ2(1−δ1)
δ1(1+δ2)

and β2 = 1−δ2
1+δ2

. �

The bifurcations related to P5 are not discussed in this paper because P5 is
not an isolated equilibrium, as shown in Table 2, and is always degenerate. Other
codimension-two bifurcations determined by the eigenvalues of A(P6) and A(P7)
will be carried out using numerical computation.

3. Numerical Simulations and Discussion

In this section, bifurcation diagrams are computed using an adaptive grid method
by Wei [7, 9], and this adaptive grid method is extended to a three-parameter space
and codimension-two bifurcations. Figs. 1(a)-(c) show the region where Pi, i =
4, 61, 62, or 7, exists. Note that P1, P2, and P3, exist in Ω [7]. The surfaces are
plotted in Fig. 1(d) to show the coexistence of equilibria.

Next, we compute the stability of the equilibria and codimension-two and -
three bifurcations, which are determined by the eigenvalues of the equilibria. The
codimension-two bifurcations of P3 and P4 are confirmed with the mathematical
analysis given in Sec. 2. Fig. 2(a) shows that P3 is stable in the region R3. The
system undergoes a double-zero bifurcation on the curve B31 = {(β1, β2, β3) ∈
Ω|β1 > 1/3;β2 = 12β1/13;β3 = 46β1(1 − β1)/27} or B32 = {(β1, β2, β3) ∈ Ω|β1 =
1;β2 = 12/13} and a fold Hopf bifurcation on the curve G31 = {(β1, β2, β3) ∈
Ω|β1 = 1/3;β2 = 4/13;β3 > 92/243} or G32 = {(β1, β2, β3) ∈ Ω|β1 = 1/3;β2 >
4/13;β3 = 92/243}. The point (β1, β2, β3) = (1/3, 4/13, 92/243), where B31, G31,
and G32 intersect, is a codimension-three point. Fig. 2(b) shows that P4 is stable
in the region R4. The system undergoes a fold Hopf bifurcation on the curve
G4 = {(β1, β2, β3) ∈ Ω|β1 = 13/38;β2 = 6/19}.

Fig. 3(a) shows the region where P61 is stable. Note that B31 and G32 are
the same codimension-two bifurcation curves as shown in Fig. 2(a). In addition,
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Figure 1. The regions where (a) P4, (b) P61 and P62, or (c) P7

exist. (d) The surfaces shown in (a), (b), and (c) are plotted to
show their intersections where coexistence of equilibria occurs.

the system undergoes a fold Hopf bifurcation on the curve G61 or G62. Fig. 3(b)
shows that P7 is stable in the region enclosed by the surfaces, and the bifurcation
curves B3 and Gi, i = 61, 62, are the same as shown in Fig. 2(a) and Fig. 3(a),
respectively. A close look at a part of the region is also shown in this figure. In
Fig. 4 we plot all the bifurcation surfaces and curves shown in Figs. 2 and 3.

Finally, a cross section of Fig. 4 (a) at β2 = 0.57 is plotted in Fig 5, which is a
two-dimensional bifurcation diagram in β1 and β3. Note that there are stable limit
cycles or chaotic attractors in the regions where none of the equilibria is stable. Fig
5 shows that how the dynamics of the system may be changed with the introduction
of the top predator w. Consider the situation that z goes extinct in the absence
of w. This occurs in the region for β1 < 0.6175 in Fig 5. When β3 is large, w is
not efficient. Neither z nor w can survive. As w becomes more efficient so that β3
becomes smaller, P61 is stable. As β3 continue to decrease, all species coexist as
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Figure 2. The codimension-two and -three bifurcations and the
regions where (a) P3 or (b) P4 is stable.

[] []

Figure 3. The codimension-two and -three bifurcations and the
regions where (a) P61 or (b) P7 is stable.

a stable equilibrium. Introducing an efficient top predator increases the possibility
of the survival of the inferior competitor that would otherwise go to extinction.

4. Conclusion

In this paper, we study the codimension-two and -three bifurcations that are
determined by the eigenvalues of equilibria using a food web of four species. An
adaptive grid method is employed and modified to compute three-parameter bifur-
cation diagrams in which codimension-one, -two, and -three bifurcations are located.
Conditions of a part of codimension-two bifurcations, as well as the codimension-
three bifurcation, are derived using mathematical analysis. These conditions are
confirmed with the numerical simulation.



ON THE CODIMENSION-TWO AND -THREE BIFURCATIONS OF A FOOD WEB OF FOUR SPECIES191

[] []

Figure 4. (a) The surfaces shown in Figs. 2 and 3 are plotted
to show the relative locations of these bifurcations. (b) Fig 4(a) is
rotated to show the location of the region where P7 is stable.
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Figure 5. A cross section of Fig. 4(a) along the plane β2 = 0.57.
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