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VISUALISATION OF CAUCHY PROBLEM SOLUTION FOR

LINEAR T-HYPERBOLIC PDE

OGUZER SINAN AND AYSE BULGAK

Abstract. Graphics Constructor and Cauchy Solver computer dialogue pro-

grams were created by A.Bulgak and D.Eminov [1, 2]. These programs use
the one dimensional spline functions for visualisation of graphics of real func-

tions. The study generalises this approach to the Cauchy problem for linear

one dimensional t-hyperbolic PDE[4, 5, 7].

1. Introduction

Two-dimensional spline functions are important at applied mathematics and
computer applications of mathematics. It offers approaches surface creation and
approximate value search on over surface.

For one-dimensional spline functions ”Graphics Constructor” interactive com-
puter software was created by Bulgak and Eminov in 2003[1]. This computer pro-
gram provides opportunities to graphically display the first, second and third-order
one-dimensional spline functions. The algorithms which are based on ”Graphics
Constructor” were used a Cauchy problem in another study and ”Cauchy Solver”
[2] software were obtained.

Let t0, t1 ∈ R, A is a square N dimensional real matrix, y0 is a real N dimensional
real vector. Takes Cauchy problem,

y
′
(t) = Ay (t) , t0 ≤ t ≤ t1, y (t0) = y0,

”Cauchy Solver” solves this problem and shows each component of the solution
obtained as graphs by using the approximate one dimensional cubic spline functions.

This study discusses the two dimensional spline functions. Based on existing
background it develops similar programs and algorithms. The results of this study
give us new algorithms and software which have abilities for visualisation.
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A Cauchy problem solution for first-order linear homogeneous constant coeffi-
cients partial differential equation is displayed with two dimensional spline func-
tions.

Let a, α, β and T > 0 be real numbers, φ ∈ C1(α, β) ∪ C([α, β]) is a derivable
real function. G be a parallelogram as G = {(t, x) : at+α ≤ x ≤ at+β, 0 ≤ t ≤ T}. ût (t, x) + aûx (t, x) = 0, t, x ∈ G

û (0, x) = φ (x) , α ≤ x ≤ β
It is known, there exists the solution of this problem and it is unique[7]. The aim
of this study is to show the solution graphically in the mentioned G parallelogram.

2. Linear t-hyperbolic partial differential equations

a is a real number. Let us consider the following PDE,

(2.1) ût (t, x) + aûx (t, x) = 0, t, x ∈ R

It is known as t-hyperbolic equation in literature. For example,[4, 5] mentioned this
type of equations. Let us give some basic information about this equation from the
literature. The line sets as

x− at = c, t, c ∈ R

which provides the condition;

dt

t
=
dx

a
, a 6= 0

is known as the characteristic set of equation (2.1). Every element of this set is
known as characteristic of the equation (2.1).

Let’s give well-known theorems in the literature[4, 5]

Theorem 2.1. The general solution of (2.1) is as follow

û (t, x) = f (x− at) , t, x ∈ R. Here f ∈ C1

Theorem 2.2. a ∈ R and φ ∈ C1 then Cauchy problem ût (t, x) + aûx (t, x) = 0, t, x ∈ R

û (0, x) = φ (x) , x ∈ R

has a unique solution as follows û (t, x) = φ(x− at).

Let a, α, β, T > 0 are real numbers, φ : [α, β]→ R is a derived function and

G = {(t, x) : at+ α ≤ x ≤ at+ β, 0 ≤ t ≤ T}.

In this case;

(2.2)

 ût (t, x) + aûx (t, x) = 0; t, x ∈ G

û (0, x) = φ (x) , x ∈ [α, β]

There exists the solution of this Cauchy problem and it is unique. The solution is
û (t, x) = φ (x− at) , t, x ∈ G. If desired the solution is until T , the solution zone is
a parallelogram. For example, if it is a > 0, solution zone is shown in figure 1.
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Figure 1. G parallelogram.

T t0 t1 t2 t3 . . . tn−3 tn−2 tn−1

Y y0 y1 y2 y3 . . . yn−3 yn−2 yn−1

Table 1

3. Spline functions and cubic spline

Here, t0 < t1 < · · · < tn−1 are distinct ordered real numbers and y0, y1, . . . , yn−1

are real numbers that represent each node as figure 2. It describes a spline function
fsp according to the table 1.

fsp (t) =



f0 (t) , t0 ≤ t ≤ t1
f1 (t) , t1 < t ≤ t2

...
...

fn−3 (t) , tn−3 ≤ t ≤ tn−2

fn−2 (t) , tn−2 ≤ t ≤ tn−1

fj (tj) = yj and fj (tj+1) = yj+1 seems for each j = 0, 1, · · · , n−2. Let a, b ∈ R and
a = t0 < t1 < · · · < tn−2 < tn−1 = b under this circumstances fj : [tj , tj+1] → R
and fsp : [a, b] → R. Each fj function may have any degree that is polynomial
function. Often the first, second and third order polynomial functions are used in
practice.

3.1. Cubic Spline. Take table 2 with a real sequence F0, F1, · · · , Fn−1 a cu-
bic spline function fsp : [t0, tn−1] → R, y = fsp (t) , t ∈ [t0, tn−1]. For each

Figure 2



196 OGUZER SINAN AND AYSE BULGAK

T t0 t1 t2 t3 . . . tn−3 tn−2 tn−1

Y y0 y1 y2 y3 . . . yn−3 yn−2 yn−1

F F0 F1 F2 F3 . . . Fn−3 Fn−2 Fn−1

Table 2

sequential nodes interval, every polynomial functions

fj : [tj , tj+1]→ R, fj (t) = ajt
3 + bjt

2 + cjt+ dj j = 0, 1, · · · , n− 2

which satisfied table 2 as f
′

i (ti) = Fi, fi (ti) = yi f
′

i (ti+1) = Fi+1, fi (ti+1) = yi+1

and the condition f
′

sp (ti) = Fi for i = 0, 1, · · · , n− 1 is unique. This condition can
provides, at least third degree spline functions[7].

This situation is important for us in this study. Now let us remember the Cauchy
problem for linear t- hyperbolic PDE, presented in section 2. There exists a unique
solution of (2.2). Here; if it is a 6= 0, ûx (t, x) partial derivative must be there. In

this case, φ function must be selected derived. φ
′
(x) would not have been, hence

ût (t, x) + aûx (t, x) = 0 equation would not have been.

An Algorithm. To calculation for any t , t ∈ R according the table 3.2, process
steps created algorithm are on following lines[1].

Input : t0, t1, t2, . . . , tn−1; y0, y1, y2, . . . , yn−1; F0, F1, F2, . . . , Fn−1; t
Output : y

if ((n < 2) or (t < t0) or (t > tn−1)) then
{get out of processing steps that make up the algorithm};

for (j = 1 to n− 1) do begin
if ((t ≥ tj−1) and (t < tj)) then begin

w = [(yj − yj−1)/(tj − tj−1)− Fj−1]/(tj − tj−1)
a = [(Fj − Fj−1)/(tj − tj−1)− 2w]/(tj − tj−1)
b = − (tj + 2tj−1) a+ w

c = Fj−1 − 3a(tj−1)
2 − 2b(tj−1)

d = yj−1 − a(tj−1)
3 − b(tj−1)

2 − c(tj−1)
end if;

end for;
Output at3 + bt2 + ct+ d.

4. The use of cubic spline functions for the problem of two
dimensional interpolations

An interpolation problem the brief analysis of on one dimensional cubic spline
functions showed on section 3. Now we can expand this approach to the two
dimensional functions. R̂ = [a, b]× [c, d] , consider the rectangle on tOx plane.

a = t0 < t1 < · · · < tm−1 = b, m ≥ 1

c = x0 < x1 < · · · < xn−1 = d, n ≥ 1

n×m points are located on tOx plane and these points are identifying a grid.

u =
{
u(0,0), u(0,1), . . . , u(0,n−1), u(1,0), . . . , u(m−1,n−1)

}
,

u(i,j) ∈ R, i = 0, 1, . . . ,m− 1, j = 0, 1, . . . , n− 1
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each u(i,j) values are defined be on this grid. However, let come two sets as

ft =
{
ft(0,0), ft(0,1), . . . , ft(0,n−1), ft(1,0), . . . , ft(m−1,n−1)

}
,

ft(i,j) ∈ R, i = 0, 1, . . . ,m− 1, j = 0, 1, 2, . . . , n− 1

and

fx =
{
fx(0,0), fx(0,1), . . . , fx(0,n−1), fx(1,0), . . . , fx(m−1,n−1)

}
,

fx(i,j) ∈ R, i = 0, 1, . . . ,m− 1; j = 0, 1, 2, . . . , n− 1

both of them have n×m elements.
The aim is to find a derived function f (t, x) , which was defined on R̂. Let it

provide the condition:f (ti, xj) = u(i,j), f
′

t (ti, xj) = ft(i,j) and f
′

x (ti, xj) = fx(i,j)
for i = 0, 1, . . . ,m− 1 and j = 0, 1, . . . , n− 1.

As a first, table 3 is created with the help of aforesaid information. H (t0, x),
x0 ≤ x ≤ xm−1, cubic spline function, is calculated according to the table 3. Then
table 4 is created. Basing on this table calculated the H (t1, x), x0 ≤ x ≤ xm−1

cubic spline function. Similarly H (t2, x) , . . . ,H (tn−1, x), x0 ≤ x ≤ xm−1 functions
are calculated on the basis of the other data tables. So, n units one dimensional
cubic spline functions are acquired.

Tt0 t0 t1 t2 . . . tm−1

Xt0 x0 x0 x0 . . . x0
Ft0 ft(0,0) ft(1,0) ft(2,0) . . . ft(m−1,0)

Ut0 u0,0 u1,0 u2,0 . . . um−1,0

Table 3
Tt1 t0 t1 t2 . . . tm−1

Xt1 x1 x1 x1 . . . x1
Ft1 ft(0,1) ft(1,1) ft(2,1) . . . ft(m−1,1)

Ut1 u0,1 u1,1 u2,1 . . . um−1,1

Table 4
Tx0 t0 t0 t0 . . . t0
Xx0 x0 x1 x2 . . . xn−1

Fx0 fx(0,0) fx(0,1) fx(0,2) . . . fx(0,n−1)

Ux0 u0,0 u0,1 u0,2 . . . u0,n−1

Table 5
Tx1 t1 t1 t1 . . . t1
Xx1 x0 x1 x2 . . . xn−1

Fx1 fx(1,0) fx(1,1) fx(1,2) . . . fx(1,n−1)

Ux1 u1,0 u1,1 u1,2 . . . u1,n−1

Table 6

The same process is repeated for each ti, for i = 0, 1, 2, . . . ,m − 1. Table 5 is
created with the help of aforesaid information.S (t, x0), t0 ≤ t ≤ tn−1, cubic spline
function, is calculated according to the table 5. In addition table 6 is created.
Basing on this table calculated the S (t, x1), t0 ≤ t ≤ tn−1 cubic spline function.
Similarly S (t, x2) , . . . , S (t, xn−1), t0 ≤ t ≤ tn−1 functions are calculated on the
basis of the other data tables. So, m units one dimensional cubic spline functions
are acquired.
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Placement of Spline functions on Three-Dimensional Coordinate System.

H (t0, x) , H (t1, x) , H (t2, x) , . . . ,H (tm−1, x) , x0 ≤ x ≤ xm−1

S (t, x0) , S (t, x1) , S (t, x2) , . . . , S (t, xn−1) , t0 ≤ t ≤ tn−1

include totally n+m spline functions.

Figure 3

a = t0 < t1 < · · · < tm−1 = b, m ≥ 1

c = x0 < x1 < · · · < xn−1 = d, n ≥ 1

on R̂ = [a, b]× [c, d] define a grid.
The values of step size corresponding successive pixels and functions are calcu-

lated for each spline functions in the x and t directions. 3.

5. The grid and spline functions related to linear t-hyperbolic PDE

It is important to identify the following factors for visualisation of Cauchy so-
lutions. It is chosen n points representing “well-chosen” φ function given on [α, β]
interval.

x0 = α < x1 < x2 < · · · < xn−2 < xn−1 = β

The value of φ
′
(xi) function for each xi is the height of spline function in the

direction x . By considering φ (xi) a cubic spline function, g (x), is obtained and
the graphic of z (t, x) = g (x− at), t, x ∈ G, 0 = t0 < t1 < · · · < tm−1 = T
functions are visualised.
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z (t, x) = g (x− at) , t = t0, t1, . . . , tm−1, x ∈ [α+ atj , β + atj ]

z (t, x) = g (x− at) , x = x0, x1, . . . , xn−1, t ∈ [0, T ]

this information identifies a grid as figure 4.
A cubic spline function representing φ (x) is taken instead of φ (x) function.
Between x − at = β and x − at = α, t ∈ [0, T ] lines, left edging is (0, x),

x ∈ [α, β] and right edging is (T, x), x ∈ [α+ aT, β + aT ] belonging to G paral-
lelogram. A grid on G parallelogram and nodes are shown in figure 4. ζi,j nodes

Figure 4

are defined as

ζi,j = (ti, a (ti − t0) + xj) , i = 0, 1, . . . ,m− 1, j = 0, 1, . . . , n− 1

Tx0 t0 t0 t0 . . . t0
Xx0 x0 x1 x2 . . . xn−1

Fx0 φ
′
(x0) φ

′
(x1) φ

′
(x2) . . . φ

′
(xn−1)

Ux0 φ (x0) φ (x1) φ (x2) . . . φ (xn−1)

Table 7. This table is used for setting aforesaid g(x) spline function.

Example 5.1. G = {(t, x) : 0 ≤ t ≤ 100, 0 + 0.5t ≤ x ≤ 100 + 0.5t} is a
parallelogram and φ (x) = 2x1.45 − 2.5x1.4, 0 ≤ x ≤ 100 is an initial function.
Consider this Cauchy problem

ût (t, x) + 0.5ûx (t, x) , t, x ∈ G
û (0, x) = φ (x) , 0 ≤ x ≤ 100

and let it be x0 = 0, x1 = 10, x2 = 20, x3 = 30, x4 = 40, x5 = 50,
x6 = 60, x7 = 70, x8 = 80, x9 = 90, x10 = 100. Take g (x) cubic spline
function in approach to φ (x) instead of φ (x) initial function. g (x) cubic spline
function is given in table 8.

In this case;

vt (t, x) + 0.5vx (t, x) , t, x ∈ G, v (0, x) = g (x) ; 0 ≤ x ≤ 100.
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The Cauchy problem must be visualised on G parallelogram. For this, the following
t values are chosen; t0 = 0, t1 = 10, t2 = 20, t3 = 30, t4 = 40, t5 = 50,
t6 = 60, t7 = 70, t8 = 80, t9 = 90, t10 = T = 100; Generated surface
visualisation is shown in figure 5.

X 0 10 20 30 40 50
φ (x) 0 -6.43 -11.72 -15.11 -16.60 -16.24

φ
′
(x) 0 -0.62 -0.43 -0.24 -0.05 0.12

X 60 70 80 90 100
φ (x) -14.08 -10.20 -4.65 2.51 11.26

φ
′
(x) 0.30 0.47 0.63 0.79 0.95

Table 8

X −2.5 −2.0 −1.5 −1.0 −0.5 0
φ (x) -0.598 -0.909 -0.997 -0.842 -0.479 0

φ
′
(x) -0.801 -0.416 0.071 0.540 0.877 1

X 0.5 1.0 1.5 2.0 2.5
φ (x) 0.479 0.842 -0.997 0.909 0.598

φ
′
(x) 0.877 0.540 0.071 -0.416 -0.801

Table 9

Figure 5. Output screen of computer program.

Example 5.2. Consider this Cauchy problem{
ût (t, x) + 0.4ûx (t, x) , t, x ∈ G
û (0, x) = φ (x) , −2.5 ≤ x ≤ 2.5

and let it be x0 = −2.5, x1 = −2, x2 = −1.5, x3 = −1.0, x4 = −0.5, x5 = 0,
x6 = 0.5, x7 = 1.0, x8 = 1.5, x9 = 2.0, x10 = 2.5.

G = {(t, x) : 0 ≤ t ≤ 10 and− 2.5 + 0.4t ≤ x ≤ 2.5 + 0.4t}
is a parallelogram and φ (x) = sin(x), −2.5 ≤ x ≤ 2.5 is an initial function.
The following t values are chosen. t0 = 0, t1 = 2, t2 = 4, t3 = 6, t4 = 8,
t5 = 10. The cubic spline function is given in table 9. Figure 6 shows input panel
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for cubic spline function. This panel is related on the computer program. This
computer program was developed based on result of this study. Generated surface
visualisation is shown in figure 7.

This computer program is used perspective projection method. There have many
kinds of three dimensional projection methods. Generally three dimensional pro-
jection methods is any method of mapping three dimensional points to a two di-
mensional plane.

Figure 6. Computer program input panel.

Figure 7

Figure 8. General view of the computer program.
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Conclusion

This software togetter with “MVC” Matrix Vector Calculator programs[6] allows
to give visualisation of Cauchy problem selection for AUt+BUt = 0, A = AT > 0,
B = BT t-hyperbolic PDE.
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