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ANALYTICAL PROBLEM SOLUTION ABOUT INITIAL STEP

OF PRESSING POWDER MATERIAL TUBE

M.YA. FLAX, A.V. BOCHKOV, V.A. GOLOVESHKIN, A.V. PONOMAREV

Abstract. The prediction of finite size in the process of hot isostatic press-

ing (HIP) of powder material tubes is a difficult task which is important for

practical purposes. In this paper we propose an analytical problem solution
about initial step of the process.

1. Introduction

The difficulty in making a mathematical modeling for the pressing process of
powder material tubes consists in predicting the size of a finished product. Thor-
oughly research [6] investigates the reason for the deviation in this type of modeling
and also shows possible ways to determine the movement direction of internal bor-
der. It has been noted in research [3] and [5] that most deviations of final form
emerge at the initial stage of the process.

The analytical solution has ample areas of application including but not limited
to the tubes. The problem of a mathematical modeling of HIP tubes process is a
part of many tasks of the mathematical modeling for HIP process which consist of
embedded elements with a large radial stiffness.

2. Objectives

The purpose of this research is to find an analytical solution to a stress-strain
behavior of powder material in initial stage of hot isostatic tube pressing.

3. Problem Statement

The problem is analyzed in an axisymmetric setting in a cylindrical coordinates
system [1]. The domain R1 ≤ r ≤ R2, R3 ≤ r ≤ R4 - filled by plastically in-
compressible material (capsule). The domain R2 ≤ r ≤ R3- filled by plastically
compressible powder material.
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Fig.1.

Deformation rate εz is constant throughout the entire volume, u (r) - radial
displacement speed, σr, σϕ, σz - components of stress tensor dependent only on the
coordinate r.

Density is constant throughout the entire volume.
Steady-state equation:

(3.1)
dσr
dr

+
σr − σϕ

r
= 0

The equation of the yield surface for the powder material is taken in the form of
Green:

(σr + σϕ + σz)
2

9f22
+

1

6f21

[
(2σr − σϕ − σz)2 + (2σϕ − σr − σz)2 + (2σz − σr − σϕ)

2
]

= T 2

From the associated flow law it follows:

εr = λ

[
2 (σr + σϕ + σz)

9f22
+

(2σr − σϕ − σz)
f21

]
,

εϕ = λ

[
2 (σr + σϕ + σz)

9f22
+

(2σϕ − σr − σz)
f21

]
,

εz = λ

[
2 (σr + σϕ + σz)

9f22
+

(2σz − σr − σϕ)

f21

]
.

(3.2)

The equation of the yield surface for a plastic incompressible material is:

1

6

[
(2σr − σϕ − σz)2 + (2σϕ − σr − σz)2 + (2σz − σr − σϕ)

2
]

= T 2
1

From the associated flow law it follows:

εr = λ (2σr − σϕ − σz) ,
εϕ = λ (2σϕ − σr − σz) ,
εz = λ (2σz − σr − σϕ) .

(3.3)

External pressure P is given on the outer boundary.
Then boundary conditions are:

(3.4) σr = −P, r = R1, r = R4

The equilibrium equation in z-axis is satisfied by the integral form:

2π

∫ R4

R1

σz (r) rdr = −Pπ
(
R2

4 −R2
1

)
.
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Suppose that tube end is affected by the same pressure as a side wall tube.
At the boundaries “Powder-Capsule” r = R2, r = R3 it is assumed a condition

for continuity of displacement and stress equality σr.
A connection of rate of deformation tensor with a displacement rate u (r) is

determined by relations:

εr =
du

dr
, εϕ =

u

r
.

In the domains R1 < r < R2, R3 < r < R4 a condition of incompressibility is:

du

dr
+
u

r
+ εz = 0.

Then displacement rate is

(3.5) u = −εz
2
r +

C

r
,

where C is a constant.

4. Solution

To describe the behavior of powder material a relation (3.2) can be rewritten as:

εr = λ {Aσr +Bσϕ +Bσz} ,
εϕ = λ {Bσr +Aσϕ +Bσz} ,
εz = λ {Bσr +Bσϕ +Aσz} ,

where

A =
18f22 + 2f21

9f22 f
2
1

, B =
−9f22 + 2f21

9f22 f
2
1

.

Then

σr =
1

λ
{Cεr +Dεϕ +Dεz} ,

σϕ =
1

λ
{Dεr + Cεϕ +Dεz} ,

σz =
1

λ
{Dεr +Dεϕ + Cεz} ,

(4.1)

where

C =
A+B

A−B
· 1

A+ 2B
=

1

18

(
9f22 + 4f21

)
,

D = − B

A−B
· 1

A+ 2B
=

1

18

(
9f22 − 2f21

)
.

Using the equation of the yield surface an expression for λ-parameter is

(4.2)
1

λ
=

6T[
18C

(
ε2r + ε2ϕ + ε2z

)
+ 36D

(
εrεϕ + εrεz + εϕεz

)] 1
2

.

Then from Steady-state equation (3.1) and relations (4.1), (4.2) it follows:

dεr
dr

[
(C +D) ε2ϕ + (C +D) ε2z + 2Dεϕεz

]
+
dεϕ
dr

[
Dε2z − (C +D) εzεϕ −Dεrεz −Dεϕεz

]
+

+
εr − εϕ

r

[
C
(
ε2r + ε2ϕ + ε2z

)
+ 2D

(
εrεϕ + εrεz + εϕεz

)]
= 0

Let u (r) = kr + u1 (r).
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Then

εr = k + ε1r;

ε1r =
du1
dr

;

εϕ = k + ε1ϕ; ε1ϕ = u1

r ,

dε1r
dr

[
(C +D) ε21ϕ + 2 (C +D) kε1ϕ + (C +D) + (C +D) ε2z + 2Dε1ϕεz + 2Dkεz

]
+

+
ε1r − ε1ϕ

r
2Dkεz = 0.

Choose k from condition: 2 (C +D) kε1ϕ + 2Dε1ϕεz = 0. Then k = − D
C+D εz.

Then the following condition will be

dε1r
dr

[
(C +D) ε21ϕ +

C (C + 2D)

(C +D)
ε2z

]
+

+
ε1r − ε1ϕ

r

[
Cε21r + Cε21ϕ − (C −D) ε1rε1ϕ + C

C + 2D

C +D
ε2z

]
= 0.

For resolving this equation the change of variables is made.
Let u1 (r) = rv (ln r), ln r = z.

Then ε1r = v + v′, ε1ϕ = v,
dε1
dr = (v′′ + v′) 1

r .
The equation for the function v (z) definition is:

v′′
[
(C +D) v2 +

C (C + 2D)

C +D
ε2z

]
+

+v′
[
2 (C +D) v2 + 2C

C + 2D

C +D
ε2z + (C +D) vv′ + Cv′2

]
= 0.

Then parametric dependence can be written as:

r =
R0√

chδ (ψ − ψ0) sinψ + δshδ (ψ − ψ0) cosψ
,

u = εz
R0√

chδ (ψ − ψ0) sinψ + δshδ (ψ − ψ0) cosψ

[
−γshδ (ψ − ψ0)− cosα

1 + cosα

]
εϕ =

= εz

[
−γshδ (ψ − ψ0)− δ2 − 1

2δ2

]
,

εr = εz

[
−γshδ (ψ − ψ0)− δ2 − 1

2δ2
+

2γδ

1 + δ2
(chδ (ψ − ψ0) tgψ + δshδ (ψ − ψ0))

]
,

where ψ is a parameter, R0, ψ0 - arbitrary constants,

β =
C

C +D
=

1

2 cos2 α2
,

γ2 =
1 + 2DC(
1 + D

C

)2 =
1 + 2 cosα

(1 + cosα)
2 =

(
3δ2 − 1

) (
δ2 + 1

)
4δ4

,

δ = ctg
α

2
=

√
9f22 + f21

3f21
.

Then for the stress the following conditions will be
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σr = −
√

2CTsinψ,

σϕ = −
√

2CTsinψ

[
δ2 − 1

δ2 + 1
− 2

δ

δ2 + 1
thδ (ψ − ψ0) ctgψ

]
,

σz = −
√

2CTsinψ

[
δ2 − 1

δ2 + 1
− δ2 − 1

δ2 + 1

1

δ
thδ (ψ − ψ0) ctgψ +

2δγ

(δ2 + 1)

ctgψ

chδ (ψ − ψ0)

]
.

The solution for a research of a capsule behavior (R1 < r < R2,R3 < r < R4):
Using (3.5) we get [2]:

εr = −εz
2
− C

r2
,

εϕ = −εz
2

+
C

r2
.

From the equation (3.3) it follows:

S2 =
1

3λ2
(
ε2r + ε2ϕ + εrεϕ

)
.

Therefore

λ =

√
3
4ε

2
z + C2

r4√
3T1

.

As far as

σr − σϕ =
1

3λ
(εr − εϕ) =

√
3T1

3
√

3
4ε

2
z + C2

r4

(
−2C

r2

)
,

then from the equilibrium equation (3.1) it follows

(4.3)
dσr
dr

=

√
3

3

T1√
3
4ε

2
z + C2

r4

2C

r3
.

Using (3.5), R1 < r < R2, an expression for the radial displacement speed will be

u = −εz
2
r +

C1

r
.

As regards to (3.4) σr = −P at which r = R1, then from (4.3) it follows, that
at which r ∈ [R1;R2]

σr = −P −
√

3

3
T1 ln

C1

r2 +

√
3
4ε

2
z +

C2
1

r4

C1

R2
1

+
√

3
4ε

2
z +

C2
1

R4
1

.

Accordingly for r ∈ [R1;R2]:

σϕ = σr +

√
3

3
T1

2C1

r2
1√

3
4ε

2
z +

C2
1

r4

.

As σz = 1
2

[
σr + σϕ − 1

λ (εr + εϕ)
]

= 1
2

[
σr + σϕ + εz

λ

]
, then

σz = −P−
√

3

3
T1 ln

C1

r2 +

√
3
4ε

2
z +

C2
1

r4

C1

R2
1

+
√

3
4ε

2
z +

C2
1

R4
1

+

√
3

3
T1
C1

r2
1√

3
4ε

2
z +

C2
1

r4

+
√

3T1
1√

3
4ε

2
z +

C2
1

r4

εz
2
.
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Similarly for r ∈ [R3;R4] the relations are the same with replacement C1to C2,
R1to R3, R2to R4.

Complete system of equations for arbitrary constants definition in case of a
continuous field of velocities is

1) Stress equality at with R = R2 is

−
√

2CT sinψ2 = −P −
√

3

3
T1 ln

C1

R2
2

+

√
3
4ε

2
z +

C2
1

R4
2

C1

R2
2

+

√
3
4ε

2
z +

C2
1

R4
1

,

R2
2 =

R2
0

chδ (ψ2 − ψ0) sinψ2 + δshδ (ψ2 − ψ0) cosψ2
.

2) Stress equality at with R = R3 is

−
√

2CT sinψ3 = −P −
√

3

3
T ln

C2

R2
3

+

√
3
4ε

2
z +

C2
2

R4
3

C2

R2
4

+

√
3
4ε

2
z +

C2
2

R4
4

,

R2
3 =

R2
0

chδ (ψ3 − ψ0) sinψ3 + δshδ (ψ3 − ψ0) cosψ0
.

3) Displacement rate equality at with R = R2 is

−εz
2
R2 +

C1

R2
= εz

R0

[
−γshδ (ψ2 − ψ0)− δ2−1

2δ2

]
√
chδ (ψ2 − ψ0) sinψ2 + δshδ (ψ2 − ψ0) cosψ2

.

4) Displacement rate equality at with R = R3 is

−εz
2
R3 +

C2

R3
= εz

R0

[
−γshδ (ψ3 − ψ0)− δ2−1

2δ2

]
√
chδ (ψ3 − ψ0) sinψ3 + δshδ (ψ3 − ψ0) cosψ3

.

5) Equilibrium condition about the z-axis

∫ R4

R1

σz2πrdr = −Pπ
(
R2

4 −R2
1

)
.

In practice, we define the relation C1

εz
, C2

εz
.

The research shows, that in geometric parameter domain there are 4 areas for
different deformation modes (Fig. 2).
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Fig. 2

Area 1 - continuous field of velocities in entire system.
Area 2 - displacement rate with a displacement rate with a discontinuity in

internal boundary r = R2.
Area 3 - plane deformation with a fixed outer boundary and a localization of

deformation in internal border.
Area 4 – plane deformation with a fixed internal boundary.

5. Conclusions

The result shows that we get a plane deformation from a certain capsule wall
thickness which has an important practical application. It demonstrates the pos-
sibility to create a radially directional effect capsule. As per the rough scheme
axis direction effect capsules are constructed as follows. Side walls become quite
thin while top and bottom ones become thick. In this case it is mostly an axial
shrinkage. The possibility of transition into a plane deformation demonstrates a
possibility to get only a radial shrinkage during the HIP process. It is important
when a shape of the surface of powder product is rather complex.
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