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ABSTRACT 

In this study, I modeled session returns for the Istanbul Stock Exchange 100 (ISE100) 

index as the eight discrete state Markov chain process in order to estimate session 

returns of the ISE100 index. The model provides valuable signals to the investors about 

short run selling and buying investment strategies.  
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1. Introduction 

Objective of this study is to examine and explain directional movements of returns 

for the ISE100 index as eight discrete states Markov chain process in order to provide 

information to the investors for their short term selling and buying investment 

strategies. Many important studies modeled and analyzed stock returns as Markov 

chains structure. Empirical results of these studies provide valuable information to the 

investors. In the study of Flietz and Bhargava (1973) empirical results for the vector 

process model suggest that price movements appear to be described by a first- or 

higher-order non-stationary Markov chain. Tests also indicate that the vector-process 

Markov chain is heterogeneous. Empirical results for the individual-process Markov 

chain model suggest that an individual stock has a short-term memory with respect to 

daily price relatives. Ryan (1973) showed that both the relative strength of a security in 

market and the nature of its successive price movements may be interpreted within the 

framework of Markov theory in such a way as to provide useful information to the 

portfolio manager. Turner, Startz and Nelson (1989) used a Markov model of  

heteroskedasticity, risk and learning in the stock market. The estimates indicate that 

agents are consistently surprised by high variance periods, so there is a negative 

correlation between movements in volatility and in excess returns. In the Markovian 

study of Mcquinn and Thorley (1991) annual real returns were shown to exhibit 

significant nonrandom walk behavior in the sense that low (high) returns tend to follow 

runs of high (low) returns in the postwar period. Hamilton and Susmel (1994) examined 

the U.S. weekly stock returns, allowing the parameters of an ARCH process to come 

from one of several different regimes, with transitions between regimes governed by an 

unobserved Markov chain. They estimated models with two to four regimes in which 

the latent innovations come from Gaussian and Student t distributions. In the study of 

Mills and Jordonov (2003) the returns showed evidence of nonlinearity and non-

normality, so conventional autocorrelation analysis was supplemented by the use of a 

Markov chain technique. They found evidence that the returns of the two smallest and 

four largest size portfolios were predictable, but only the two largest were predictable in 
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the direction suggested by the bubbles and fads alternatives to the random walk 

hypothesis. Kanas (2003) suggested that Markov regime switching model is the most 

preferable non linear empirical extension of the present value model for out-of-sample 

stock return forecasting. Kılıç (2005) found it is not possible earn above average return 

in the long run. In the study of Idolor (2010) eight securities were selected from the 

banking sector of the Nigerian Stock Exchange by defining a set of three states (rise, 

drop, and stable) for the Markovian process. Results showed that Markov chains did not 

give a precise prediction of the direction in which prices were headed in the short run. 

Some other important studies combined Markov chain model with the Monte 

Carlo simulation technique, GARCH time series, and/or Bayesian forecast models. 

Tsionas (2000) illustrated the computation of marginal likelihoods and Bayes factors 

when Markov Chain Monte Carlo had been used to produce draws from a model’s 

posterior distribution. Models included a normal finite mixture, a GARCH and a 

Student t -model as alternative models for the Standard and Poor’s stock returns.  In the 

study of Griffin and Steel (2006) the algorithm was based on Markov chain Monte 

Carlo (MCMC) methods and they used a series representation of Lévy processes. Their 

application to stock price data showed the models performed very well, even in the face 

of data with rapid changes, especially if a superposition of processes with different risk 

premiums and a leverage effect was used. Greyserman, Jones and Strawderman (2006) 

contributed to portfolio selection methodology using a Bayesian forecast of the 

distribution of returns by stochastic approximation. They carried out a numerical 

optimization procedure to maximize expected utility using the MCMC samples from the 

posterior predictive distribution. This model resulted in an extra 1.5 percentage points 

per year in additional portfolio performance which is quite a significant empirical result. 

Chen and So (2006) proposed a threshold heteroscedastic model which integrates 

threshold nonlinearity and GARCH-type conditional variance for modeling mean and 

volatility asymmetries in financial markets. They showed higher average volatility and 

more persistent volatility when bad news arrives. Guidolin and Timmermann (2007) 

characterized equilibrium asset prices under adaptive, rational and Bayesian learning 

schemes in a model where dividends evolve on a binomial lattice. They investigated 

restrictions on prior beliefs under which Bayesian and rational learning lead to identical 

prices and show how the results can be generalized to more complex settings where 

dividends follow either multi-state i.i.d. distributions or multi-state Markov chains. 

Zhang and King (2008) presented a MCMC algorithm to estimate parameters and latent 

stochastic processes in the asymmetric stochastic volatility (SV) model, in which the 

Box-Cox transformation of the squared volatility follows an autoregressive Gaussian 

distribution and the marginal density of asset returns has heavy-tails. They found that 

when their model and its competing models were applied to daily returns of another five 

stock indices, in terms of SV models, the Box-Cox transformation of squared volatility 

is strongly favored against the log-transformation for the five data sets. Lin, Wang, and 

Lin, Wang and Tsai (2009) proposed a hidden Markov switching moving average model 

(MS-MA model) to extend the moving average model when the dynamic process of 

stock returns is predictable. They showed that the dynamic process of stock returns 

exhibits MS-MA property, meaning the moving averages of stock returns are correlated. 

Liu (2011) examined a continuous- time intertemporal consumption and portfolio 

choice problem under ambiguity, where expected returns of a risky asset follow a 
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hidden Markov chain. He found that continues Bayesian revisions under incomplete 

information generate ambiguity-driven hedging demands that mitigate intertemporal 

hedging demands. 

In this study first we modeled session returns for the Istanbul Stock Exchange 100 

(ISE100) index as Markov chains process to examine and explain directional 

movements of returns. Modeling returns as discrete categorical states help us to see and 

explain upward and downward directional movements and also to measure the 

dimension of these movements more precisely. Then, we calculated the total number of 

occurrence of the transitions of states from the present session to the next session for the 

period considered. Third, we calculated conditional probabilities of next return states 

given the value of present state of returns and obtained one step transition probability 

matrix. By using this matrix we calculated probabilities of expected return for each 

state. We also examine that whether the transition probability matrix follow property of 

a regular ergodic Markov chain structure in the long run. We found that Markov chains 

process provides valuable signals to the investors. 

The rest of this article is organized as follows. Section 2 includes the data 

selection, methodology and empirical results; section 3 concludes the article and 

discusses some future research perspectives. 

 

2. The Sample, Methodology and Results 

2.1. The Sample  

The sample data covers 10357 session closing values of the Istanbul Stock 

Exchange 100 (ISE100) index between the period of January 04, 1988-April 04, 2012. 

The data were obtained from the electronic data delivery system of the Istanbul Stock 

Exchange (http://www.imkb.gov.tr). 

The  daily session returns )( tR  are computed as a percentage change of the 

ISE100 index session closing values )( tP ;
11)(  tttt PPPR . Here, t represents the 

sessions (t=1…10356).  The average (expected) return is calculated )( R  as 

approximately 0.108% with a  standard deviation of )( R   2.28% for the period 

considered. The standard deviation is extremely  high in comparison  to expected return 

(approximately 23 times of the expected return). So,  the ISE100 index return exhibits 

high dispersion, implying an  enormous risk for the investors. 

 

2.2. The Methodology and Results 

We can model the ISE100 returns as a Markov chains process that conditional 

probability of any next future return state (
1t

jS ) depends only on the present return of 

the state )( t

iS  and is independent any other states of the past returns;
 
 tit

j SSP 1 .  

As stated previously, modeling the ISE100 index returns as the discrete categorical 

states Markov chain process help us to see and explain directional movements and also 

to evaluate the dimension of these movements more precisely. Thus, session returns are  

transformed  into eight equal discrete categorical interval of states,  from high loss 

(negative  return) to positive high return according to function 1 below; 

http://www.imkb.gov.tr/
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The total number of  transitions, occurring from the present session to the next 

session from states Si to Sj , are calculated for the period considered in Table 1
1
: 

 

 
Table 1: Number of occurrence of the transitions from states Si to Sj 

  Next sessions 

Present 

Sessions 

 

S1 

 

S2 

 

S3 

 

S4 

 

S5 

 

S6 

 

S7 

 

S8 

Row 

total 

S1 320 111 142 139 125 119 89 231 1276 

S2 124 77 98 122 123 81 58 103 786 

S3 138 105 176 194 239 152 87 127 1218 

S4 154 124 220 346 282 240 144 159 1669 

S5 136 129 186 329 309 229 130 179 1627 

S6 114 96 153 232 238 223 122 164 1342 

S7 80 56 93 122 142 130 99 149 871 

S8 210 88 150 186 169 168 142 453 1566 

 

We can easily compute the eight states (8x8), one step (one session) conditional 

transition probability matrix  tit

j SSP 1  in Table 2, from state i to j by dividing the row 

elements by row total in Table 1. 

         

 

 

 

 

 

 

                        

                                                 
1
Categories of states and number of transitions of states formulated and calculated in 

Excel by using Excel IF function. 
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Table 2: One step conditional transition probability matrix 
 Next sessions 

Present 

Sessions 

 

S1 

 

S2 

 

S3 

 

S4 

 

S5 

 

S6 

 

S7 

 

S8 

S1 0.2508 0.0870 0.1113 0.1089 0.0980 0.0933 0.0697 0.1810 

S2 0.1578 0.0980 0.1247 0.1552 0.1565 0.1031 0.0738 0.1310 

S3 0.1133 0.0862 0.1445 0.1593 0.1962 0.1248 0.0714 0.1043 

S4 0.0923 0.0743 0.1318 0.2073 0.1690 0.1438 0.0863 0.0953 

S5 0.0836 0.0793 0.1143 0.2022 0.1899 0.1407 0.0799 0.1100 

S6 0.0849 0.0715 0.1140 0.1729 0.1773 0.1662 0.0909 0.1222 

S7 0.0918 0.0643 0.1068 0.1401 0.1630 0.1493 0.1137 0.1711 

S8 0.1341 0.0562 0.0958 0.1188 0.1079 0.1073 0.0907 0.2893 

 

In Table 2, the session returns are assumed to be a stochastic process with eight 

discrete state spaces  81,.., SS
 
with Markov chain structure. For example, when the 

ISE100 index return in state S5 in the present session, conditional probability of it will 

be going to S3 in the next session is )( 53 SSP  11.43%. Similarly, conditional 

probability of passing from state S1 to S4  is )( 14 SSP 10.89%. 

The one step transition matrix (Table 2) shows the following property of a regular 

ergodic Markov chain structure that




t

j

t

ijPLim . , here j ’s are the steady state 

probabilities and this limit is independent of i. The j ’s satisfy the following steady 

state conditions; 

for 0j ,  1
1




M

j

j , and
ij

M

i

ij P



1

 .                                      
(2)

 

We can find the value of j ’s (steady state probabilities) that is independent of the 

initial probability distribution after a sufficiently large number of transitions. As t 

becomes larger, the values of the 
t

ijP  moves to fixed limit and each probability vector  

tend to become equal for all values of i. Thus, each of the eight rows of 
t

ijP  has 

identical probabilities; 
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                               Table 3: Six steps probability matrixes
 

                                                             

1

ijP  

0.251 0.087 0.111 0.109 0.098 0.093 0.070 0.181 

0.158 0.098 0.125 0.155 0.156 0.103 0.074 0.131 

0.113 0.086 0.144 0.159 0.196 0.125 0.071 0.104 

0.092 0.074 0.132 0.207 0.169 0.144 0.086 0.095 

0.084 0.079 0.114 0.202 0.190 0.141 0.080 0.110 

0.085 0.072 0.114 0.173 0.177 0.166 0.091 0.122 

0.092 0.064 0.107 0.140 0.163 0.149 0.114 0.171 

0.134 0.056 0.096 0.119 0.108 0.107 0.091 0.289 

                                                              

2

ijP  

0.146 0.077 0.116 0.148 0.144 0.121 0.082 0.165 

0.130 0.077 0.118 0.160 0.156 0.127 0.083 0.150 

0.121 0.078 0.120 0.165 0.162 0.131 0.083 0.141 

0.116 0.077 0.120 0.168 0.163 0.133 0.084 0.138 

0.115 0.076 0.119 0.169 0.163 0.133 0.084 0.140 

0.115 0.076 0.118 0.166 0.162 0.134 0.085 0.144 

0.118 0.074 0.116 0.161 0.158 0.132 0.086 0.155 

0.130 0.073 0.113 0.151 0.146 0.125 0.086 0.177 

                                                              :  

                                                            
6

ijP  

0.123 0.076 0.118 0.161 0.157 0.130 0.084 0.151 

0.123 0.076 0.118 0.161 0.157 0.130 0.084 0.151 

0.123 0.076 0.118 0.161 0.157 0.130 0.084 0.151 

0.123 0.076 0.118 0.161 0.157 0.130 0.084 0.151 

0.123 0.076 0.118 0.161 0.157 0.130 0.084 0.151 

0.123 0.076 0.118 0.161 0.157 0.130 0.084 0.151 

0.123 0.076 0.118 0.161 0.157 0.130 0.084 0.151 

0.123 0.076 0.118 0.161 0.157 0.130 0.084 0.151 

 

Table 3 gives transition probabilities going from one to six sessions respectively. 

From the last six step steady state probabilities matrix in Table 3, (
6

ijP  ) we can see that 

there is a limiting probability that the return states will be in steady state condition after 

six steps (t=6 session or three work days), independent of the present initial state. 
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By using above probability matrixes we can calculate expected capital gain or loss 

)( t

iCE  for investors in the ISE after t session given the present state i as: 

 

 ).(1)( 1

i

t

ij

t

i

t

i PCCE                                         (3) 

 

In equation 3, 
i represents the vector of the mean returns of states. Table 4 gives 

the means and standard deviations of each state. 

 
            Table 4: Mean and standard deviation of returns of states 

States Return range Mean )( i  Std.dev. )( i  

S1 0171.0tR  -0.0328 0.0173 

S2 0114.00171.0  tR  -0.0141 0.0016 

S3 0057.00114.0  tR  -0.0084 0.0016 

S4 00057.0  tR  -0.0027 0.0017 

S5 0057.00  tR  0.0028 0.0016 

S6 0114.00057.0  tR  0.0083 0.0016 

S7 0171.00114.0  tR  0.0140 0.0016 

S8 
tR0171.0  0.0326 0.0169 

 

The expected capital gain or loss )( t

iGE  net of the costs for the future t sessions, 

given the present state i can be calculated as: 

 

                                                                                                                                                                                       

(4)  

 

 

In equation 4, 
0

iC represents the initial amount of capital invested by an investor in 

state i of the ISE index. The constant term, 0.10, represents the capital gain tax rate in 

the ISE, and the term 0.00175 represents buying and selling costs respectively
2
.  We can 

calculate expected return )( t

iRE  after the t sessions, given the present state i by 

equation 5, 

 

 

                                                                                                                              (5) 

 
 

 

                                                 
2
 We take selling and buying commission of Garanti Bank for investment range of 5000-
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Table 5: Calculated expected return after the t session given the present state i 

Present state t=1 

 

t=2 

 

t=3 

 

t=4 

 

t=5 

 

t=6 

 

t=7 

 

t=8 

 

t=9 

 

S1 -0.0062 -0.0056 -0.0045 -0.0034 -0.0025 -0.0015 -0.0005 0.0005 0.0015* 

 

S2 -0.0049 -0.0042 -0.0032 -0.0022 -0.0012 -0.0002 0.0007 0.0017* 0.0027 

 

S3 -0.0041 -0.0033 -0.0024 -0.0014 -0.0004 0.0005 0.0015* 0.0025 0.0035 

 

S4 -0.0033 -0.0025 -0.0015 -0.0006 0.0004 0.0014* 0.0024 0.0034 0.0044 

 

S5 -0.0026 -0.0017 -0.0007 0.0003 0.0012* 0.0022 0.0032 0.0042 0.0052 

 

S6 -0.0018 -0.0007 0.0002 0.0012* 0.0022 0.0032 0.0042 0.0052 0.0062 

 

S7 -0.0002 0.0011* 0.0021 0.0031 0.0041 0.0051 0.0061 0.0071 0.0081 

 

S8 0.0015* 0.0031 0.0042 0.0052 0.0062 0.0072 0.0082 0.0092 0.0102 

*Future expected net session returns above the overall average session return (0.1084%) of 

ISE 100 index. 

 

Table 5 gives the calculated future expected net session return )( t

iRE  of the ISE 

index after buying and selling costs and the capital gain tax, after the t sessions, given 

the present state i. Here, one can see that if the present state is S1 (high loss state) it is 

expected that return will be above the overall average session return (0.108%) of ISE 

100 index after nine steps. If the present state is S7 it is expected that return will be 

equal or above overall average return after one step. This means that if an investor buys 

the ISE 100 index and the present state is S1 he or she has to wait nine sessions without 

selling in order to realize net return which is above the overall average session return. 

Similarly, if the present state is S7 he or she has to wait one session only. 

It is expected that an investor will be realize return which is equal to average 

session return of ISE 100 index in the long run. Because, as stated before there is a 

limiting probability that the return states will be in steady state condition after six steps 

(t=6 session or three work days), independent of the present initial state. If we multiply 

steady state probability vector )( j  with the vector of the mean returns of states 

(equation 6), we can get long run average return. 
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These empirical results generally suggest that when the ISE index is in the high 

positive return states (S6, S7 and S8) it is expected that investors will realize a return 

which is above overall average session return much more rapidly. When the ISE index 

is in the high loss states (S1 and S2) investors may also hold short selling strategy. 

  

 

3. Conclusion 

This study provides information about investment opportunities of the ISE 100 

index for their short term (nine sessions or approximately five days) buying and selling 

strategies given the present state. If the present state is known (e.g. S6, S7 and S8) it is 

possible to earn above overall average return in the very short run. Similar further 

analysis can be performed by considering returns of smaller time intervals such as 

returns of ten or five minutes. Hence, small time intervals may provide more investment 

opportunities.   

Result of the study is also consistent with the weak form of the efficient market 

hypothesis
3
 in the long run. Because, the ISE index returns go to the steady state 

condition after six steps an investor’s expected return will be equal to the long run 

average return of the ISE index regardless of the present state. The weak form efficient 

market hypothesis asserts that it is not possible earn above average return in the long 

run. However, according to the results of this study, the efficient market hypothesis may 

not hold in the very short run. In other words, when the very short time interval is 

considered, information in the past data is not fully reflected in present prices.  

Similar further analysis can also be performed for returns of individual common 

stocks and other investment instruments such as gold and foreign exchange returns.  

 

 

                                                 
3
Efficient Market Hypothesis (EMH) Much of the theory on these subjects can be traced to 

French mathematician Louis Bachelier whose Ph.D. dissertation titled "The Theory of 

Speculation" (1900). EMH evolved by Eugene, F.F. (1965) who proposed three forms of the 

efficient market hypothesis: (1) The "Weak" form asserts that all past market prices and data are 

fully reflected in securities prices. In other words, it is not possible earn above average return in 

the long run. (2) The "Semi-strong" form asserts that all publicly available information is fully 

reflected in securities prices. In other words, fundamental analysis is of no use. (3) The "Strong" 

form asserts that all information is fully reflected in securities prices. In other words, even insider 

information is of no use. 
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