Konuralp Journal of Mathematics
Volume 4 No. 1 Pp. 211-224 (2016) ©KJM

A SCHUR TYPE THEOREM FOR ALMOST α-COSYMPLECTIC MANIFOLDS WITH KAEHLERIAN LEAVES

GÜLHAN AYAR, MUSTAFA YILDIRIM AND NESIP AKTAN

Abstract

In this study, we give a Schur type theorem for almost α-cosymplectic manifolds with Keahlerian leaves.

1. Introduction

Let M be a Riemannian manifold with curvature tensor R. The sectional curvature of a 2-plane α in a tangent space $T_{P} M$ is defined by $K(\alpha, P)=R(X, Y, Y, X)$, where $\{X, Y\}$ is an orthonormal basis of $T_{P} M$. F. Schur's classical theorem remarks that if M is a connected manifold of dimension $n \geq 3$ and in any point $P \in M$, the curvature $K(\alpha, P)$ does not depend on $\alpha \in T_{P} M$ then it does not depend on the point P too, i.e. it is a global constant. Such a manifold is called a manifold of constant sectional curvature.

In following years, many authors has studied Schur's theorem for different structures ([6]-[10]).For instance,In 1989, Schur's theorem is improved by Nobuhiro and a new version for locally symmetric spaces is gotten. [10].In 2001, Kassabov regards connected $2 n$-dimensional almost Hermitian manifold M to be of pointwise constant anti-holomorphic sectional curvature $\nu(p), p \in M$ and proves that ν is a global constant [6].In 2006, Cho defines a contact strongly pseudo-convex $C R$ space-form using the Tanaka-Webster connection in a method similar to the Sasakian space form. He studies the geometry of such spaces and introduces a Schur type theorem for such structures [7]. And finally in 2013 a new version of Schur's lemma for almost cosymplectic manifolds with Kaehlerian leaves are given by Aktan et. al.[22]

The presence of an almost cosymplectic manifold was firstly introduced by Goldberg and Yano in 1969, [19]. The simplest examples of these manifolds are those being the products (possibly local) of almost Kaehlerian manifolds and the real line \mathbb{R} or the circle S^{1}.

Later on, curvature properties of almost cosymplectic manifolds were studied mainly by Goldberg and Yano [12], Olszak [13], [14], Kirichenko [15], Endo [16] some other autors. We relate some of them in a historical order.

[^0]A cosymplectic manifold of constant curvature is necessarily locally flat [17]. It is obvious that the locally flat cosymplectic manifolds exist. In fact, they are locally products of locally flat Kaehlerian manifolds and the real line (for instance, $C^{n} \times R$). If the curvature operator R of an almost cosymplectic manifold M commutes with the fundamental singular collineation φ, then M is normal, that is, it is a cosymplectic manifold [12]. In particular, an almost cosymplectic manifold of constant curvature is cosymplectic if and only if it is locally flat. Generalizing these,in [13], [14] , it is proved that almost cosymplectic manifolds of non-zero constant curvature do not exist. For a conformally flat almost cosymplectic manifold of dimension ≥ 5, the scalar curvature r is non-positive and the manifold is cosymplectic if and only if it is locally flat [13], [14]. If M is an almost cosymplectic manifold of constant φ-sectional curvature then the scalar curvature r and the φ-sectional curvature H satisfy the inequality $n(n+1) H \geq r$. This equality holds if and only if the manifold is cosymplectic [13].

In this paper, we focus on almost α-cosymplectic manifolds with Kaehlerian leaves and considering Schur's lemma on spaces of constant curvature and the paper [22]. We get a new version of Schur's lemma for almost α-cosymplectic manifolds with Kaehlerian leaves.

2. Almost α-Cosymplectic Manifolds

We repeat the relevant material from Blair [4] without proofs.
Let M be a $(2 n+1)$-dimensional differentiable manifold equipped with a triple (φ, ξ, η), where φ is a type of $(1,1)$ tensor field, ξ is a vector field, η is a 1-form on M such that

$$
\begin{equation*}
\eta(\xi)=1, \quad \varphi^{2}=-I+\eta \otimes \xi \tag{2.1}
\end{equation*}
$$

which implies

$$
\begin{equation*}
\varphi \xi=0, \quad \eta \circ \varphi=0, \quad \operatorname{rank}(\varphi)=2 n \tag{2.2}
\end{equation*}
$$

If M admits a Riemannian metric g, such that

$$
\begin{gather*}
g(\varphi X, \varphi Y)=g(X, Y)-\eta(X) \eta(Y) \tag{2.3}\\
\eta(X)=g(X, \xi)
\end{gather*}
$$

then M is said to have an almost contact metric structure (φ, ξ, η, g).On such a manifold, the fundamental 2-form Φ of M is defined by

$$
\Phi(X, Y)=g(\varphi X, Y)
$$

for any vector fields X, Y on M.for any vector fields X, Y on M.
An almost contact metric structure is almost cosymplectic if and only if both $d \eta$ and $d \Phi$ vanish. An almost contact manifold (M, φ, ξ, η) is said to be normal if the Nijenhuis torsion

$$
N_{\varphi}(X, Y)=[\varphi X, \varphi Y]-\varphi[\varphi X, Y]-\varphi[X, \varphi Y]+\varphi^{2}[X, Y]+2 d \eta(X, Y) \xi
$$

vanishes for any vector fields X, Y on M.
A normal almost cosymplectic manifold is called a cosymplectic manifold. A normal almost cosymplectic and almost Kenmotsu manifolds are called a cosymplectic manifold and Kenmotsu manifold, respectively. As it is known that an almost
contact metric structure is cosymplectic if and only if both $\nabla \eta$ and $\nabla \Phi$ vanish and an almost contact metric structure is Kenmotsu [13] if and only if

$$
\left(\nabla_{X} \varphi\right) Y=g(\varphi X, Y) \xi-\eta(Y) \varphi X
$$

An almost contact metric manifold $M^{2 n+1}$ is said to be almost α-Kenmotsu if $d \eta=0$ and $d \Phi=2 \alpha \eta \wedge \Phi, \alpha$ being a non-zero real constant. Geometrical properties and examples of almost α-Kenmotsu manifolds are studied in [1], [13], [24] and [5], . Given an almost Kenmotsu metric structure (φ, ξ, η, g), consider the deformed structure

$$
\eta=\frac{1}{\alpha} \eta, \xi=\alpha \xi, \varphi=\varphi, g=\frac{1}{\alpha^{2}} g, \alpha \neq 0, \alpha \in \mathbb{R}
$$

where α is a non-zero real constant. So we get an almost α-Kenmotsu structure (φ, ξ, η, g). This deformation is called a homothetic deformation. It is important to note that almost α-Kenmotsu structures are related to some special local conformal deformations of almost cosymplectic structures (see [5]).

If we join these two classes, we obtain a new notion of an almost α-cosymplectic manifold, which is defined by the following formula

$$
d \eta=0, \quad d \Phi=2 \alpha \eta \wedge \Phi
$$

for any real number α (see [1]). Obviously, a normal almost α-cosymplectic manifold is an α-cosymplectic manifold. An α-cosymplectic manifold is either cosymplectic under the condition $\alpha=0$ or α-Kenmotsu $(\alpha \neq 0)$ for $\alpha \in \mathbb{R}$

Let M be an almost α-cosymplectic manifold with structure (φ, ξ, η, g) and \mathcal{D} is the distribution of M defined by $\mathcal{D}=\operatorname{ker} \eta$. If the almost complex structure is Kaehlerian on every integral submanifold of the distribution \mathcal{D}, such manifold is said to be an almost α-cosymplectic manifold with Kaehlerian leaves. Suppose that M is an almost α-cosymplectic manifold. Denote by A the (1,1)-tensor field on M defined by

$$
\begin{equation*}
A=-\nabla \xi \tag{2.4}
\end{equation*}
$$

and by h the $(1,1)$-tensor field given by the following relation

$$
h=\frac{1}{2} \mathcal{L}_{\xi} \varphi,
$$

where \mathcal{L} is the Lie derivative of g. Obviously, $A(\xi)=0$ and $h(\xi)=0$.
Moreover, the tensor fields A and h are symmetric operators and satisfy the following relations [23]

Proposition 2.1.

$$
\begin{gather*}
\nabla_{X} \xi=-\alpha \varphi^{2} X-\varphi h X \tag{2.5}\\
(\varphi \circ h) X+(h \circ \varphi) X=0 \tag{2.6}\\
\left(\nabla_{X} \eta\right) Y=\frac{\alpha[g(X, Y)-\eta(X) \eta(Y)]+g(\varphi Y, h X)}{\delta \eta=} \begin{array}{c}
-2 \alpha n, \quad \operatorname{tr}(h)=0 \\
\operatorname{tr}(A)=-2 \alpha n \\
\operatorname{tr}(\varphi A)=0 \\
A \varphi+\varphi A=-2 \alpha \varphi \\
A \xi=0
\end{array} \tag{2.7}
\end{gather*}
$$

$$
\begin{equation*}
\left(\nabla_{X} A\right) \xi=A^{2} X, \tag{2.13}
\end{equation*}
$$

for any vector fields X, Y on M. We also remark that for any vector fields X, Y on M. We also remark that $h=0 \Leftrightarrow \nabla \xi=-\alpha \varphi^{2}$.

Proposition 2.2. Let M be an almost α-cosymplectic manifold. M has Kaehlerian leaves if and only if it satisfies the condition

$$
\begin{equation*}
\left(\nabla_{X} \varphi\right) Y=-g(\varphi A X, Y) \xi+\eta(Y) \varphi A X \tag{2.14}
\end{equation*}
$$

for any vector fields X, Y on M [23].

3. Basic Curvature Relations

Proposition 3.1. Let M be an almost α-cosymplectic manifold. Then we have [23]

$$
\begin{align*}
& R(X, Y) \xi= \alpha^{2}[\eta(X) Y-\eta(Y) X]-\alpha[\eta(X) \varphi h Y-\eta(Y) \varphi h X] \tag{3.1}\\
&+\left(\nabla_{Y} \varphi h\right) X-\left(\nabla_{X} \varphi h\right) Y \\
& R(X, Y) \xi=-\left(\nabla_{X} A\right) Y+\left(\nabla_{Y} A\right) X \tag{3.2}\\
& R(X, \xi) \xi=\alpha^{2} \varphi^{2} X+2 \alpha \varphi h X-h^{2} X+\varphi\left(\nabla_{\xi} h\right) X \tag{3.3}\\
&\left(\nabla_{\xi} h\right) X=-\varphi R(X, \xi) \xi-\alpha^{2} \varphi X-2 \alpha h X-\varphi h^{2} X \tag{3.4}\\
& R(X, \xi) \xi-\varphi R(\varphi X, \xi) \xi=2\left[\alpha^{2} \varphi^{2} X-h^{2} X\right] \tag{3.5}\\
& S(X, \xi)=-2 n \alpha^{2} \eta(X)-{ }_{i=1}^{2 n+1} g\left(\left(\nabla_{e_{i}} \varphi h\right) e_{i}, X\right) \tag{3.6}\\
& \operatorname{tr}(l)=S(\xi, \xi)=-\left[2 n \alpha^{2}+\operatorname{tr}\left(h^{2}\right)\right] \tag{3.7}
\end{align*}
$$

for any vector fields X, Y on M.
We have the following proposition that will be used in the next important result,by simple computations, .

Proposition 3.2.

Theorem 3.1. For the curvature transformation of almost α-cosymplectic manifold with Kaehlerian leaves, we have [22]

$$
\begin{align*}
& R(X, Y) \varphi Z-\varphi R(X, Y) Z=g(A X, \varphi Z) A Y-g(A Y, \varphi Z) A X \\
& -g(A X, Z) \varphi A Y+g(A Y, Z) \varphi A X \tag{3.8}\\
& -\eta(Z) \varphi(R(X, Y) \xi)-g(R(X, Y) \xi, \varphi Z) \xi
\end{align*}
$$

and

$$
\begin{align*}
& R(\varphi X, \varphi Y) Z-R(X, Y) Z=\eta(Y) R(\xi, X, Z)+g(A Z, \varphi X) A \varphi Y \\
& -g(A Z, \varphi Y) A \varphi X-g(A Z, X) A Y \tag{3.9}\\
& +g(A Z, Y) A X-\eta(X) R(\xi, Y, Z)+\eta(X) \eta(Y) R(\xi, \xi)
\end{align*}
$$

Lemma 3.1. Let M be an almost α-cosymplectic manifold with Kaehlerian leaves. If we denote

$$
P_{\varphi}(X, Y)=\left(\nabla_{Y} \varphi h\right) X-\left(\nabla_{X} \varphi h\right) Y
$$

and

$$
P(X, Y)=\left(\nabla_{Y} h\right) X-\left(\nabla_{X} h\right) Y
$$

Then we satisfy following relations [22]:

$$
\begin{gathered}
P_{\varphi}(X, Y)=\varphi P(X, Y) \\
\varphi P_{\varphi}(X, Y)=-P(X, Y)+2 g(h X, \varphi h Y) \xi \\
P_{\varphi}(X, Y)=-P_{\varphi}(Y, X)
\end{gathered}
$$

Theorem 3.2. Let M be an almost α-cosymplectic manifold with Kaehlerian leaves. The necessary and sufficient condition for M to have pointwise constant φ-sectional curvature H is

$$
\begin{align*}
& 4 R(X, Y, Z, W)=\left(H+3 \alpha^{2}\right)[g(X, W) g(Z, Y)-g(X, Z) g(W, Y)] \\
& -\left(H+\alpha^{2}\right)[\eta(X) \eta(W) g(Z, Y)+\eta(Y) \eta(Z) g(X, W) \\
& +2 g(X, \varphi Y) g(Z, \varphi W)-\eta(Y) \eta(W) g(X, Z)-\eta(X) \eta(Z) g(W, Y] \\
& +\left(H-\alpha^{2}\right)[g(X, \varphi Z) g(W, \varphi Y)-g(X, \varphi W) g(Z, \varphi Y] \tag{3.10}\\
& -g(A X, \varphi Z) g(A Y, \varphi W)+g(A W, \varphi X) g(A Z, \varphi Y) \\
& -g(A Z, \varphi X) g(A W, \varphi Y)+g(A X, \varphi W) g(A Y, \varphi Z) \\
& +2 g(A X, Z) g(A W, Y)-2 g(A X, W) g(A Z, Y)
\end{align*}
$$

$$
+\alpha\left[\begin{array}{c}
-2 g(A X, Z) g(W, Y)+2 \eta(Y) \eta(W) g(A X, Z) \\
+2 g(A X, W) g(Z, Y)-2 \eta(Y) \eta(Z) g(A X, W) \\
+2 g(A Z, Y) g(X, W)-2 \eta(X) \eta(W) g(A Z, Y) \\
-2 g(X, Z) g(A W, Y)+2 \eta(X) \eta(Z) g(A W, Y)
\end{array}\right]
$$

$$
+4 \eta(X) P_{\varphi}(Z, W, Y)+4 \eta(Z) P_{\varphi}(X, Y, W)
$$

$$
-4 \eta(W) P_{\varphi}(X, Y, Z)-4 \eta(X) \eta(W) P_{\varphi}(Z, \xi, Y)
$$

$$
-4 \eta(X) \eta(Z) P_{\varphi}(\xi, W, Y)-4 \eta(X) \eta(Y) P_{\varphi}(Z, W, \xi)
$$

$$
-4 \eta(Y) P_{\varphi}(Z, W, X)+4 \eta(Y) \eta(W) P_{\varphi}(Z, \xi, X)
$$

$$
+4 \eta(Y) \eta(Z) P_{\varphi}(\xi, W, X)+4 \eta(X) \eta(Z) P_{\varphi}(\xi, Y, W)
$$

$$
-4 \eta(X) \eta(W) P_{\varphi}(\xi, Y, Z)
$$

$$
-4 \alpha \eta(X) \eta(Z) g(\varphi h Y, W)+4 \alpha \eta(X) \eta(W) g(\varphi h Y, Z)
$$

$$
+4 \alpha \eta(Y) \eta(Z) g(\varphi h X, W)-4 \alpha \eta(Y) \eta(W) g(\varphi h X, Z)
$$

$$
-6 \alpha^{2} \eta(X) \eta(W) g(Y, Z)-6 \alpha^{2} \eta(Y) \eta(Z) g(X, W)
$$

$$
+6 \alpha^{2} \eta(Y) \eta(W) g(X, Z)+6 \alpha^{2} \eta(X) \eta(Z) g(Y, W)
$$

for all vector fields X, Y, Z, W in M.
Proof. For any vector fields X and $Y \in \mathcal{D}$, we have

$$
\begin{equation*}
g(R(X, \varphi X) X, \varphi X)=-H g(X, X)^{2} \tag{3.11}
\end{equation*}
$$

By (3.8)we see

$$
\begin{align*}
R(X, \varphi Y, X, \varphi Y)= & R(X, \varphi Y, Y, \varphi X)+g(A X, \varphi X) g(A Y, \varphi Y) \\
& -g(A \varphi Y, \varphi X) g(A X, Y)+g(A \varphi Y, \varphi Y) g(A X, X) \tag{3.12}\\
& +g(A \varphi Y, X) g(\varphi A X, Y) \\
R(X, \varphi X, Y, \varphi X)= & R(X, \varphi X, X, \varphi Y)-2 \alpha g(X, X) g(A X, Y) \tag{3.13}\\
& +2 \alpha g(A X, X) g(X, Y)-2 \alpha g(A X, \varphi X) g(X, \varphi Y)
\end{align*}
$$

for $X, Y \in \mathcal{D}$. Submitting $X+Y$ in (3.11), we get

$$
\begin{aligned}
& -H\left[2 g(X, Y)^{2}+2 g(X, X) g(X, Y)+2 g(X, Y) g(Y, Y)+g(X, X) g(Y, Y)\right] \\
& =\frac{1}{2}(g R(X+Y, \varphi X+\varphi Y)(X+Y), \varphi X+\varphi Y) \\
& +\frac{1}{2} H\left(g(X, X)^{2}+g(Y, Y)^{2}\right) \\
& =R(X, \varphi X, Y, \varphi X)+R(X, \varphi X, X, \varphi Y)+R(X, \varphi X, Y, \varphi Y) \\
& +R(X, \varphi Y, Y, \varphi X)+R(Y, \varphi X, Y, \varphi Y)+R(X, \varphi Y, Y, \varphi Y) \\
& +\frac{1}{2}[R(Y, \varphi X, Y, \varphi X)+R(X, \varphi Y, X, \varphi Y)]
\end{aligned}
$$

using of (3.8)

$$
\begin{aligned}
& -H\left(2 g(X, Y)^{2}+2 g(X, X) g(X, Y)+2 g(X, Y) g(Y, Y)+g(X, X) g(Y, Y)\right) \\
& =R(X, \varphi X, Y, \varphi X)+R(X, \varphi X, X, \varphi Y)+R(X, \varphi X, Y, \varphi Y)+R(X, \varphi Y, Y, \varphi X) \\
& +R(Y, \varphi X, Y, \varphi Y)+R(X, \varphi Y, Y, \varphi Y)+\frac{1}{2}\left[g(A \varphi X, \varphi X) g(A Y, Y)-g(A Y, \varphi X)^{2}\right. \\
& \left.g(A \varphi Y, \varphi Y) g(A X, X)+g(A X, \varphi Y)^{2}\right]
\end{aligned}
$$

Then using (3.13) and Bianchi identity

$$
\begin{aligned}
& -H\left(2 g(X, Y)^{2}+2 g(X, X) g(X, Y)+2 g(X, Y) g(Y, Y)+g(X, X) g(Y, Y)\right) \\
& =2 R(X, \varphi X, X, \varphi Y)-2 \alpha g(X, X) g(A X, Y)+2 \alpha g(A X, X) g(X, Y) \\
& -2 \alpha g(A X, \varphi X) g(X, \varphi Y)-R(\varphi Y, X, Y, \varphi X)-R(X, Y, \varphi Y, \varphi X) \\
& +2 R(Y, \varphi X, Y, \varphi Y)-2 \alpha g(A X, Y) g(Y, Y)+2 \alpha g(A Y, Y) g(X, Y) \\
& -2 \alpha g(A Y, \varphi Y) g(Y, \varphi X)+R(X, \varphi Y, Y, \varphi X)+R(X, \varphi Y, X, \varphi Y) \\
& +\frac{1}{2} g(A Y, Y) g(A \varphi X, \varphi X)-g(A Y, \varphi X)^{2}-g(A \varphi Y, \varphi Y) g(A X, X) \\
& \left.+g(A X, \varphi Y)^{2}\right]
\end{aligned}
$$

It then turns to

$$
\begin{aligned}
& =2 R(X, \varphi X, X, \varphi Y)+2 R(X, \varphi Y, Y, \varphi X)+R(\varphi X, \varphi Y, X, Y) \\
& +2 R(Y, \varphi X, Y, \varphi Y)+R(X, \varphi Y, X, \varphi Y)+\frac{1}{2}[-4 \alpha g(X, X) g(A X, Y) \\
& +4 \alpha g(A X, X) g(X, Y)-4 \alpha g(A X, \varphi X) g(X, \varphi Y)-4 \alpha g(A X, Y) g(Y, Y) \\
& +4 \alpha g(A Y, Y) g(X, Y)-4 \alpha g(A Y, \varphi Y) g(Y, \varphi X)+g(A Y, Y) g(A \varphi X, \varphi X) \\
& \left.-g(A Y, \varphi X)^{2}-g(A \varphi Y, \varphi Y) g(A X, X)+g(A X, \varphi Y)^{2}\right]
\end{aligned}
$$

because of (3.9) and (3.12). Thus we get

$$
\begin{align*}
& 2 R(X, \varphi X, X, \varphi Y)+2 R(Y, \varphi X, Y, \varphi Y)+3 R(X, \varphi Y, Y, \varphi X) \tag{3.14}\\
& +R(X, Y, X, Y)+\frac{1}{2}[2 g(A X, \varphi X) g(A Y, \varphi Y)-2 g(A X, \varphi Y) g(A Y, \varphi X) \\
& -2 g(A X, X) g(A Y, Y)]+2 g(A X, Y)^{2}-2 g(A X, \varphi Y)^{2} \\
& +4 \alpha g(A X, Y) g(X, Y)+2 g(A X, Y)^{2}+2 g(A X, \varphi X) g(A Y, \varphi Y) \\
& -4 \alpha g(X, X) g(A X, Y)+4 \alpha g(A X, X) g(X, Y)-4 \alpha g(A X, \varphi X) g(X, \varphi Y) \\
& -4 \alpha g(Y, Y) g(A X, Y)+4 \alpha g(A Y, Y) g(X, Y)-4 \alpha g(A Y, \varphi Y) g(Y, \varphi X) \\
& +g(A Y, Y) g(A \varphi X, \varphi X)-g(A Y, \varphi X)^{2}-g(A X, X) g(A \varphi Y, \varphi Y) \\
& \left.+g(A X, \varphi Y)^{2}\right] \\
& =-H\left(2 g(X, Y)^{2}+2 g(X, X) g(X, Y)+2 g(X, Y) g(Y, Y)+g(X, X) g(Y, Y)\right)
\end{align*}
$$

Replacing Y by $-Y$ in (3.14) and summing it to (3.14) we have

$$
\begin{align*}
& 3 R(X, \varphi Y, Y, \varphi X)+R(X, Y, X, Y)=-H\left[2 g(X, Y)^{2}+g(X, X) g(Y, Y)\right] \tag{3.15}\\
& -g(A X, \varphi X) g(A Y, \varphi Y)+g(A X, \varphi Y) g(A Y, \varphi X)+g(A X, X) g(A Y, Y)^{2} \\
& -g(A X, Y)^{2}+g(A X, \varphi Y)^{2}+2 \alpha g(A X, X) g(Y, Y)-2 g(A X, Y)^{2} \\
& +g(A X, X) g(A Y, Y)-2 \alpha g(A X, Y) g(X, Y)-g(A X, Y)^{2} \\
& -g(A Y, \varphi Y) g(A X, \varphi X)-\frac{1}{2} g(A Y, Y) g(A \varphi X, \varphi X)-g(A Y, \varphi X)^{2} \\
& \left.-g(A X, X) g(A \varphi Y, \varphi Y)+g(A X, \varphi Y)^{2}\right]
\end{align*}
$$

By virtue of (3.15) we see

$$
\begin{aligned}
& -H\left[2 g(X, \varphi Y)^{2}+g(X, X) g(\varphi Y, \varphi Y)\right]=-3 R(X, Y, \varphi Y, \varphi X) \\
& +R(X, \varphi Y, X, \varphi Y)-g(A X, \varphi X) g(A \varphi Y, Y) \\
& +g(A X, Y) g(A \varphi Y, \varphi X)-g(A X, X) g(A \varphi Y, \varphi Y) \\
& +g(A X, \varphi Y)^{2}-g(A X, Y)^{2}-2 \alpha g(A X, X) g(Y, Y) \\
& +2 g(A X, \varphi Y)^{2}-g(A X, X) g(A \varphi Y, \varphi Y) \\
& -2 \alpha g(A X, \varphi Y) g(X, \varphi Y)-g(A X, \varphi Y)^{2} \\
& +g(A \varphi Y, Y) g(A X, \varphi X)+\frac{1}{2}[g(A \varphi Y, \varphi Y) g(A \varphi X, \varphi X) \\
& \left.-g(A \varphi Y, \varphi X)^{2}-g(A X, X) g(A Y, Y)+g(A X, Y)^{2}\right] \\
& =3 R(\varphi X, \varphi Y, X, Y)+R(X, \varphi Y, X, \varphi Y) \\
& -2 g(A X, \varphi X) g(A Y, \varphi Y)-g(A X, X) g(A \varphi Y, \varphi Y) \\
& +g(A X, Y) g(A \varphi Y, \varphi X)+2 g(A X, \varphi Y)^{2}-2 \alpha g(A X, X) g(Y, Y) \\
& +2 \alpha g(A X, \varphi Y) g(X, \varphi Y)+\frac{1}{2}[g(A \varphi Y, \varphi Y) g(A \varphi X, \varphi X) \\
& \left.-g(A \varphi Y, \varphi X)^{2}-g(A X, X) g(A Y, Y)-g(A X, Y)^{2}\right] \\
& =3 R(X, Y, X, Y)+R(X, \varphi Y, Y, \varphi X) \\
& +2 g(A X, \varphi X) g(A Y, \varphi Y)-3 g(A X, \varphi Y) g(A Y, \varphi X) \\
& -\frac{7}{2} g(A X, X) g(A Y, Y)+\frac{5}{2} g(A X, Y)^{2}-g(A X, X) g(A \varphi Y, \varphi Y) \\
& +g(A X, \varphi Y)^{2}-2 \alpha g(A X, X) g(Y, Y)+2 \alpha g(A X, \varphi Y) g(X, \varphi Y) \\
& +\frac{1}{2}\left[g(A \varphi Y, \varphi Y) g(A \varphi X, \varphi X)-g(A \varphi Y, \varphi X)^{2}\right]
\end{aligned}
$$

Because of (3.9), (3.15) and (3.12), After simplication (3.16) follows

$$
\begin{aligned}
& =3 R(X, Y, X, Y)-\frac{1}{3} R(X, Y, X, Y)-\frac{H}{3}\left[2 g(X, Y)^{2}+g(X, X) g(Y, Y)\right] \\
& +\frac{4}{3} g(A X, \varphi X) g(A Y, \varphi Y)-\frac{8}{3} g(A X, \varphi Y) g(A Y, \varphi X)-\frac{17}{6} g(A X, X) g(A Y, Y) \\
& +\frac{11}{6} g(A X, Y)^{2}+\frac{7}{6} g(A X, \varphi Y)^{2}-\frac{4}{3} \alpha g(A X, X) g(Y, Y)-\frac{2}{3} \alpha g(A X, Y) g(X, Y) \\
& -\frac{1}{6} g(A Y, Y) g(A \varphi X, \varphi X)+\frac{1}{6} g(A Y, \varphi X)^{2}-\frac{5}{6} g(A X, X) g(A \varphi Y, \varphi Y) \\
& +2 \alpha g(A X, \varphi Y) g(X, \varphi Y)+\frac{1}{2}\left[g(A \varphi Y, \varphi Y) g(A \varphi X, \varphi X)-g(A \varphi Y, \varphi X)^{2}\right]
\end{aligned}
$$

Therefore by a standard calculation we have

$$
\begin{aligned}
& 8 R(X, Y, X, Y)=-3 H\left[2 g(X, \varphi Y)^{2}+g(X, X) g(\varphi Y, \varphi Y)\right] \\
& +H\left[2 g(X, Y)^{2}+g(X, X) g(Y, Y)\right]-4 g(A X, \varphi X) g(A Y, \varphi Y) \\
& +8 g(A X, \varphi Y) g(A Y, \varphi X)+\frac{17}{2} g(A X, X) g(A Y, Y) \\
& -\frac{11}{2} g(A X, Y)^{2}-\frac{7}{2} g(A X, \varphi Y)^{2}+4 \alpha g(A X, X) g(Y, Y) \\
& +2 \alpha g(A X, Y) g(X, Y)+\frac{1}{2} g(A Y, Y) g(A \varphi X, \varphi X) \\
& -\frac{1}{2} g(A Y, \varphi X)^{2}+\frac{5}{2} g(A X, X) g(A \varphi Y, \varphi Y) \\
& -6 \alpha g(A X, \varphi Y) g(X, \varphi Y)-\frac{3}{2}[g(A \varphi Y, \varphi Y) g(A \varphi X, \varphi X) \\
& \left.-g(A \varphi Y, \varphi X)^{2}\right]
\end{aligned}
$$

for any $X, Y \in \mathcal{D}$. Replacing $X=X+Z$ in (3.16), we obtain

$$
\begin{align*}
& 16 R(X, Y, X, Y)+32 R(Z, Y, X, Y)+16 R(Z, Y, Z, Y) \tag{3.17}\\
& =2 H\left[2 g(X, Y)^{2}+4 g(X, Y) g(Z, Y)+2 g(Z, Y)^{2}\right. \\
& +g(X, X) g(Y, Y)+2 g(X, Z) g(Y, Y)+g(Z, Z) g(Y, Y)] \\
& -6 H\left[2 g(X, \varphi Y)^{2}+4 g(X, \varphi Y) g(Z, \varphi Y)\right. \\
& +2 g(Z, \varphi Y)^{2}+g(X, X) g(Y, Y)+2 g(X, Z) g(Y, Y) \\
& +g(Z, Z) g(Y, Y)]-8 g(A X, \varphi X) g(A Y, \varphi Y) \\
& -8 g(A X, \varphi Z) g(A Y, \varphi Y)-8 g(A Z, \varphi X) g(A Y, \varphi Y) \\
& -8 g(A Z, \varphi Z) g(A Y, \varphi Y)+16 g(A X, \varphi Y) g(A Y, \varphi X) \\
& +16 g(A X, \varphi Y) g(A Y, \varphi Z)+16 g(A Z, \varphi Y) g(A Y, \varphi X) \\
& +16 g(A Z, \varphi Y) g(A Y, \varphi Z)+17 g(A X, X) g(A Y, Y) \\
& +34 g(A Z, X) g(A Y, Y)+17 g(A Z, Z) g(A Y, Y) \\
& -11 g(A X, Y)^{2}-22 g(A X, Y) g(A Z, Y)-11 g(A Z, Y)^{2} \\
& -7 g(A X, \varphi Y)^{2}-14 g(A X, \varphi Y) g(A Z, \varphi Y)-7 g(A Z, \varphi Y)^{2} \\
& +g(A Y, Y) g(A \varphi X, \varphi X)+2 g(A Y, Y) g(A \varphi X, \varphi Z) \\
& +g(A Y, Y) g(A \varphi Z, \varphi Z)-g(A Y, \varphi X)^{2} \\
& \text { - } 2 g(A Y, \varphi Z) g(A Y, \varphi X)-g(A Y, \varphi Z)^{2} \\
& +5 g(A X, X) g(A \varphi Y, \varphi Y)+10 g(A Z, X) g(A \varphi Y, \varphi Y) \\
& +5 g(A Z, Z) g(A \varphi Y, \varphi Y)-3 g(A \varphi Y, \varphi Y) g(A \varphi X, \varphi X) \\
& \text { - } 6 g(A \varphi Y, \varphi Y) g(A \varphi X, \varphi Z)-3 g(A \varphi Y, \varphi Y) g(A \varphi Z, \varphi Z) \\
& +3 g(A \varphi Y, \varphi X)^{2}+6 g(A \varphi Y, \varphi X) g(A \varphi Y, \varphi Z)+3 g(A \varphi Y, \varphi Z)^{2} \\
& +\alpha[8 g(A X, X) g(Y, Y)+16 g(A X, Z) g(Y, Y)+8 g(A Z, Z) g(Y, Y) \\
& +4 g(A X, Y) g(X, Y)+4 g(A X, Y) g(Z, Y)+4 g(A Z, Y) g(X, Y) \\
& +4 g(A Z, Y) g(Z, Y)-12 g(A X, \varphi Y) g(X, \varphi Y)-12 g(A X, \varphi Y) g(Z, \varphi Y) \\
& -12 g(A Z, \varphi Y) g(X, \varphi Y)-12 g(A Z, \varphi Y) g(Z, \varphi Y)]
\end{align*}
$$

If we replace $Y=Y+W$ in (3.17) again and use (2.6) ,then we obtain

```
16R(X,Y,Z,W)+32R(X,W,Z,Y)+16R(X,Z,Y,W)
=H12g(X,Y)g(Z,W)-12g(X,\varphiY)g(Z,\varphiW)
-24g(X,\varphiW)g(Z,\varphiY)-12g(X,Z)g(Y,W)
+12g(X,\varphiZ)g(Y,\varphiW)]+3g(AX,\varphiZ)g(AY,\varphiW)
-3g(AX,\varphiY)g(AZ,\varphiW)-12g(AX,\varphiZ)g(AW,\varphiY)
+12g(AX,\varphiY)g(AW,\varphiZ)-12g(AZ,\varphiX)g(AY,\varphiW)
+12g(AY,\varphiX)g(AZ,\varphiW)-3g(AZ,\varphiX)g(AW,\varphiY)
+3g(AY,\varphiX)g(AW,\varphiZ)+15g(AX,\varphiW)g(AY,\varphiZ)
-15g(AX,\varphiW)g(AZ,\varphiY)+9g(AZ,\varphiY)g(AW,\varphiX)
-9g(AY,\varphiZ)g(AW,\varphiX)+45g(AX,Z)g(AY,W)
-45g(AX,Y)g(AZ,W)+2g(A\varphiX,\varphiZ)g(AY,W)
-2g(A\varphiX,\varphiY)g(AZ,W)+10g(AX,Z)g(A\varphiW,\varphiY)
-10g(AX,Y)g(A\varphiW,\varphiZ)-9g(A\varphiX,\varphiZ)g(A\varphiY,\varphiW)
+9g(A\varphiX,\varphiY)g(A\varphiZ,\varphiW)+\alpha[14g(AX,Z)g(Y,W)
-14g(AX,Y)g(Z,W)+2g(AZ,W)g(X,Y)
-6g(AX,\varphiY)g(Z,\varphiW)-12g(AX,\varphiW)g(Z,\varphiY)
-6g(AZ,\varphiY)g(X,\varphiW)-6g(AZ,\varphiW)g(X,\varphiY)
-2g(AY,W)g(X,Z)+6g(AX,\varphiZ)g(Y,\varphiW)
+6g(AY,\varphiZ)g(X,\varphiW)+6g(AY,\varphiW)g(X,\varphiZ)]
```

and by using Bianchi identity and (2.6) we have

```
48R(X,W,Z,Y)=H[12g(X,Y)g(Z,W)
-12g(X,\varphiY)g(Z,\varphiW)-24g(X,\varphiW)g(Z,\varphiY)
-12g(X,Z)g(Y,W)+12g(X,\varphiZ)g(Y,\varphiW)]
+3g(AX,\varphiZ)g(AY,\varphiW)-3g(AX,\varphiY)g(AZ,\varphiW)
-12g(AX,\varphiZ)g(AW,\varphiY)+12g(AX,\varphiY)g(AW,\varphiZ)
-12g(AZ,\varphiX)g(AY,\varphiW)+12g(AY,\varphiX)g(AZ,\varphiW)
-3g(AZ,\varphiX)g(AW,\varphiY)+3g(AY,\varphiX)g(AW,\varphiZ)
+15g(AX,\varphiW)g(AY,\varphiZ)-15g(AX,\varphiW)g(AZ,\varphiY)
+9g(AZ,\varphiY)g(AW,\varphiX)-9g(AY,\varphiZ)g(AW,\varphiX)
+24g(AX,Z)g(AY,W)-24g(AX,Y)g(AZ,W)
+36\mp@subsup{\alpha}{}{2}g(X,Y)g(Z,W)-36\mp@subsup{\alpha}{}{2}g(X,Z)g(Y,W)
+\alpha[14g(AX,Z)g(Y,W)-14g(AX,Y)g(Z,W)
+2g(AZ,W)g(X,Y)-6g(AX,\varphiY)g(Z,\varphiW)
-12g(AX,\varphiW)g(Z,\varphiY)-6g(AZ,\varphiY)g(X,\varphiW)
-6g(AZ,\varphiW)g(X,\varphiY)-2g(AY,W)g(X,Z)
-4g(X,Z)g(AY,W)+6g(AX,\varphiZ)g(Y,\varphiW)
+6g(AY,\varphiZ)g(X,\varphiW)+6g(AY,\varphiW)g(X,\varphiZ)
+4g(X,Y)g(AZ,W)-20g(Y,W)g(AX,Z)
+20g(W,Z)g(AX,Y) - 18g(X,Z)g(AY,W)
-18g(AX,Z)g(Y,W)+18g(AX,Y)g(Z,W)
+18g(X,Y)g(AZ,W)]
```

where $X, Y, Z, W \in \mathcal{D}$. Here, X is an arbitrary vector field on M. Also we can write

$$
X=X^{T}+\eta(X) \xi
$$

where, X^{T} determines the horizontal part of X. We have all vector fields X, Y, Z, W on M.

$$
\begin{aligned}
& 48 R(X, Y, Z, W)=48 R\left(X^{T}, Y^{T}, Z^{T}, W^{T}\right) \\
& +48 \eta(X) R\left(\xi, Y^{T}, Z^{T}, W^{T}\right)+48 \eta(Y) R\left(X^{T}, \xi, Z^{T}, W^{T}\right) \\
& +48 \eta(Z) R\left(X^{T}, Y^{T}, \xi, W^{T}\right)+48 \eta(W) R\left(X^{T}, Y^{T}, Z^{T}, \xi\right) \\
& +48 \eta(X) \eta(Z) R\left(\xi, Y^{T}, \xi, W^{T}\right)+48 \eta(X) \eta(W) R\left(\xi, Y^{T}, Z^{T}, \xi\right) \\
& +48 \eta(Y) \eta(Z) R\left(X^{T}, \xi, \xi, W^{T}\right)+48 \eta(Y) \eta(W) R\left(X^{T}, \xi, Z^{T}, \xi\right)
\end{aligned}
$$

Then if we use

$$
\begin{aligned}
& 48 R(X, Y, Z, W)=H[12 g(X, W) g(Z, Y)-12 \eta(X) \eta(W) g(Z, Y) \\
& -12 \eta(Y) \eta(Z) g(X, W)-12 g(X, \varphi W) g(Z, \varphi Y)-24 g(X, \varphi Y) g(Z, \varphi W) \\
& -12 g(X, Z) g(W, Y)+12 \eta(Y) \eta(W) g(X, Z)+12 \eta(X) \eta(Z) g(W, Y) \\
& +12 g(X, \varphi Z) g(W, \varphi Y)]+3 g(\varphi X, Z) g(\varphi W, Y)-3 g(\varphi X, W) g(\varphi Z, Y) \\
& -12 g(\varphi X, Z) g(\varphi Y, W)+12 g(\varphi X, W) g(\varphi Y, Z)-12 g(\varphi Z, X) g(\varphi W, Y) \\
& +12 g(\varphi W, X) g(\varphi Z, Y)-3 g(\varphi Z, X) g(\varphi Y, W)+3 g(\varphi W, X) g(\varphi Y, Z) \\
& +15 g(\varphi X, Y) g(\varphi W, Z)-15 g(\varphi X, Y) g(\varphi Z, W)+9 g(\varphi Z, W) g(\varphi Y, X) \\
& -9 g(\varphi W, Z) g(\varphi Y, X)+24 g(X, Z) g(W, Y)-24 \eta(W) \eta(Y) g(X, Z) \\
& -24 \eta(X) \eta(Z) g(W, Y)-24 g(X, W) g(Z, Y)+24 \eta(Z) \eta(Y) g(X, W) \\
& +24 \eta(X) \eta(W) g(Z, Y)+36 g(X, W) g(Z, Y)-36 \eta(X) \eta(W) g(Z, Y) \\
& -36 \eta(Y) \eta(Z) g(X, W)-36 g(X, Z) g(W, Y)+36 \eta(Y) \eta(W) g(X, Z) \\
& +36 \eta(Z) \eta(X) g(W, Y)+24 g(X, Z) g(W, Y)-24 \eta(X) \eta(Z) g(W, Y) \\
& -24 \eta(Y) \eta(W) g(X, Z)-24 g(X, W) g(Z, Y)+24 \eta(X) \eta(W) g(Z, Y) \\
& +24 \eta(Y) \eta(Z) g(X, W)-24 g(Z, Y) g(X, W)+24 \eta(Z) \eta(Y) g(X, W) \\
& +24 \eta(X) \eta(W) g(Z, Y)-6 g(\varphi X, W) g(Z, \varphi Y)-12 g(\varphi X, Y) g(Z, \varphi W) \\
& -6 g(\varphi Z, W) g(X, \varphi Y)-6 g(\varphi Z, Y) g(X, \varphi W)+24 g(X, Z) g(W, Y) \\
& -24 \eta(W) \eta(Y) g(X, Z)-24 \eta(X) \eta(Z) g(W, Y)+6 g(\varphi X, Z) g(W, \varphi Y) \\
& +6 g(\varphi W, Z) g(X, \varphi Y)+6 g(\varphi W, Y) g(X, \varphi Z)]+48 \eta(X) \eta(Z) g(Y, W) \\
& -48 \eta(X) \eta(W) g(Y, Z)-48 \eta(Y) \eta(Z) g(X, W)+48 \eta(Y) \eta(W) g(X, Z)
\end{aligned}
$$

from (3.10), we get

$$
\begin{align*}
& 2 S(Y, Z)=[(n+1) H]\{g(Y, Z)-\eta(Y) \eta(Z)\} \\
& +\alpha^{2}[1-3 n] g(Y, Z)-\alpha^{2}[1+n] \eta(Y) \eta(Z) \\
& +\alpha(2-4 n) g(\varphi Y, h Z)+2 \eta(Z) \sum P_{\varphi}\left(E_{\dot{I}}, Y, E_{\dot{I}}\right) \tag{3.20}\\
& -2 \eta(Y) \sum_{\varphi} P_{\varphi}\left(Z, E_{\dot{I}}, E_{\dot{I}}\right)+2 \eta(Y) \eta(Z) \sum P_{\varphi}\left(\xi, E_{\dot{I}}, E_{\dot{I}}\right) \\
& -4 P_{\varphi}(\xi, Y, Z)
\end{align*}
$$

for all vector fields X and Y in M where $\left\{e_{i}\right\}(i=1,2, \ldots, 2 n+1)$ is an arbitrary local orthonormal frame field on M since the trace of h vanishes, from (3.20), we have for the scalar curvature

$$
\tau=n(n+1) H-n \alpha^{2}[1-3 n]-2 \operatorname{Tr}\left(h^{2}\right)
$$

4. A CLASS OF ALMOST COSYMPLECTIC MANIFOLDS \mathfrak{D}

There are two typical examples of contact manifolds;one is formed bye the principal circle bundles over symplectic manifolds of integral class (including the odddimensional spheres)and the other is given by the unit tangent sphere bundles. The former admit a Riemannian metric which is Sasakian concerning the latter,in (15),it was proved that the associated CR-structure of a unit tangent sphere bundle
$T_{1} M$ with standard contact Riemannian structure is integrable if and only if the base manifold is of constant curvature. Here, we note that the unit tangent sphere bundle of a space of constant curvature satisfies

$$
\begin{equation*}
g\left(\left(\nabla_{X^{T}} h\right) Y^{T}, Z^{T}\right)=0 \tag{4.1}
\end{equation*}
$$

Now we consider a contact Riemannian manifold whose structure tensor h satisfies (4.1) and (3.4) simultaneously. Then we have,

$$
\begin{aligned}
& 0=g\left(\left(\nabla_{X^{T}} h\right) Y^{T}, Z^{T}\right)=g\left(\left(\nabla_{X-\eta(X) \xi} h\right)(Y-\eta(Y) \xi, Z-\eta(Z) \xi)\right. \\
& =g\left(\left(\nabla_{X} h\right) Y, Z\right)-\eta(X) g\left(\left(\nabla_{\xi} h\right) Y, Z\right)-\eta(Y) g\left(\left(\nabla_{X} h\right) \xi, Z\right) \\
& -\eta(Z) g\left(\left(\nabla_{X} h\right) Y, \xi\right)+\eta(X) \eta(Y) g\left(\left(\nabla_{\xi} h\right) \xi, Z\right)+\eta(Y) \eta(Z) g\left(\left(\nabla_{X} h\right) \xi, \xi\right) \\
& +\eta(Z) \eta(X) g\left(\left(\nabla_{\xi} h\right) Y, \xi\right)-\eta(X) \eta(Y) \eta(Z) g\left(\left(\nabla_{\xi} h\right) \xi, \xi\right)
\end{aligned}
$$

From the above equation , by using(2.6),(2.7) and using(3.4), we have

$$
\begin{align*}
& \left(\nabla_{X} h\right) Y=\eta(X)\left[-\varphi l Y-\alpha^{2} \varphi Y-2 \alpha h Y-\varphi h^{2} Y\right] \tag{4.2}\\
& -\eta(Y)\left[\alpha h X+\varphi h^{2} X\right]-g\left(\alpha h X+\varphi h^{2} X, Y\right) \xi
\end{align*}
$$

moreover from (4.2) we have

$$
\begin{align*}
& P(X, Y)=-\eta(X)\left[-\varphi l Y-\alpha^{2} \varphi Y-\alpha h Y\right] \\
& +\eta(Y)\left[-\varphi l X-\alpha^{2} \varphi X-\alpha h X\right]-2 g\left(\varphi h^{2} X, Y\right) \xi \tag{4.3}\\
& \quad P_{\varphi}(X, Y)=\eta(X)\left[-l Y+\alpha^{2} \varphi^{2} Y+\alpha \varphi h Y\right] \\
& \quad-\eta(Y)\left[-l X+\alpha^{2} \varphi^{2} X+\alpha \varphi h X\right]
\end{align*}
$$

for any vector fields X and Y now we define a $(1,2)$ tensor field $Q_{1}(X, Y)$ by

$$
\begin{aligned}
& Q_{1}(X, Y)=\left(\nabla_{X} h\right) Y-\eta(X)\left[-\varphi l Y-\alpha^{2} \varphi Y-2 \alpha h Y-\varphi h^{2} Y\right] \\
& +\eta(Y)\left[\alpha h X-\varphi h^{2} X\right]+g\left(-\alpha h X+\varphi h^{2} X, Y\right) \xi
\end{aligned}
$$

Definition 4.1. The class \mathfrak{D} is given by the spaces of almost α-cosymplectic manifold with Kaehlerian integral submanifolds satisfying $Q_{1}=0$, that is,

$$
\mathfrak{D}=\left\{\left(M^{2 n+1}, \phi, \xi, \eta, g\right): Q_{1}=0\right\}
$$

We can see that this class \mathfrak{D} is invariant under D-homothetic deformations [21].
Lemma 4.1. Let M be a space $\in \mathfrak{D}$ then the eigenvalues of h are constant.

5. Schur Type Theorem

Theorem 5.1. Let M be an almost α-cosymplectic manifold with Kaehlerian leaves belonging to the class \mathfrak{D}. If the φ-sectional curvature at any point of M is independent of the choice of φ-section, then it is constant on M and the curvature tensor is given by

$$
\begin{align*}
& 4 R(X, Y, Z, W)=\left(H+3 \alpha^{2}\right)[g(X, W) g(Z, Y)-g(X, Z) g(W, Y)] \\
& -\left(H+\alpha^{2}\right)[\eta(X) \eta(W) g(Z, Y)+\eta(Y) \eta(Z) g(X, W) \\
& +2 g(X, \varphi Y) g(Z, \varphi W)-\eta(Y) \eta(W) g(X, Z)-\eta(X) \eta(Z) g(W, Y] \\
& +\left(H-\alpha^{2}\right)[g(X, \varphi Z) g(W, \varphi Y)-g(X, \varphi W) g(Z, \varphi Y] \tag{5.1}\\
& -g(A X, \varphi Z) g(A Y, \varphi W)+g(A W, \varphi X) g(A Z, \varphi Y) \\
& -g(A Z, \varphi X) g(A W, \varphi Y)+g(A X, \varphi W) g(A Y, \varphi Z) \\
& +2 g(A X, Z) g(A W, Y)-2 g(A X, W) g(A Z, Y)
\end{align*}
$$

$$
\begin{aligned}
& {\left[\begin{array}{l}
-2 g(A X, Z) g(W, Y)+2 \eta(Y) \eta(W) g(A X, Z) \\
+2 g(A X, W) g(Z, Y)-2 \eta(Y) \eta(Z) g(A X, W) \\
+2 g(A Z, Y) g(X, W)-2 \eta(X) \eta(W) g(A Z, Y) \\
-2 g(X, Z) g(A W, Y)+2 \eta(X) \eta(Z) g(A W, Y)
\end{array}\right]} \\
& -8 \alpha \eta(Y) \eta(W) g(\varphi h X, Z)+4 \alpha \eta(Y) g(\varphi h W, X) \\
& -8 \alpha \eta(X) g(\varphi h Z, Y) \\
& -8 \eta(X) \eta(Z) g(l W, Y)+8 \eta(Y) \eta(W) g(l X, Z) \\
& +8 \eta(X) g(l Z, Y)-4 \eta(Y) g(l X, Z)-4 \eta(Y) g(l W, X) \\
& +8 \alpha^{2} \eta(X) \eta(Z) g\left(\varphi^{2} W, Y\right) \\
& +8 \alpha^{2} \eta(X) g\left(\varphi^{2} Z Y\right)-8 \alpha^{2} \eta(Y) \eta(W) g\left(\varphi^{2} X, Z\right) \\
& +4 \alpha^{2} \eta(Y) g\left(\varphi^{2} W, X\right)+4 \alpha^{2} \eta(Y) g\left(\varphi^{2} Z, X\right) \\
& -6 \alpha^{2} \eta(X) \eta(W) g(Y, Z)-6 \alpha^{2} \eta(Y) \eta(Z) g(X, W) \\
& +6 \alpha^{2} \eta(Y) \eta(W) g(X, Z)+6 \alpha^{2} \eta(X) \eta(Z) g(Y, W)
\end{aligned}
$$

for all vector fields X, Y, Z, W in M.
Corollary 5.1. Let M be an almost α-cosymplectic manifold with Kaehlerian leaves belonging to the class \mathfrak{D}. If the φ-sectional curvature at any point of M is independent of the choice of φ-section, then Ricci and scalar curvature are given as following

$$
\begin{gather*}
2 S(Y, Z)=\left[(n+1) H+\alpha^{2}(5-3 n)\right]\{g(Y, Z)-\eta(Y) \eta(Z)\} \tag{5.2}\\
+2 \operatorname{Tr}(l) \eta(Y) \eta(Z)+4 g(l Y, Z)+\alpha(4 n-2) g(\varphi Y, h Z) \\
\tau=n(n+1) H+\alpha^{2} n(5-3 n)+3 \operatorname{Tr}(l) \tag{5.3}
\end{gather*}
$$

Proof. From (4.3) and by using (2.14) and Lemma 4.1, we have

$$
\begin{aligned}
& 2\left(\nabla_{X} S\right)(Y, Z)=[(n+1) X(H)]\{g(Y, Z)-\eta(Y) \eta(Z)\} \\
& +[2 \operatorname{Tr}(l)-(n+1) H]\left\{\eta(Z) g\left(Y, \nabla_{X} \xi\right)-\eta(Y) g\left(Z, \nabla_{X} \xi\right)\right\} \\
& +4 g\left(\left(\nabla_{X} l\right) Y, Z\right),
\end{aligned}
$$

which yields

$$
\begin{align*}
& \sum 2\left(\nabla_{E_{i}} S\right)\left(Y, E_{\dot{I}}\right)=\sum_{i}\left[(n+1) E_{\dot{I}}(H)\right]\left\{g\left(Y, E_{\dot{I}}\right)-\eta(Y) \eta\left(E_{i}\right)\right\} \tag{5.4}\\
& +\sum[2 T r(l)-(n+1) H]\left\{\eta(Y) g\left(E_{\dot{I}}, \nabla_{E_{i}} \xi\right)-\eta\left(E_{\dot{I}}\right) g\left(Y, \nabla_{E_{i}} \xi\right)\right\} \\
& +\sum 4 g\left(\left(\nabla_{E_{i}} l\right) Y, E_{\dot{I}}\right) \\
& =(n+1) \sum E_{\dot{I}}(H) g\left(Y, E_{\dot{I}}\right)-(n+1) \xi(H) \eta(Y)+\sum 4 g\left(\left(\nabla_{E_{i}} l\right) Y, E_{\dot{I}}\right) .
\end{align*}
$$

by the well-known formula

$$
\left(\nabla_{X} \tau\right)=2 \sum\left(\nabla_{E_{\dot{I}}} S\right)\left(X, E_{\dot{I}}\right) .
$$

for any local orthonormal frame field $\left\{E_{i}\right\}(i=1,2, \ldots, 2 n+1)$ and by using (5.3), (5.4) and Lemma 4.1, we have

$$
(n+1)\{X H-(\xi H) \eta(X)\}=2 n(n+1) X H .
$$

This says that $\xi H=0$ and $(n-1) X H=0$. Since $n>1$, we see that H is constant, say c. by applying (4.2) (4.3) and (4.4) in Proposition 3.2, we obtain (5.1)

Definition 5.1. A complete and simply connected almost α-cosymplectic manifold of class \mathfrak{D} with constant φ-sectional curvature is said to be an almost α cosymplectic space form.

And then, from the proof of Proposition 3.2 and Theorem 5.1, we have,

Theorem 5.2. Let M be a complete and simply connected almost α-cosymplectic space belonging to the class \mathfrak{D}. Then M is an almost cosymplectic space form if and only if the curvature tensor R is given by (5.1).

References

[1] T. W. Kim, H. K. Pak, Canonical foliations of certain classes of almost contact metric structures, Acta Math. Sinica, Eng. Ser. Aug., 21, 4 (2005), 841-846.
[2] G. Dileo, A. M. Pastore, Almost Kenmotsu manifolds and local symmetry, Bull. Belg. Math. Soc. Simon Stevin, 14 (2007), 343-354.
[3] E. Boeckx, J. T. Cho, η-parallel contact metric spaces, Differential geometry and its applications, 22 (2005), 275-285.
[4] D. E., Blair, Riemannian geometry of contact and symplectic manifolds, Progress in Mathematics, 203. Birkhâuser Boston, Inc., Boston, MA, (2002).
[5] I. Vaisman, Conformal changes of almost contact metric manifolds, Lecture Notes in Math., Berlin-Heidelberg-New York, 792 (1980), 435-443.
[6] Kassabov, O. T., Schur's theorem for almost Hermitian manifolds, C. R. Acad. Bulg. Sci. (54) 3, 15-18, 2001.
[7] Cho, J. T. , Geometry of contact strongly pseudo-convex CR-manifolds, J. Korean Math. (43) 5, 1019-1045, 2006.
[8] Kulkarni, R. S. , On a theorem of F. Schur, Journal Diff. Geom. (4), 453-456, 1970.
[9] Gabriel, E. V., A Schur-type Theorem on Indefinite Quaternionic Keahler Manifolds, Int. J. Contemp. Math. 11 (2), 529-536, 2007.
[10] Nobuhiro, I., A theorem of Schur type for locally symmetric spaces, Sci. Rep. Niigata Univ., Ser. A (25), 1-4,. 1989.
[11] Schur, F. , Ueber den Zusammenhang der Raume constanten Riemann'schen Kriimmungsmasses mit den projectiven Raumen. Math. (27), 537-567, 1886.
[12] Goldberg, S. I. and Yano, K. , Integrability of almost cosymplectic structures, Pacific J. Math. (31), 373-382, 1969.
[13] Olszak, Z., On almost cosymplectic manîfolds, Kodai Math. J. (4), 239-250, 1981.
[14] Olszak, Z., Almost cosymplectic manifolds with Kàhlerian leaves, Tensor N. S. (46), 117-124, 1987.
[15] Kirichenko, V. F. , Almost cosymplectic manifolds satisfying the axiom of i Pholomorphic planes (in Russian), Dokl. Akad. Nauk SSSR (273), 280-28,1983.
[16] Endo, H. , On Ricci curvatures of almost cosymplectic manifolds, An. Stiin|.Univ." Al.I.Cuza" Ia§i, Mat.(40), $75-83,1994$.
[17] Blair, D. E. , The theory of quasi-Sasakian structures, J. Diff. Geometry, (1), 331-345, 1967.
[18] Dacko, P. and Olszak, Z., On conformally flat almost cosymplectic manifolds with Keahlerian leaves, Rend. Sem. Mat. Univ. Pol. Torino, (56) 1, 89-103, 1998.
[19] Goldberg, S. I. and Yano, K. , Integrability of almost cosymplectic structure, Pacific J. Math. (31) , 373-382, 1969
[20] Tanno, S. , The standard CR structure on the unit tangent bundle Tohoku Math. J. 44 (2), 535-543, 1992.
[21] Blair, D. E. , Contact metric manifolds satisfying a nullity condition Israel J.of Math. (91), 1-3, 189-214, 1995..
[22] Nesip Aktan, Gülhan Ayar and Imren Bektas, A Schur type theorem for almost cosymplectic manifolds with Kaehlerian leaves, Hacettepe Journal of Mathematics and Statistics Volume 42 (4) (2013), 455 - 463
[23] H. Öztürk, Nesip Aktan, Cengizhan Murathan, Almost α-Cosymplectic ($\kappa, \mu, \nu)$-Spaces, arXiv:1007.0527
[24] K. Kenmotsu, A class of contact Riemannian manifold, Tohoku Math. Journal, 24 (1972),93103

E-mail address: Gülhan Ayar: gulhanayar@gmail.com, mustafay@duzce.edu.tr Current address: Duzce University, Department of Mathematics

E-mail address, Nesip Aktan: nesipaktan@gmail.com
Current address: Konya Necmettin Erbakan University, Department of Mathematics-Computer Sciences

[^0]: 2000 Mathematics Subject Classification. 53D10, 53C15, 53C25, 53C35.
 Key words and phrases. Contact Manifold, Cosymplectic Manifold, Sectional Curvature.

